
Defending against Return-Oriented Programming

Vasileios Pappas

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2015



©2014

Vasileios Pappas

All Rights Reserved



ABSTRACT

Defending against Return-Oriented Programming

Vasileios Pappas

Return-oriented programming (ROP) has become the primary exploitation technique for

system compromise in the presence of non-executable page protections. ROP exploits are

facilitated mainly by the lack of complete address space randomization coverage or the pres-

ence of memory disclosure vulnerabilities, necessitating additional ROP-specific mitigations.

Existing defenses against ROP exploits either require source code or symbolic debugging

information, or impose a significant runtime overhead, which limits their applicability for

the protection of third-party applications.

We propose two novel techniques to prevent ROP exploits on third-party applications

without requiring their source code or debug symbols, while at the same time incurring

a minimal performance overhead. Their effectiveness is based on breaking an invariant of

ROP attacks: knowledge of the code layout, and a common characteristic: unrestricted use

of indirect branches. When combined, they still retain their applicability and efficiency,

while maximizing the protection coverage against ROP.

The first technique, in-place code randomization, uses narrow-scope code transforma-

tions that can be applied statically, without changing the location of basic blocks, allowing

the safe randomization of stripped binaries even with partial disassembly coverage. These

transformations effectively eliminate 10%, and probabilistically break 80% of the useful in-

struction sequences found in a large set of PE files. Since no additional code is inserted,

in-place code randomization does not incur any measurable runtime overhead, enabling it

to be easily used in tandem with existing exploit mitigations such as address space layout

randomization. Our evaluation using publicly available ROP exploits and two ROP code

generation toolkits demonstrates that our technique prevents the exploitation of the tested

vulnerable Windows 7 applications, including Adobe Reader, as well as the automated con-



struction of alternative ROP payloads that aim to circumvent in-place code randomization

using solely any remaining unaffected instruction sequences.

The second technique is based on the detection of abnormal control transfers that take

place during ROP code execution. This is achieved using hardware features of commodity

processors, which incur negligible runtime overhead and allow for completely transparent

operation without requiring any modifications to the protected applications. Our implemen-

tation for Windows 7, named kBouncer, can be selectively enabled for installed programs

in the same fashion as user-friendly mitigation toolkits like Microsoft’s EMET. The results

of our evaluation demonstrate that kBouncer has low runtime overhead of up to 4%, when

stressed with specially crafted workloads that continuously trigger its core detection compo-

nent, while it has negligible overhead for actual user applications. In our experiments with

in-the-wild ROP exploits, kBouncer successfully protected all tested applications, including

Internet Explorer, Adobe Flash Player, and Adobe Reader.

In addition, we introduce a technique that enables ASLR for executables with stripped

relocation information by incrementally adjusting stale absolute addresses at runtime. The

technique relies on runtime monitoring of memory accesses and control flow transfers to

the original location of a module using page table manipulation. We have implemented a

prototype of the proposed technique for Windows XP, which is transparently applicable to

third-party stripped binaries. Our results demonstrate that incremental runtime relocation

patching is practical, incurs a runtime overhead of up to 83% in most of the cases for initial

runs of protected programs, and has a low runtime overhead of 5% on subsequent runs.
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Chapter 1

Introduction

1.1 Motivation

Attack prevention technologies based on the No eXecute (NX) memory page protection bit,

which prevent the execution of malicious code that has been injected into a process, are

now supported by most recent CPUs and operating systems [Miller et al., 2011]. The wide

adoption of these protection mechanisms has given rise to a new exploitation technique,

widely known as return-oriented programming (ROP) [Shacham, 2007], which allows an

attacker to circumvent non-executable page protections without injecting any code. Using

return-oriented programming, the attacker can link together small fragments of code, known

as gadgets, that already exist in the process image of the vulnerable application. Each

gadget ends with an indirect control transfer instruction, which transfers control to the

next gadget according to a sequence of gadget addresses injected on the stack or some other

memory area. In essence, instead of injecting binary code, the attacker injects just data,

which include the addresses of the gadgets to be executed, along with any required data

arguments.

Several research works have demonstrated the great potential of this technique for by-

passing defenses such as read-only memory [Checkoway et al., 2009], kernel code integrity

protections [Hund et al., 2009], and non-executable memory implementations in mobile

devices [Dullien et al., 2010] and operating systems [Zovi, 2010b; Solé, 2010; Zovi, 2010a;

Vreugdenhil, 2010]. Consequently, it was only a matter of time for ROP to be employed in
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real-world attacks. Recent exploits against popular applications use ROP code to bypass

exploit mitigations even in the latest OS versions, including Windows 7 SP1. ROP exploits

are included in the most common exploit packs [Baumgartner, 2010; Parkour, 2011], and

are actively used in the wild for mounting drive-by download attacks.

Attackers are able to a priori pick the right code pieces because parts of the code image of

the vulnerable application remain static across different installations. Address space layout

randomization (ASLR) [Miller et al., 2011] is meant to prevent this kind of code reuse by

randomizing the locations of the executable segments of a running process. However, in

both Linux and Windows, parts of the address space do not change due to executables

with fixed load addresses [Fresi Roglia et al., 2009], or shared libraries incompatible with

ASLR [Zovi, 2010b]. Furthermore, in some exploits, the base address of a DLL can be

either calculated dynamically through a leaked pointer [Li, 2011; Vreugdenhil, 2010; Serna,

2012], or brute-forced [Shacham et al., 2004].

Other defenses against code-reuse attacks complementary to ASLR include compiler

extensions [Li et al., 2010; Onarlioglu et al., 2010], code randomization [Forrest et al., 1997;

Bhatkar et al., 2005; Kil et al., 2006], control-flow integrity [Abadi et al., 2005], and runtime

solutions [Davi et al., 2011; Chen et al., 2009; Davi et al., 2009]. In practice, though, most of

these approaches are almost never applied for the protection of the COTS software currently

targeted by ROP attacks, either due to the lack of source code or debugging information, or

due to their increased overhead. In particular, from the above techniques, those that operate

directly on compiled binaries, e.g., by permuting the order of functions [Bhatkar et al., 2005;

Kil et al., 2006] or through binary instrumentation [Abadi et al., 2005], require precise and

complete extraction of all code and data in the executable sections of the binary. This

is possible only if the corresponding symbolic debugging information is available, which

however is typically stripped from production binaries. On the other hand, techniques that

do work on stripped binary executables using dynamic binary instrumentation [Davi et al.,

2011; Chen et al., 2009; Davi et al., 2009], incur a significant runtime overhead that limits

their adoption.
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1.2 Requirements and Goals

From the discussion above it is clear that there is a need for more practical ROP defenses.

The three main requirements we consider essential for a practical ROP defense are:

� Low performance overhead. Defense solutions that impose a significant slowdown

rarely see any wide adoption. Of course, such solutions might be valuable in high-

security environments with ample resources. However, for our work, we consider

performance overhead a critical factor.

� Applicability to third-party applications. Requiring access to the source code

of legacy applications in order to retrofit a defense solution might be a difficult task,

if not impossible in some cases. Even worse, redistributing recompiled versions of

the protected applications poses its own challenges. Thus, protecting third-party

applications in the absence of source code or debug symbols becomes very important.

� Effectiveness. At a minimum, a ROP defense should be able to protect against

current real-world attacks. In addition, a technique that does not provide complete

protection should significantly raise the bar for attackers. For example, a technique

that prevents current attacks, but, can be circumvented by trivially altering the attack

payload, is of lesser value.

Aiming to fulfil the requirements above, in this work we propose two ROP defense

techniques that use different approaches to achieve the same goals.

We first focused on improving the current state-of-the-art in techniques that can be

statically applied. Towards that end, we designed a fine-grained randomization scheme,

named in-place code randomization [Pappas et al., 2012]. Knowledge of the code layout

(i.e., locations of instructions) and environment (i.e., OS APIs, system call table, etc.) is

an invariant for ROP attacks, and this is exactly what in-place code randomization attacks.

Compared to previous approaches, the key difference of our technique is the ability to

randomize stripped binaries. This is achieved by modifying only the code that can be

safely extracted from compiled binaries, while preserving the length of the randomized

instructions and basic blocks — that way, the semantics of undiscovered code parts are
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preserved. In addition, since code length remains the same during the randomization (i.e.,

no new instructions are inserted), there is practically no runtime performance overhead.

As stated before, current defenses that offer dynamic, runtime protection are based

on dynamic binary instrumentation, which imposes a prohibitively high performance over-

head. The goal we set for our second technique was to improve the protection offered by

dynamic, runtime approaches, while at the same time, lowering the performance overhead

to a minimal level. In addition, we introduced a forth requirement:

� Transparency. Protecting applications without changing a single bit of them not

only eliminates the need for any code structure assumptions, but also enables com-

patibility with other protections, like code-signing, etc.

Our second technique, indirect branch tracing [Pappas et al., 2013], detects the execution

of ROP code at runtime by identifying abnormal control flow transfers. Our technique

prohibits the arbitrary use of indirect branches, which is a characteristic of ROP attacks

— this is how smaller fragments of code are linked together. To satisfy the transparency

requirement and keep performance overhead to a minimal level, it uses hardware features

found on commodity processors to monitor indirect branches. Indirect branch tracing is the

first technique to satisfy all four requirements.

Our proposed techniques target different ROP invariants and characteristics (knowledge

of code layout vs unrestricted indirect branches). Also, they are applied in different ways

(statically vs dynamically at runtime). This means that these two techniques are both

compatible and, moreover, complemenentary to each other.

In addition to the two defense techniques above, we also propose a technique to dynam-

ically reconstruct relocation information for stripped binaries [Pappas et al., 2014]. The

availability of relocation information for ROP protection is very important for two reasons:

not only does it enable ASLR, which would otherwise be impossible, but it also improves

disassembly accuracy, which in turns improves the coverage of in-place code randomization,

or other similar schemes.

In summary, the hypothesis of this thesis is the following:
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Using in-place code randomization and indirect branch tracing to break the code

layout knowledge invariant and unrestricted indirect branching characteristic of

ROP, provides a practical solution in terms of efficiency, deployability and ef-

fectiveness.

1.3 Contributions

� We introduced in-place code randomization, a novel and practical approach for hard-

ening third-party software against ROP attacks. We describe in detail various narrow-

scope code transformations that do not change the semantics of existing code, and

which can be safely applied on compiled binaries without symbolic debugging infor-

mation.

– We implemented in-place code randomization for x86 PE executables, and ex-

perimentally verified the safety of the applied code transformations and their

practically zero performance overhead with extensive runtime code coverage tests

using third-party executables.

– We provide a detailed analysis of how in-place code randomization affects avail-

able gadgets using a large set of 5,235 PE files. On average, the applied transfor-

mations effectively eliminate about 10%, and probabilistically break about 80%

of the gadgets in the tested files.

– We evaluate in-place code randomization using publicly available ROP exploits

and generic ROP payloads, as well as two ROP payload construction toolkits. In

all cases, the randomized versions of the executables break the malicious ROP

code, and prevent the automated construction of alternative payloads using the

remaining unaffected gadgets.

� We developed a practical and transparent ROP exploit mitigation technique based on

runtime tracing of indirect branch instructions using the LBR feature of recent CPUs.

– We have implemented the branch tracing approach as a self-contained toolkit for

Windows 7 and describe in detail its design and implementation.
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– We provide a quantitative analysis of the robustness of the proposed ROP code

execution prevention technique against potential evasion attempts.

– We have experimentally evaluated the performance and effectiveness of branch

tracing for ROP prevention, and demonstrate that it can prevent in-the-wild

exploits against popular applications with negligible runtime overhead.

� We devised a technique for dynamically reconstructing missing relocation information

from stripped binaries. Our technique can be used to enable forced ASLR or or resolve

base address conflicts for third-party non-relocatable binaries.

– We have implemented the proposed approach as a self-contained software hard-

ening tool for Windows applications, and describe in detail its design and imple-

mentation.

– We have experimentally evaluated the performance and correctness of our ap-

proach using standard benchmarks and popular applications, and demonstrate

its effectiveness.

1.4 Dissertation Roadmap

Chapter 2 covers some background information about ROP and reviews related work. Chap-

ter 3 and 4 describe the design, implementation and experimental evaluation of in-place code

randomization and indirect branch tracing, respectively—at the end of Chapter 4 we also

explore the benefits of combining the two techniques. Dynamic relocation reconstruction is

described in Chapter 5. Finally, Chapter 6 presents the conclusions draw from this work,

along with some future work directions.
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Chapter 2

Background and Related Work

2.1 Background

2.1.1 Code-reuse Attacks Evolution

The introduction of non-executable memory page protections in popular OSes, even for

CPUs that do not support the No eXecute (NX) bit, led to the development of the return-

to-libc exploitation technique [Designer, 1997]. Using this method, a memory corruption

vulnerability can be exploited by transferring control to code that already exists in the

address space of the vulnerable process. By jumping to the beginning of a library function

such as system(), the attacker can for example spawn a shell without the need to inject

any code.

Frequently though, especially for remote exploitation, calling a single function is not

enough. In these cases, multiple return-to-libc calls can be “chained” together by ensuring

that before returning from one function to the next one, the stack pointer has been correctly

adjusted to the beginning of the prepared stack frame for the next call. For instance, for a

function with two arguments, this can be achieved by first returning to a short instruction

sequence such as pop reg; pop reg; ret;found anywhere within the executable part

of the process image [Newsham, 2000; Nergal, 2001]. The pop instructions adjust the

stack pointer beyond the arguments of the previously executed function (one pop for each

argument), and then ret transfers control to the next chained function. This approach,
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however, is not applicable in cases where the function arguments need to be passed through

registers. Sebastian Krahmer introduced the “borrowed code chunks” technique [Krahmer,

2005], In that case, a few short instruction sequences ending with a ret instruction can be

chained directly to set the proper registers with the desired arguments, before calling the

library function.

In the above code-reuse techniques, the executed code consists of one or a few short

instruction sequences followed by a large block of code belonging to a library function.

Hovav Shacham demonstrated that using only a carefully selected set of short instruction

sequences ending with a ret instruction, known as gadgets, it is possible to achieve arbitrary

computation, obviating the need for calling library functions [Shacham, 2007]. This powerful

technique, dubbed return-oriented programming, in essence gives the attacker the same

level of flexibility offered by arbitrary code injection without injecting any code at all—

the injected payload comprises just a sequence of gadget addresses intermixed with any

necessary data arguments.

In a typical ROP exploit, the attacker needs to control both the program counter and

the stack pointer: the former for executing the first gadget, and the latter for allowing its

ret instruction to transfer control to subsequent gadgets. Depending on the vulnerability,

if the ROP payload is injected in a memory area other than the stack, e.g., the heap,

then the stack pointer must first be adjusted to the beginning of the payload through a

stack pivot [Erlingsson, 2007; Zovi, 2010b]. In a follow up work [Checkoway et al., 2010],

Checkoway et al. demonstrated that the gadgets used in a ROP exploit need not necessarily

end with a ret instruction, but with any other indirect control transfer instruction. This

also allows the use of any general purpose register in place of the stack pointer as an “index”

register for controlling the execution of the gadgets, bypassing any protections based on

stack integrity.

The ROP code used in recent exploits against Windows applications is mostly based

on gadgets ending with ret instructions, which conveniently manipulate both the program

counter and the stack pointer, although a couple of gadgets ending with call or jmp are

also used for calling library functions. In all publicly available Windows exploits so far,

attackers do not have to rely on a fully ROP-based implementation for the whole malicious
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0x00000001

0x00000002

0xb8800010

0xb8800000

0xb8800010

0xb8800020

0x00000400
0xb8800030

esp

Stack 0xb8800000:
  pop eax
  ret
...
0xb8800010:
  pop ebx
  ret
...
0xb8800020:
  add eax, ebx
  ret
...
0xb8800010:
  pop ebx
  ret
...
0xb8800030:
  mov [ebx], eax
  ret

Code

eax = 1

ebx = 2

eax += ebx

ebx = 0x400

*ebx = eax

Figure 2.1: Example a simple ROP program that adds two numbers and stores the result

in a given memory address. (Note that in order to keep diagram simpler, the gadget at

0xbb800010 appears two times in the code column.)

code that needs to be executed, after triggering a memory corruption vulnerability. Instead,

ROP code is used only as a first stage for bypassing DEP [Miller et al., 2011]. Typically,

once control flow has been hijacked, the ROP code allocates a memory area with write

and execute permissions by calling a library function like VirtualAlloc, copies into it

some plain shellcode included in the attack vector, and finally jumps to the copied shellcode

which now has execute permission [Erlingsson, 2007].

2.1.2 ROP Example

To better demonstrate how return-oriented programming works in practice, we provide of

a simple program that performs a basic operation: adding two input numbers and storing

the result in a given memory location. Figure 2.1 depicts a graphical representation of our

example for x86. The runtime stack of the vulnerable application is on the left side and its
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contents are controllable by the attacker. On the right side, we see small fragments of code

(or, gadgets) that belong to the executable segment of the same vulnerable application. It is

important to note that these instruction sequences could either be part of the application’s

intended executable code (i.e., generated by the compiler), or, correspond to unintended

overlapping instructions as a results of the variable instruction length of x86. An invariant

that holds for all ROP attacks is that the attacker has to have knowledge of the code layout.

The arrows between the stack and the gadgets illustrate how control flows between each

gadget, based on the contents of the stack. Also, the results of executing each gadget appear

between the control flow arrows.

Assuming that the attacker has filled out the stack with the values shown in Figure 2.1

and that a return instruction is executed, control flow is going to be transferred to address

0xb8800000, which is the beginning of the first gadget. The pop eax instruction loads the

next value on the top of the stack in the eax register. The ret which follows effectively links

this gadget with the second one, which is located at address 0xb8800020, by transferring

control to the address found on the top of the stack. The use of indirect branches to link

gadgets together is one of the main characteristics of ROP. Similarly, the second gadget

loads another value from the stack to the ebx register. Again, its ret instruction links it

with the next gadget by using the address on the current top of the stack. At this point,

eax and ebx contain the values 1 and 2, respectively. The third gadget, found at address

0xb8800020, adds the contents of these two registers. Then, the second gadget is used

again to load yet another value from the stack in ebx. The content of ebx is used as the

destination address by the last gadget to store the result of the addition.

What is important to note from this example is the fact that, although no additional

code was inserted, the attacker was able to perform a very specific computation. This

forms the basis of return-oriented programming and, as stated earlier, it has been shown

that, given a certain set of gadgets an attacker has the power to perform arbitrary code

execution [Shacham, 2007]. As we see from the example above, the success of a ROP attack

depends both on the knowledge of the code layout and the ability to use indirect branches

to link gadgets.

Table 2.1 summarizes the invariants and characteristics of ROP attacks. Code-reuse
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Table 2.1: Invariants and characteristics of ROP attacks.

Name Description

Knowledge of code layout Synthesizing a ROP payload requires access to the code

Unrestricted indirect branching Arbitrary code fragments are linked through indirect branches

attacks in general depend on having access to the code of the vulnerable application, so the

parts to be reused, depending on the attack’s goal, can be picked. We identify knowledge

of the code layout as an invariant for the success of ROP attacks. After the right code

fragments (gadgets) are picked, they have to be linked together to perform the required

computation through indirect branches. The availability of unrestricted indirect branches

for that reason is a common characteristic of ROP attacks. Coming back to the example

above, we see that the attacker needed to have knowledge about the code layout to pick

these five gadgets. In addition, there should be no restrictions on the targets of the return

instructions, so the gadgets can be linked together.

2.2 Related Work

Almost a decade after the introduction of the return-to-libc technique [Designer, 1997], the

wide adoption of non-executable memory page protections in popular OSes sparked a new

interest in more advanced forms of code-reuse attacks. The introduction of return-oriented

programming [Shacham, 2007] and its advancements [Buchanan et al., 2008; Checkoway et

al., 2009; Hund et al., 2009; Checkoway et al., 2010; Dullien et al., 2010; Bletsch et al., 2011b;

Schwartz et al., 2011; Solé, 2008; Zovi, 2010b; Zovi, 2010a] led to its adoption in real-world

attacks [Baumgartner, 2010; Parkour, 2011]. ROP exploits are facilitated by the lack of

complete address space layout randomization in both Linux [Fresi Roglia et al., 2009], and

Windows [Zovi, 2010b], which otherwise would prevent or at least hinder [Shacham et al.,

2004] these attacks.

In the following subsections we review the related work in the area of ROP defenses. We

have divided them in two categories: (i) defenses that break the knowledge of code layout

invariant, (ii) defenses that restrict the use of indirect branches. The following subsection
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Table 2.2: ROP defenses comparison.

Stripped Incomplete ROP w/o Breaks Restricts

Defense Efficient Binaries Disas. Returns Transparent Layout Branches

DROP X X X X

DynIMA X X X X

ROPdefender X X X X

Return-less X X

G-Free X X X

CFL X X X

CFR X X X

ILR X X X X

Binary Stirring X X X X

XIFER X X X X

CCFIR X X X X

CFI-COTS X X X X

ROPGuard X X X X

ROPecker X X X

ROP Sandy X X X X X

Branch Reg. X X X X X

CFImon X X X X

In-place Rand. X X X X X

Ind. Branch Tr. X X X X X X

describes related work that falls into the first category. The next two subsections review

defenses that fall under the second category—subdivided based on whether the checks are

added statically, or dynamically at runtime. Table 2.2 provides a comparison of this work

to these proposals based on whether they: incur performance overhead which is lower than

5%1 (Efficiency), are applicable on third-party applications (Stripped Binaries), do not re-

quire complete extraction of the control flow graph (Incomplete Disas.), protect against

ROP that uses gadgets ending in indirect jump/call (ROP w/o Returns), are transparent

to the protected applications (Transparent), break the knowledge of code layout ROP in-

variant (Breaks Layout), attack the unrestricted use of indirect branches ROP characteristic

(Restricts Branches).

1 This is a reasonable requirement for practical purposes, as it was also used in Microsoft’s BlueHat Prize

Contest [Microsoft, 2012].
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2.2.1 Address Space Randomization and Code Diversification

As code-reuse attacks require precise knowledge of the structure and location of the code to

be reused, diversifying the execution environment or even the program code itself is a core

concept in preventing code-reuse exploits [Cohen, 1993; Forrest et al., 1997]. Address space

layout randomization [PaX Team, 2001; Miller et al., 2011] is probably one of the most

widely deployed countermeasures against code-reuse attacks. However, its effectiveness is

hindered by code segments left in static locations [Fresi Roglia et al., 2009; Zovi, 2010b;

Johnson, 2011], while, depending on the randomization entropy, it might be possible to

circumvent it using brute-force guessing [Shacham et al., 2004]. Even if all the code segments

of a process are fully randomized, vulnerabilities that allow the leakage of memory contents

can enable the calculation of the base address of a DLL at runtime [Bennett et al., 2013;

Serna, 2012; Li, 2011; Vreugdenhil, 2010; Hund et al., 2013; Snow et al., 2013].

Intra-DLL randomization at the function [Bhatkar et al., 2003; Bhatkar et al., 2005; Kil

et al., 2006; Microsoft, b], basic block [Google, 2011; Microsoft, c], or instruction level [Hiser

et al., 2012; Wartell et al., 2012; Davi et al., 2013] can provide protection for executables

that do not support ASLR, or against de-randomization attacks through memory leaks.

The practical deployment of these techniques for the protection of third-party applications

depends on the availability of source code [Bhatkar et al., 2003; Bhatkar et al., 2005; Kil

et al., 2006; Microsoft, b], debug symbols [Google, 2011; Microsoft, c; Davi et al., 2013], or

the accuracy of disassembly and control flow graph extraction [Hiser et al., 2012; Wartell

et al., 2012].

At the same time, instruction set randomization (ISR) [Kc et al., 2003; Barrantes et al.,

2003] cannot completely prevent code-reuse attacks. Although gadgets that contain over-

lapping instructions cannot be used under ISR, an attacker can still use all the gadgets that

are part of legitimate executable code (i.e., code that is intentionally generated by a com-

piler). Also, current implementations of ISR rely on heavyweight runtime instrumentation

or code emulation frameworks.
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2.2.2 Control Flow Integrity and Indirect Branch Protection

The execution of ROP code disrupts the normal call path of typical programs, resulting

to an unanticipated flow of control. Control flow integrity [Abadi et al., 2005] can confine

program execution within the bounds of a precomputed profile of allowed control flow

paths, and thus can prevent most of the irregular control flow transfers that connect the

gadgets of a ROP exploit. Depending on program complexity, however, deriving an accurate

view of the control flow graph is often challenging. Alternative approaches against return-

oriented programming enforce a more relaxed policy for the integrity of indirect control

transfers [Onarlioglu et al., 2010; Li et al., 2010; Bletsch et al., 2011a; Pewny and Holz,

2013]. Using code transformations, these techniques eliminate the occurrence of unintended

indirect branch instructions in the generated code, and safeguard all legitimate indirect

branches using cookies or additional levels of indirection.

The main factor that limits the practical applicability of the above techniques is that

they require the recompilation of the target application, which is usually not possible for the

popular proprietary applications that are commonly targeted by ROP exploits. To overcome

this limitation, more recent proposals introduced ways to enforce control flow integrity on

binary programs, without requiring source code or debug symbols [Zhang and Sekar, 2013;

Zhang et al., 2013]. As constructing an accurate control flow graph from a striped binary

program is an intractable problem, these solutions incorporated looser rules when checking

for indirect call or return targets, etc. Although such schemes clearly raise the bar for

successful ROP exploitation, it has been shown that, at least in some cases, an attacker can

construct a useful ROP payload using allowable indirect control transfers to chain gadgets

together [Göktas et al., 2014a].

2.2.3 Runtime Execution Monitoring

Many defenses against return-oriented programming are based on monitoring program exe-

cution at the instruction level. A widely used mechanism for this purpose is dynamic binary

instrumentation (DBI), using frameworks such as Pin [Luk et al., 2005]. DROP [Chen et al.,

2009] and DynIMA [Davi et al., 2009] follow this approach to monitor the frequency of ret

instructions, and raise an alert in case irregularly many of them are observed within a small
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window of executed instructions. ROPdefender [Davi et al., 2011] also uses DBI to keep a

shadow stack that is updated by instrumenting call and ret instructions. A disruption

of the expected call-ret pairs due to ROP code is detected by comparing the shadow

stack with the system’s stack on every function exit. A limitation of the above techniques

is that they cannot prevent exploits that use gadgets ending with indirect jmp or call

instructions. More importantly, though, the significant runtime overhead imposed by the

additional instrumentation instructions and the DBI framework itself limit their practical

applicability.

ROPGuard [Fratric, 2012] is based on the observation that a ROP exploit will eventually

invoke critical API functions, and performs various checks before such a function is called.

These include checking whether esp is within the proper stack boundaries, whether a

proper return address is present at the top of the stack, the consistency of stack frames,

and other function-specific attributes. Although ROPGuard focuses only on non-JOP code,

and some of its checks can result in false positives or can be easily evaded [Rosenberg, 2011;

Portnoy, 2013], they are effective against current in-the-wild exploits, and some have been

integrated in EMET [Microsoft, a].

ROPecker [Cheng et al., 2014] detects the execution of ROP code by checking for

chains of gadgets at runtime. Using the Last Branch Record feature of recent Intel CPUs,

ROPecker gets access to the last 16 executed indirect branches at every checkpoint. Check-

points are triggered whenever the execution leaves the last N pages of executable code, using

a sliding window. The rationale behind this design decision is that a certain size of exe-

cutable code is needed to construct useful ROP payloads [Schwartz et al., 2011]. Evaluation

results using the SPEC benchmarks showed a runtime performance overhead of only 2.6%

both for page window sizes of 2 and 4. However, it is unclear whether larger and more com-

plex, event-driven applications like web browsers have the same performance degradation

behaviour.

Another set of defences uses the Branch trace storage (BTS) to record the execution of

a running program. BTS is a debugging mechanism that enables the recording of all branch

instructions in a user-defined memory area. However, the overhead due to the significant

number of memory accesses, combined with the overall slower operation of the processor
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due to the special debug mode in which it enters when BTS is enabled, result to slowdowns

typically in the range of 20–40Ö [Soffa et al., 2011]. Consequently, systems that use BTS

and similar mechanisms for control flow integrity [Xia et al., 2012; Yuan et al., 2011] or

execution recording [Vasudevan et al., 2011] suffer from significant runtime overheads.

A recent technique against kernel-level ROP uses the processor’s performance counters

to raise an interrupt after a number of mispredicted ret instructions, an indication of

possible ROP code execution [Wicherski, 2013]. To rule out mispredicitons caused by

legitimate code, upon an interrupt, the LBR stack is used to check whether the targets of

the previously executed ret instructions are preceded by a call instruction. The use of

JOP or call-preceded gadgets, however, can circumvent this protection.

Branch regulation [Kayaalp et al., 2012] is a proposal for extending current processor

architectures with a protection mechanism against ROP attacks. Besides maintaining a

secondary call stack, the technique restricts the allowed targets of indirect jmp instructions

to locations within the same function, or to the entry point of any other function, and

only the latter for call instructions. Besides being quite restrictive for many legitimate

programs, this approach requires protected binaries to go through a static binary instru-

mentation phase for annotating function boundaries, a process that requires precise code

disassembly.
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Chapter 3

In-Place Code Randomization

Starting with the goal of a practical mitigation against the recent spate of ROP attacks,

in this chapter we present a novel code randomization method that can harden third-party

applications against return-oriented programming. Our approach is based on narrow-scope

modifications in the code segments of executables using an array of code transformation

techniques, to which we collectively refer as in-place code randomization. These transfor-

mations are applied statically, in a conservative manner, and modify only the code that

can be safely extracted from compiled binaries, without relying on symbolic debugging in-

formation. By preserving the length of instructions and basic blocks, these modifications

do not break the semantics of the code, and enable the randomization of stripped binaries

even without complete disassembly coverage. The goal of this randomization process is to

eliminate or probabilistically modify as many of the gadgets that are available in the address

space of a vulnerable process as possible. Since ROP code relies on the correct execution of

all chained gadgets, altering the outcome of even a few of them will likely render the ROP

code ineffective.

Currently, our design includes three code transformations that are applicable in-place.

These are: (i) atomic instruction substitution, (ii) instruction reordering, and (iii) register

reassignment. Although all of them seem applicable on most of the modern architecures

(e.g., x86, ARM, MIPS), we developed a prototype implementation, named Orp, for the

x86 32-bit architecture — source code is available at http://nsl.cs.columbia.edu/

projects/orp. Our evaluation using real-world ROP exploits against widely used appli-

http://nsl.cs.columbia.edu/projects/orp
http://nsl.cs.columbia.edu/projects/orp
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cations, such as Adobe Reader, shows the effectiveness and practicality of our approach, as

in all cases the randomized versions of the applications rendered the exploits non-functional.

When aiming to circumvent the applied code randomization, Q [Schwartz et al., 2011] and

Mona [Corelan Team, b], two automated ROP payload construction tools, were unable to

generate functional exploit code by relying solely on any remaining non-randomized gadgets.

3.1 Approach

Our approach is based on the randomization of the code sections of binary executable files

that are part of third-party applications, using an array of binary code transformation

techniques. The objective of this randomization process is to break the code semantics

of the gadgets that are present in the executable memory segments of a running process,

without affecting the semantics of the actual program code.

The execution of a gadget has a certain set of consequences to the CPU and memory

state of the exploited process. The attacker chooses how to link the different gadgets

together based on which registers, flags, or memory locations each gadget modifies, and in

what way. Consequently, the execution of a subsequent gadget depends on the outcome

of all previously executed gadgets. Even if the execution of a single gadget has a different

outcome than the one anticipated by the attacker, then this will affect the execution of all

subsequent gadgets, and it is likely that the logic of the malicious return-oriented code will

be severely impacted.

3.1.1 Why In-Place?

The concept of software diversification [Cohen, 1993] is the basis for a wide range of protec-

tions against the exploitation of memory corruption vulnerabilities. Besides address space

layout randomization [Miller et al., 2011], many techniques focus on the internal random-

ization of the code segments of executable, and can be combined with ASLR to increase

process diversity [Forrest et al., 1997]. Metamorphic transformations [Ször, 2005] can shift

gadgets from their original offsets and alter many of their instructions, rendering them

unusable. Another simpler and probably more effective approach is to rearrange exist-
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ing blocks of code either at the function level [Bhatkar et al., 2003; Bhatkar et al., 2005;

Kil et al., 2006; Microsoft, b], or with finer granularity, at the basic block level [Google, 2011;

Microsoft, c]. If all blocks of code are reordered so that no one resides at its original loca-

tion, then all the offsets of the gadgets that the attacker would assume to be present in the

code sections of the process will now correspond to completely different code.

These transformations require a precise view of all the code and data objects contained

in the executable sections of a PE file, including their cross-references, as existing code

needs to be shifted or moved. Due to computed jumps and intermixed data [Kruegel et al.,

2004], complete disassembly coverage is possible only if the binary contains relocation and

symbolic debugging information (e.g., PDB files) [Smithson et al., 2010; Kil et al., 2006;

Saxena et al., 2008]. Unfortunately, debugging information is typically stripped from release

builds for compactness and intellectual property protection.

For Windows software, in particular, PE files (both DLL and EXE) usually do retain

relocation information even if no debugging information has been retained [Skape, 2007].

The loader needs this information in case a DLL must be loaded at an address other than its

preferred base address, e.g., because another library has already been mapped to that loca-

tion. or for ASLR. In contrast to Linux shared libraries and PIC executables, which contain

position-independent code, Windows binaries contain absolute addresses, e.g., as immediate

instruction operands or initialized data pointers, that are valid only if the executable has

been loaded at its preferred base address. The .reloc section of PE files contains a list

of offsets relatively to each PE section that correspond to all absolute addresses at which a

delta value needs to be added in case the actual load address is different [Pietrek, 2002].

Relocation information alone, however, does not suffice for extracting a complete view

of the code within the executable sections of a PE file [Google, 2011; Smithson et al.,

2010]. Without the symbolic debugging information contained in PDB files, although the

location of objects that are reached only via indirect jumps can be extracted from relocation

information, their actual type—code or data—still remains unknown. In some cases, the

actual type of these objects could be inferred using heuristics based on constant propagation,

but such methods are usually prone to misidentifications of data as code and vice versa.

Even a slight shift or size increase of a single object within a PE section will incur cascading
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shifts to its following objects. Typically, an unidentified object that actually contains code

will include PC-relative branches to other code objects. In the absence of the debugging

information contained in PDB files, moving such an unidentified code block (or any of

its relatively referenced objects) without fixing the displacements of all its relative branch

instructions that reference other objects, will result to incorrect code.

Given the above constraints, we choose to use only binary code transformations that do

not alter the size and location of code and data objects within the executable, allowing the

randomization of third-party PE files without symbolic debugging information. Although

this restriction does not allow us to apply extensive code transformations like basic block

reordering or metamorphism, we can still achieve partial code randomization using narrow-

scope modifications that can be safely applied even without complete disassembly coverage.

This can be achieved through slight, in-place code modifications to the correctly identified

parts of the code, that do not change the overall structure of basic blocks or functions, but

which are enough to alter the outcome of short instruction sequences that can be used as

gadgets.

3.1.2 Code Extraction and Modification

Although completely accurate disassembly of stripped x86 binaries is not possible, state-

of-the-art disassemblers achieve decent coverage for code generated by the most commonly

used compilers, using a combination of different disassembly algorithms [Kruegel et al.,

2004], the identification of specific code constructs [Guilfanov, 2008b], and simple data flow

analysis [Guilfanov, 2008a]. For our prototype implementation, we use IDA Pro [Hex-Rays,

] to extract the code and identify the functions of PE executables. IDA Pro is effective

in the identification of function boundaries, even for functions with non-contiguous code

and extensive use of basic block sharing [Hu et al., 2009], and also takes advantage of the

relocation information present in Windows DLLs.

Typically, however, without the symbolic information of PDB files, a fraction of the func-

tions in a PE executable are not identified, and parts of code remain undiscovered. Our

code transformations are applied conservatively, only on parts of the code for which we can

be confident that have been accurately disassembled. For instance, IDA Pro speculatively
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disassembles code blocks that are reached only through computed jumps, taking advantage

of the relocation information contained in PE files. However, we do not enable such heuristic

code extraction methods in order to avoid any disastrous modifications due to potentially

misidentified code. In practice, for the code generated by most compilers, relocation infor-

mation also ensures that the correctly identified basic blocks have no entry point other than

their first instruction. Similarly, some transformations that rely on the proper identification

of functions are applied only on the code of correctly recognized functions. Our implementa-

tion is separate from the actual code extraction framework used, which means that IDA Pro

can be replaced or assisted by alternative code extraction approaches [Nanda et al., 2006;

Smithson et al., 2010; Harris and Miller, 2005], providing better disassembly coverage.

After code extraction, disassembled instructions are first converted to our own internal

representation, which holds additional information such as any implicitly used registers,

and the registers and flags read or written by the instruction. For correctness, we also track

the use of general purpose registers even in floating point, MMX, and SSE instructions.

Although these type of instructions have their own set of registers, they do use general

purpose registers for memory references (e.g., as the fmul instruction in Fig. 3.1). We then

proceed and apply the in-place code transformations discussed in the following section.

These are applied only on the parts of the executable segments that contain (intended or

unintended [Shacham, 2007]) instruction sequences that can be used as gadgets. As a result

of some of the transformations, instructions may be moved from their original locations

within the same basic block. In these cases, for instructions that contain an absolute

address in some of their operands, the corresponding entries in the .reloc sections of the

randomized PE file are updated with the new offsets where these absolute addresses are

now located.

Our prototype implementation processes each PE file individually, and generates mul-

tiple randomized copies that can then replace the original. Given the complexity of the

analysis required for generating a set of randomized instances of an input file (in the order

of a few minutes on average for the PEs used in our tests), this allows the off-line gener-

ation of a pool of randomized PE files for a given application. Note that for most of the

tested Windows applications, only some of the DLLs need to be randomized, as the rest are
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usually ASLR-enabled (although they can also be randomized for increased protection). In

a production deployment, a system service or a modified loader can then pick a different

randomized version of the required PEs each time the application is launched, following the

same way of operation as tools like EMET [Microsoft, a].

3.2 In-Place Code Transformations

In this section we present in detail the different code transformations used for in-place

code randomization. Although some of the transformations such as instruction reordering

and register reassignment are also used by compilers and polymorphic code engines for

code optimization [Aho et al., 2006] and obfuscation [Ször, 2005], applying them at the

binary level—without having access to the higher-level structural and semantic information

available in these settings—poses significant challenges.

3.2.1 Atomic Instruction Substitution

One of the basic concepts of code obfuscation and metamorphism [Ször, 2005] is that the

exact same computation can be achieved using a countless number of different instruction

combinations. When applied for code randomization, substituting the instructions of a

gadget with a functionally-equivalent—but different—sequence of instructions would not

affect any ROP code that uses that gadget, since its outcome would be the same. However,

by modifying the instructions of the original program code, this transformation in essence

modifies certain bytes in the code image of the program, and consequently, can drastically

alter the structure of non-intended instruction sequences that overlap with the substituted

instructions.

Many of the gadgets used in ROP code consist of unaligned instructions that have

not been emitted by the compiler, but which happen to be present in the code image of

the process due to the density and variable-length nature of the x86 instruction set. In the

example of Fig. 3.1(a), the actual code generated by the compiler consists of the instructions

mov; cmp; lea; starting at byte B0.1 However, when disassembling from the next byte,

1 The code of all examples comes from icucnv36.dll, included in Adobe Reader v9.3.4.



CHAPTER 3. IN-PLACE CODE RANDOMIZATION 23

a useful non-intended gadget ending with ret is found.

Compiled code is highly optimized, and thus the replacement of even a single instruction

in the original program code usually requires either a longer instruction, or a combination

of more than one instruction, for achieving the same purpose. Given that our aim is to

randomize the code of stripped binaries, even a slight increase in the size of a basic block

is not possible, which makes the most commonly used instruction substitution techniques

unsuitable for our purpose.

In certain cases though, it is possible to replace an instruction with a single, functionally-

equivalent instruction of the same length, thanks to the flexibility offered by the extensive

x86 instruction set. Besides obvious candidates based on replacing addition with negative

subtraction and inversely, there are also some instructions that come in different forms,

with different opcodes, depending on the supported operand types. For example, add

r/m32,r32 stores the result of the addition in a register or memory operand (r/m32),

while add r32,r/m32 stores the result in a register (r32). Although these two forms have

different opcodes, the two instructions are equivalent when both operands happen to be

registers. Many arithmetic and logical instructions have such dual equivalent forms, while

in some cases there can be up to five equivalent instructions (e.g., test r/m8,r8, or

r/m8,r8, or r8, r/m8, and r/m8,r8, and r8,r/m8, affect the flags of the EFLAGS

register in the same way when both operands are the same register). In our prototype

implementation we use the sets of equivalent instructions used in Hydan [El-Khalil and

Keromytis, 2004], a tool for hiding information in x86 executables, with the addition of one

more set that includes the equivalent versions of the xchg instruction.

As shown in Fig. 3.1(b), both operands of the cmp instruction are registers, and thus it

can be replaced by its equivalent form, which has different opcode and ModR/M bytes [In-

tel, 2014]. Although the actual program code does not change, the ret instruction that

was “included” in the original cmp instruction has now disappeared, rendering the gadget

unusable. In this case, the transformation completely eliminates the gadget, and thus will

be applied in all instances of the randomized binary. In contrast, when a substitution does

not affect the gadget’s final indirect jump, then it is applied probabilistically.
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3.2.2 Instruction Reordering

In certain cases, it is possible to reorder the instructions of small self-contained code frag-

ments without affecting the correct operation of the program. This transformation can

significantly impact the structure of non-intended gadgets, but can also break the attacker’s

assumptions about gadgets that are part of the actual machine code.

3.2.2.1 Intra Basic Block Reordering

The actual instruction scheduling chosen during the code generation phase of a compiler

depends on many factors, including the cost of instructions in cycles, and the applied

code optimization techniques [Aho et al., 2006]. Consequently, the code of a basic block

is often just one among several possible instruction orderings that are all equivalent in

terms of correctness. Based on this observation, we can partially modify the code within

a basic block by reordering some of its instructions according to an alternative instruction

scheduling.

The basis for deriving an alternative instruction scheduling is to determine the order-

ing relationships among the instructions, which must always be satisfied to maintain code

correctness. The dependence graph of a basic block represents the instruction interdepen-

dencies that constrain the possible instruction schedules [Muchnick, 1997]. Since a basic

block contains straight-line code, its dependence graph is a directed acyclic graph with ma-

chine instructions as vertices, and dependencies between instructions as edges. We apply

dependence analysis on the code of disassembled basic blocks to build their dependence

graph using an adaptation of a standard dependence DAG construction algorithm [Much-

nick, 1997, Fig. 9.6] for machine code. Applying dependence analysis directly on machine

code requires a careful treatment of the dependencies between x86 instructions. Compared

to the analysis of code expressed in an intermediate representation form, this includes the

identification of data dependencies not only between register and memory operands, but

also between CPU flags and implicitly used registers and memory locations.

For each instruction i, we derive the sets use[i] and def [i] with the registers used and

defined by the instruction. Besides register operands and registers used as part of effective

address computations, this includes any implicitly used registers. For example, the use and
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def sets for pop eax are {esp} and {eax, esp}, while for rep stosb2 are {ecx, eax, edi}

and {ecx, edi}, respectively. We initially assume that all instructions in the basic block

depend on each other, and then check each pair for read-after-write (RAW), write-after-

read (WAR), and write-after-write (WAW) dependencies. For example, i1 and i2 have a

RAW dependency if any of the following conditions is true: i) def [i1] ∩ use[i2] 6= ∅, ii) the

destination operand of i1 and the source operand of i2 are both a memory location, iii) i1

writes at least one flag read by i2.

Note that condition ii) is quite conservative, given that i2 will actually depend on i1 only

if i2 reads the same memory location written by i1. However, unless both memory operands

use absolute addresses, it is hard to determine statically if the two effective addresses point

to the same memory location. In our future work, we plan to use simple data flow analysis

to relax this condition. Besides instructions with memory operands, this condition should

also be checked for instructions with implicitly accessed memory locations, e.g., push and

pop. The conditions for WAR and WAW dependencies are analogous. If no conflict is

found between two instructions, then there is no constraint in their execution order.

Figure 3.2(a) shows the code of a basic block that contains a non-intended gadget, and

Fig. 3.3 its corresponding dependence DAG. Instructions not connected via a direct edge are

independent, and have no constraint in their relative execution order. Given the dependence

DAG of a basic block, the possible orderings of its instructions correspond to the different

topological sorting arrangements of the graph [Varol and Rotem, 1981]. Fig. 3.2(b) shows

one of the possible alternative orderings of the original code. The locations of all but one

of the instructions and the values of all but one of the bytes have changed, eliminating the

non-intended gadget contained in the original code. Although a new gadget has appeared

a few bytes further into the block, (ending again with a ret instruction at byte C3), an

attacker cannot depend on it since alternative orderings will shift it to other locations,

and some of its internal instructions will always change (e.g., in this example, the useful

pop ecx is gone). In fact, the ret instruction can be eliminated altogether using atomic

2 stosb (Store Byte to String) copies the least significant byte from the eax register to the memory

location pointed by the edi register and increments edi’s value by one. The rep prefix repeats this

instruction until ecx’s value reaches zero, while decreasing it after each repetition.
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Figure 3.3: Dependence graph for the code of Fig. 3.2.

instruction substitution.

An underlying assumption we make here is that basic block boundaries will not change

at runtime. If a computed control transfer instruction targets a basic block instruction

other than its first, then reordering may break the semantics of the code. Although this

may seem restrictive, we note that throughout our evaluation we did not encounter any

such case. For compiler-generated code, IDA Pro is able to compute all jump targets even

for computed jumps based on the PE relocation information. In the most conservative case,

users may choose to disable instruction reordering and still benefit from the randomization

of the other techniques—Section 3.3 includes results for each technique individually.

3.2.2.2 Reordering of Register Preservation Code

The calling convention followed by the majority of compilers for Windows on x86 architec-

tures, similarly to Linux, specifies that the ebx, esi, edi, and ebp registers are callee-

saved [Fog, ]. The remaining general purpose registers, known as scratch or volatile registers,

are free for use by the callee without restrictions. Typically, a function that needs to use

more than the available scratch registers, preserves any non-volatile registers before modify-

ing them by storing their values on the stack. This is usually done at the function prologue

through a series of push instructions, as in the example of Fig. 3.4(a), which shows the very

first and last instructions of a function. At the function epilogue, a corresponding series

of pop instructions restores the saved values from the stack, right before returning to the
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Figure 3.4: Example of register preservation code reordering.

caller. Sequences that contain pop instructions followed by ret are among the most widely

used gadgets found in ROP exploits, since they allow the attacker to load registers with

values that are supplied as part of the injected payload [Skape and Skywing, 2005]. The

order of the pop instructions is crucial for initializing each register with the appropriate

value.

As seen in the function prologue, the compiler stores the values of the callee-saved

registers in arbitrary order, and sometimes the relevant push instructions are interleaved

with instructions that use previously-preserved registers. At the function epilogue, the

saved values are pop’ed from the stack in reverse order, so that they end up to the proper

register. Consequently, as long as the saved values are restored in the right order, their

actual order on the stack is irrelevant. Based on this observation, we can randomize the

order of the push and pop instructions of register preservation code by maintaining the

first-in-last-out order of the stored values, as shown in Fig. 3.4(b). In this example, there

are six possible orderings of the three pop instructions, which means that any assumption

that the attacker may make about which registers will hold the two supplied values, will

be correct with a probability of one in six (or one in three, if only one register needs to

be initialized). In case only two registers are preserved, there are two possible orderings,

allowing the gadget to operate correctly half of the time.

This transformation is applied conservatively, only to functions with accurately dis-

assembled prologue and epilogue code. To make sure that we properly match the push

and pop instructions that preserve a given register, we monitor the stack pointer delta
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throughout the whole function, as shown in the second column of Fig. 3.4(a). If the deltas

at the prologue and epilogue do not match, e.g., due to call sites with unknown calling

conventions throughout the function, or indirect manipulation of the stack pointer, then

no randomization is applied. As shown in Fig. 3.4(b), any non-preservation instructions in

the function prologue are reordered along with the push instructions by maintaining any

interdependencies, as discussed in the previous section. For functions with multiple exit

points, the preservation code at all epilogues should match the function’s prologue. Note

that there can be multiple push and pop pairs for the same register, in case the register is

preserved only throughout some of the execution paths of a function.

3.2.3 Register Reassignment

Although the program points at which a certain variable should be stored in a register or

spilled into memory are chosen by the compiler using sophisticated allocation algorithms,

the actual name of the general purpose register that will hold a particular variable is mostly

an arbitrary choice. Based on this observation, we can reassign the names of the register

operands in the existing code according to a different—but equivalent—register assignment,

without affecting the semantics of the original code. When considering each gadget as an

autonomous code sequence, this transformation can alter the outcome of many gadgets,

which will now read or modify different registers than those assumed by the attacker.

Due to the much higher cost of memory accesses compared to register accesses, compilers

strive to map as many variables as possible to the available registers. Consequently, at any

point in a large program, multiple registers are usually in use, or live at the same time.

Given the control flow graph (CFG) of a compiled program, a register r is live at a program

point p iff there is a path from p to a use of r that does not go through a definition of

r. The live range of r is defined as the set of program points where r is live, and can be

represented as a subgraph of the CFG [Bouchez, 2009]. Since the same register can hold

different variables at different points in the program, a register can have multiple disjoint

live regions in the same CFG.

For each correctly identified function, we compute the live ranges of all registers used

in its body by performing liveness analysis [Aho et al., 2006] directly on the machine code.
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Figure 3.5: The live ranges of eax and edi in part of a function. The two registers can be

swapped in all instructions throughout their parallel, self-contained regions a0 and d1 (lines

3–12).

Given the CFG of the function and the sets use[i] and def [i] for each instruction i, we

derive the sets in[i] and out[i] with the registers that are live-in and live-out at each in-

struction. For this purpose, we use a modified version of a standard live-variable analysis

algorithm [Aho et al., 2006, Fig. 9.16] that computes the in and out sets at the instruction

level, instead of the basic block level. The algorithm computes the two sets by iteratively

reaching a fixed point for the following data-flow equations: in[i] = use[i]∪ (out[i]− def [i])

and out[i] =
⋃
{in[s] : s ∈ succ[i]}, were succ[i] is the set of all possible successors of

instruction i.

Figure 3.5 shows part of the CFG of a function and the corresponding live ranges for

eax and edi. Initially, we assume that all registers are live, since some of them may hold

values that have been set by the caller. In this example, edi is live when entering the
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function, and the push instruction at line 2 stores (uses) its current value on the stack.

The following mov instruction initializes (defines) edi, ending its previous live range (d0).

Note that although a live range is a sub-graph of the CFG, we illustrate and refer to the

different live ranges as linear regions for the sake of convenience.

The next definition of edi is at line 15, which means that the last use of its previous

value at line 11 also ends its previous live region d1. Region d1 is a self-contained region,

within which we can be confident that edi holds the same variable. The eax register also

has a self-contained live region (a0) that runs in parallel with d1. Conceptually, the two

live ranges can be extended to share the same boundaries. Therefore, the two registers can

be swapped across all the instructions located within the boundaries of the two regions,

without altering the semantics of the code.

The call eax instruction at line 12 can be conveniently used by an attacker for calling

a library function or another gadget. By reassigning eax and edi across their parallel live

regions, any ROP code that would depend on eax for transferring control to the next piece

of code, will now jump to an incorrect memory location, and probably crash. For code

fragments with just two parallel live regions, an attacker can guess the right register half

of the times. In many cases though, there are three or more general purpose registers with

parallel live regions, or other available registers that are live before or after another register’s

live region, allowing for a higher number of possible register assignments.

The registers used in the original code can be reassigned by modifying the ModR/M and

sometimes the SIB byte of the relevant instructions. As in previous code transformations,

besides altering the operands of instructions in the existing code, these modifications can

also affect overlapping instructions that may be part of non-intended gadgets. Note that

implicitly used registers in certain instructions cannot be replaced. For example, the one-

byte “move data from string to string” instruction (movs) always uses esi and edi as its

source and destination operands, and there is no other one-byte instruction for achieving

the same operation using a different set of registers [Intel, 2014]. Consequently, if such

an instruction is part of the live region of one of its implicitly used registers, then this

register cannot be reassigned throughout that region. For the same reason, we exclude

esp from liveness analysis. Finally, although calling conventions are followed for most of
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the functions, this is not always the case, as compilers are free to use any custom calling

convention for private or static functions. Most of these cases are conservatively covered

through a bottom-up call analysis that discovers custom register arguments and return

value registers.

First, all the external function definitions found in the import table of the DLL are

marked as level-0 functions. IDA Pro can effectively distinguish between different calling

conventions that these external functions may follow, and reports their declaration in the C

language. Thus, in most cases, the register arguments and the return value register (if any)

for each of the level-0 functions are known. For any call instruction to a level-0 function,

its register arguments are added to call’s set of implicitly read registers, and its return

value registers are added to call’s set of implicitly written registers.

In the next phase, level-1 functions are identified as the set of functions that call only

level-0 functions or no other function. Any registers read by a level-1 function, without

prior writing them, are marked as its register arguments. Similarly, any registers written

and not read before a return instruction are marked as return value registers. Again, the

sets of implicitly read and written register of all the call instructions to level-1 functions

are updated accordingly. Similarly, level-2 functions are the ones that call level-1 or level-0

functions, or no other function, and so on. The same process is repeated until no more

function levels can be computed. The intuition behind this approach is that private func-

tions, which may use non-standard calling conventions, are called by other functions in the

same DLL and, in most cases, not through computed call instructions.

3.3 Experimental Evaluation

In this section, we experimentally evaluate in-place code randomization along three axis.

First, we perform an analysis of the randomization in terms of coverage of the executable

code, impact to the affected gadgets and randomization entropy, using a large dataset of

more that five thousands DLLs. Second, we verify the correctness and performance of the

technique using part of the Wine test suite. And, third, we evaluate its effectiveness using

a set of real-world exploits and two automated ROP construction toolkits.
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Figure 3.6: Percentage of modifiable gadgets for a set of 5,235 PE files. Indicatively, for the

upper 85% of the files, more than 70% of all gadgets in the executable segments of each PE

file can be modified (shaded area).

3.3.1 Randomization Analysis

3.3.1.1 Coverage

A crucial aspect for the effectiveness of in-place code randomization is the randomization

coverage in terms of what percentage of the gadgets found in an executable can be safely

randomized. A gadget may remain intact for one of the following reasons: i) it is part of

data embedded in a code segment, ii) it is part of code that could not be disassembled,

or iii) it is not affected by any of our transformations. In this section, we explore the

randomization coverage of our prototype implementation using a large data set of 5,235 PE

files (both DLL and EXE), detailed in Table 3.1.

We consider as a gadget [Shacham, 2007] any intended or unintended instruction se-

quence that ends with an indirect control transfer instruction, and which does not contain

i) a privileged or invalid instruction (can occur in non-intended instruction sequences), and

ii) a control transfer instruction other than its final one, with the exception of indirect

call (can be used in the middle of a gadget for calling a library function). We assume a

maximum gadget length of five instructions, which is typical for existing ROP code imple-
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Figure 3.7: Percentage of modifiable gadgets according to the different code transformations.

Table 3.1: Modifiable (eliminated vs. broken) gadgets for a collection of various PE files.

Software PE Files Code (MB) Total Modifiable (%) Eliminated (%) Broken (%)

Adobe Reader 9 43 6.7 1,250K 943K (75.4) 108K ( 8.7) 834K (66.7)

Firefox 4 28 3.5 458K 381K (83.0) 56K (12.4) 324K (70.6)

iTunes 10 75 3.7 396K 293K (74.0) 31K ( 8.0) 261K (66.0)

Windows XP SP3 1,698 134.4 8,305K 6,452K (77.7) 770K ( 9.3) 5,682K (68.4)

Windows 7 SP1 3,391 324.8 16,951K 12,970K (76.5) 1,637K ( 9.7) 11,333K (66.8)

Total 5,235 473.1 27,362K 21,041K (76.9) 2,604K ( 9.5) 18,436K (67.4)

mentations [Shacham, 2007; Checkoway et al., 2010]. For larger gadgets, it is possible that

the modified part of the gadget may be irrelevant for the purpose of the attacker. For exam-

ple, if only the first instruction of the gadget inc eax; pop ebx; ret; is randomized,

this will not affect any ROP code that either does not rely on the value of eax at that

point, or uses the shorter gadget pop ebx; ret; directly. For this reason, we consider

all different subsequences with length between two to five instructions as separate gadgets.

Figure 3.6 shows the percentage of modifiable gadgets out of all gadgets found in the

executable sections of each PE file (solid line), as a cumulative fraction of all PE files in the

data set. In about 85% of the PE files, more that 70% of the gadgets can be randomized

by our code transformations. Many of the unmodified gadgets are located in parts of code

that have not been extracted by IDA Pro, and which consequently will never be affected
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Figure 3.8: Impact of code randomization on the broken gadgets’ instructions according

to their location in the gadget. The order of the bars corresponds to the order of the

instructions in the gadget. Indicatively, the first (leftmost) instruction of two-instruction

gadgets is altered in more than 80% of all broken two-instruction gadgets.

by our transformations. When considering only the gadgets that are contained within the

disassembled code regions on which code randomization can be applied, the percentage of

affected gadgets slightly increases (dashed line). Given that we do not take into account

code blocks that have been identified by IDA Pro using speculative methods, this shows

that the use of a more sophisticated code extraction mechanism will increase the number

of gadgets that can be modified. Figure 3.7 shows the total percentage of gadgets modified

by each code transformation technique for the same data set. Note that a gadget can be

modified by more than one technique. Overall, the total percentage of modifiable gadgets

across all PE files is about 76.9%, as shown in Table 3.1.

3.3.1.2 Impact

We identify two qualitatively different ways in which a code transformation can impact

a gadget. As discussed in Sec. 3.2.1, a gadget can be eliminated, if any of the applied

transformations removes completely its final control transfer instruction. If the final control

transfer instruction remains intact, a gadget can then be broken, if at least one of its internal

instructions is altered, and the CPU and memory state after its execution is different than
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the original, i.e., the outcome of its computation is not the same. As shown in Table 3.1,

in the average case, about 9.5% of all gadgets contained in a PE file can be rendered

completely unusable. For a vulnerable application, this already removes about one in ten of

the available gadgets for the construction of ROP code. Although the rest of the modifiable

gadgets (67.4%) is not eliminated, they can be “broken” by probabilistically modifying one

or more of their instructions.

In case some of the instructions in a broken gadget can never be altered, it is quite

possible that part of its functionality will remain unaffected, and thus an attacker could

still use it by relying only on its unmodifiable instructions. Especially for larger gadget

sizes, if the possible modifications are clustered only around a certain part of the gadget,

e.g., its first instructions, then an attacker could predictably rely on the rest of the gadget.

We explore this issue by measuring the number of broken gadgets in which an instruction

at a given position can be altered.

Figure 3.8 shows the impact of code randomization on a broken gadget’s instructions,

according to their location within the gadget. Each group of bars corresponds to a different

gadget length, and in each group, the leftmost bar corresponds to the leftmost instruction

of the gadget. For all sizes, the probability that an instruction at a given position will be

affected is quite evenly distributed and remains beyond 60%, with the exception of the final

(control transfer) instruction. This is expected, since most of the transformations cannot

affect the final instruction of intended gadgets (e.g., ret). As we observe, the locations of

the modified instructions in broken gadgets are almost equally unpredictable.

3.3.1.3 Entropy

Some of the code transformations can perturb a given instruction within a gadget only in

a limited number of ways, while others can generate a larger number of permutations. For

example, for instructions with only two equivalent forms, atomic instruction substitution

can modify a particular location in a gadget only in one way, allowing for two possible

states. On the other hand, intra basic block instruction reordering usually results to a

large number of possible permutations, especially for larger basic blocks that contain many

instructions with no interdependencies.
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Usually though, a broken gadget can be modified at multiple locations, and the same

location can be altered in multiple ways by more than one code transformations. Conse-

quently, the number of possible randomized states in which a broken gadget can exist, or its

randomization entropy, corresponds to the product of the number of permutations that each

of the different transformations can generate for that gadget. In the worst case, a broken

gadget can exist in two possible states: its original form, or its alternative after modification.

For example, there are only two possible orderings for the pop instructions in an intended

gadget of the form pop reg; pop reg; ret; given that no other transformation can

alter it.

Figure 3.9 shows the number of possible randomized versions of each gadget (including

its original), as a cumulative fraction of all broken gadgets. As seen in the lower left

corner, a small amount of about 12% of the gadgets can be modified only in one way,

and thus can exist in two possible states. However, the randomization entropy increases

exponentially, and the upper 80% of the gadgets have four or more randomized states. As

more of the different transformations are applied on the same gadget, the randomization

entropy increases to thousands of possible modified states.

Although for a small amount of gadgets an attacker can have a 50% chance of guessing

the actual behavior of a gadget, ROP code relies on a chain of many different gadgets to

achieve its purpose (11–18 unique gadgets in the exploits we tested). Even if one of the

gadgets behaves in a non-expected way, then the ROP code will fail. Given that code

randomization typically breaks (or even eliminates) several of the gadgets used in a ROP

exploit, the number of possible randomized states that can prevent the correct execution of

the ROP code is usually very high, as demonstrated in Sec. 3.3.3.

3.3.2 Correctness and Performance

One of the basic principles of our approach is that the different in-place code randomization

techniques should be applied cautiously, without breaking the semantics of the program.

A straightforward way to verify the correctness of our code transformations is to apply

them on existing code and compare the outcome before and after modification. Simply

running a randomized version of a third-party application and verifying that it behaves in
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Figure 3.9: Randomization entropy for broken gadgets.

the expected way can provide a first indication. However, using this approach, it is hard

to exercise a significant part of the code, and potentially incorrect modifications may go

unnoticed.

For this purpose, we used the test suite of Wine [Wine, ], a compatibility layer that allows

Windows applications to run on Unix-like operating systems. Wine provides alternative

implementations of the DLLs that comprise the Windows API, and comes with an extensive

test suite that covers the implementations of most functions exported by the core Windows

DLLs. Each function is executed multiple times using various inputs that test different

conditions, and the outcome of each execution is compared against a known, expected

result. We ported the test code for about one third of the 109 DLLs included in the test

suite of Wine v1.2.2, and used it directly on the actual DLLs from a Windows 7 installation.

Using multiple randomized versions of each tested DLL, we verified that in all runs, all tests

completed successfully.

We took advantage of the extensive and diverse code execution coverage of this experi-

ment to also evaluate the impact of in-place code randomization to the runtime performance

of the modified code. Among the different code transformations, instruction reordering is

the only one that could potentially introduce some non-negligible overhead, given that some-

times the chosen ordering may be sub-optimal. We measured the overall CPU user time
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Table 3.2: ROP exploitsand generic ROP payloadstested on Windows 7 SP1.

ROP exploit / non-ASLR DLLs: Total Modifiable (total %: Unique Gadgets Used: Combin-

payload used for ROP Gadgets Broken % Eliminated %) Modifiable (Br.,El.) ations

Adobe Reader 3: 1 36,760 28,637 (77.9: 70.1 7.8) 11: 6 (5, 1) 287

Integard Pro 1: 1 5,137 4,027 (78.4: 70.5 7.9) 16: 10 (9, 1) 322,559

Mplayer Lite 5: 2 117,822 104,671 (88.8: 70.0 18.8) 18: 7 (6, 1) 1,128,959

msvcr71.dll 1: 1 10,301 7,129 (69.2: 59.6 9.6) 14: 9 (8, 1) 3,317,760

msvcr71.dll 1: 1 10,301 7,129 (69.2: 59.6 9.6) 16: 8 (8, 0) 1,728,000

mscorie.dll 1: 1 1,616 1,304 (80.6: 73.5 7.1) 10: 4 (4, 0) 25,200

mfc71u.dll 1: 1 86,803 64,053 (73.8: 68.7 5.1) 11: 6 (6, 0) 170,496

for the completion of all tests by taking the average time across multiple runs, using both

the original and the randomized versions of the DLLs. In all cases, there was no observable

difference in the two times, within measurement error.

3.3.3 Effectiveness

3.3.3.1 ROP Exploits

We evaluated the effectiveness of in-place code randomization using publicly available

ROP exploits against vulnerable Windows applications [Metasploit, 2010; Node, 2010;

Nate M, 2011], as well as generic ROP payloads based on commonly used DLLs [Immu-

nity, 2010; Corelan Team, a]. These seven different ROP code implementations, listed in

Table 3.2, bypass Windows DEP and execute a second-stage shellcode, as described in

Sec. 2.1, and work even in the latest version of Windows, with DEP and ASLR enabled.

The ROP code used in the three exploits is implemented with gadgets from one or a few

DLLs that do not support ASLR, as shown in the second column of Table 3.2. The num-

ber of unique gadgets used in each case varies between 10–18, and typically a large part

of the gadgets is repeatedly executed at many points throughout the ROP code. When

replacing the original non-ASLR DLLs of each application with randomized versions, in all

cases the exploits were rendered unsuccessful. Similarly, we used a custom application to

test the generic ROP payloads and verified that the ROP code did not succeed when the

corresponding DLL was randomized.
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The ROP code of the exploit against Acrobat Reader uses just 11 unique gadgets, all

coming from a single non-ASLR DLL (icucnv36.dll). From these gadgets, in-place code

randomization can alter six of them: one gadget is completely eliminated, while the other

five broken gadgets have 2, 2, 3, 4, and 6 possible states, respectively, resulting to a total

of 287 randomized states (in addition to the always eliminated gadget, which also alone

breaks the ROP code). Even if we assume that no elimination were possible, the exploit

would still succeed only in one out of the 288 (0.35%) possible instances (including the

original) of the given gadget set. Considering that this is a client-side exploit, in which the

attacker will probably have only one or a few opportunities for tricking the user to open

the malicious PDF file, the achieved randomization entropy is quite high—always assuming

that none of the gadgets could have been eliminated. As shown in Table 3.2, the number

of possible randomized states in the rest of the cases is several orders of magnitude higher.

This is mostly due to the larger number of broken gadgets, as well as due to a few broken

gadgets with tens of possible modified states, which both increase the number of states

exponentially.

Next, we explored whether the affected gadgets could be directly replaced with unmodi-

fiable gadgets in order to reliably circumvent our technique. Out of the six affected gadgets

in the Adobe Reader exploit, only four can be directly replaced, meaning that the exploit

cannot be trivially modified to bypass randomization. Furthermore, two of the gadgets have

only one replacement each, and both replacements are found in code regions that are not

discovered by IDA Pro—both could be randomized using a more precise code extraction

method. For the rest of the ROP payloads, there are at least three irreplaceable gadgets in

each case.

We should note that the relatively small number of gadgets used in most of these ROP

payloads is a worst-case scenario for our technique, which however not only is able to

prevent these exploits, but also does not allow the attacker to directly replace all the affected

gadgets. Indeed, besides the more complex ROP payloads used in the Integard and Mplayer

exploits, the rest of the payloads use API functions that are already imported by a non-

ASLR DLL, and simply call them directly using hard-coded addresses. This type of API

invocation is much simpler and requires fewer gadgets [Schwartz et al., 2011] compared
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to ROP code like the one used in the Integard and Mplayer exploits (16 and 18 unique

gadgets, respectively), which first dynamically locates a pointer to kernel32.dll (always

ASLR-enabled in Windows 7) and then gets a handle to VirtualProtect.

3.3.3.2 Automated ROP Payload Generation

The fact that some of the randomized gadgets are not directly replaceable does not neces-

sarily mean that the same outcome cannot be achieved using solely unmodifiable gadgets.

To assess whether an attacker could construct a ROP payload resistant to in-place code

randomization based on gadgets that cannot be randomized, we used Q [Schwartz et al.,

2011] and Mona [Corelan Team, b], two automated ROP code construction tools.

Q is a general-purpose ROP compiler that uses semantic program verification techniques

to identify the functionality of gadgets, and provides a custom language, named QooL, for

writing input programs. Its current implementation only supports simple QooL programs

that call a single function or system call, while passing a single custom argument. In case

the function to be called belongs to an ASLR-enabled DLL, Q can compute a handle to it

through the import table of a non-ASLR DLL [Fresi Roglia et al., 2009], when applicable.

We should note that although Q currently compiles only basic QooL programs that call a

single API function, this does not limit our evaluation, but on the contrary, stresses even

more our technique. The simpler the programs, the fewer the gadgets used, which makes it

easier for Q to generate ROP code even when our technique limits the number of available

gadgets.

Mona is a plug-in for Immunity Debugger [Immunity, ] that automates the process of

building Windows ROP payloads for bypassing DEP. Given a set of non-ASLR DLLs, Mona

searches for available gadgets, categorizes them according to their functionality, and then

attempts to automatically generate four alternative ROP payloads for giving execute per-

mission to the embedded shellcode and then invoking it, based on the VirtualProtect,

VirtualAlloc, NtSetInformationProcess, and SetProcessDEPPolicy API func-

tions (the latter two are not supported in Windows 7).

Considering the functionality of the ROP payloads generated by the two tools, Mona

generates slightly more complex payloads, but its gadget composition engine is less so-
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Table 3.3: Results of running Qand Monaon the original non-ASLR DLLs listed in Table 3.2,

and the unmodified parts of their randomized versions. In all cases, both tools failed to

generate a ROP payload using solely non-randomized gadgets.

Q success Mona success

Application/DLL Orig. Rand. Orig. Rand.

Adobe Reader 4 8 4 (VA) 8

Integard Pro 4 8 8 8

Mplayer 4 8 4 (VA) 8

msvcr71.dll 4 8 8 8

mscorie.dll 8 8 8 8

mfc71u.dll 4 8 4 (VA,VP) 8

phisticated compared to Q’s. Q generates payloads that compute a function address,

construct its single argument, and call it. Payloads generated by Mona also call a sin-

gle memory allocation API function (which though requires the construction of several

arguments), copy the shellcode to the newly allocated area, and transfer control to it.

Note that the complexity of the ROP code used in the tested exploits is even higher,

since they rely on up to four different API functions [Metasploit, 2010], or “walk up” the

stack to discover pointers to non-imported functions from ASLR-enabled DLLs [Node, 2010;

Nate M, 2011].

Table 3.3 shows the results of running Q and Mona on the same set of applications

and DLLs used in the previous section (for applications, all non-ASLR DLLs are analyzed

collectively), for two different cases: when all gadgets are available to the ROP compiler,

and when only the non-randomized gadgets are available. The second case aims to build a

payload that will be functional even when code randomization is applied. Although both

Q and Mona were able to create payloads when applied on the original DLLs in almost all

cases, they failed to construct any payload using only non-randomized gadgets in all cases.

Although our technique was able to prevent two different tools from automatically con-

structing reliable ROP code, this favorable outcome does not exclude the possibility that a

functional payload could still be constructed based solely on non-randomized gadgets, e.g.,

in a manual way or using an even more sophisticated ROP compiler. However, it clearly
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Table 3.4: Number of useful gadgets identified by Qin the original code segments / in their

unmodifiable parts after in-place randomization was applied.

Gadget Type Reader Integard Mplayer msvcr71 mscorie mfc71u total (%)

Pivots 171/27 55/11 156/48 89/18 13/5 65/20 549/129 (23.50)

Storemem 162/11 14/4 105/7 33/6 1/1 69/15 384/44 (11.46)

Move 57/7 25/13 68/35 31/12 7/3 62/60 250/130 (52.00)

ArithmeticStore 89/8 7/3 90/6 31/4 - 16/8 233/29 (12.45)

ArithmeticLoad 587/23 26/8 1194/40 147/24 - 290/104 2244/199 (8.87)

JumpConsts 1/1 1/1 1/1 1/1 1/1 1/1 6/6 (100.00)

SwitchStack 171/27 55/11 156/48 89/18 13/5 65/20 549/129 (23.50)

Loadmem 657/79 18/0 314/129 71/36 - 761/690 1821/934 (51.29)

LoadConst 424/36 121/20 621/138 155/23 14/3 175/67 1510/287 (19.01)

Arithmetic 409/49 59/10 517/66 167/41 8/2 347/190 1507/358 (23.76)

demonstrates that in-place code randomization significantly raises the bar for attackers, and

makes the construction of reliable ROP code much harder, even in an automated way.

This is reflected on the reduction in the number of available (non-randomized) gadgets

after code randomization. Both tools operate in two phases: gadget discovery and code

compilation. During the first phase, they search for useful gadgets and categorize them

according to their functionality. Tables 3.4, 3.5 and 3.6. show the number of useful gadgets

as reported by Q and Mona, respectively, that are available before and after randomization.

As shown by the percentage of the remaining gadgets (last column), many gadget types

have very few available gadgets or are eliminated completely, which makes the construction

of reliable ROP code much harder.

3.4 Discussion

In-place code randomization may not always randomize a significant part of the executable

address space, and it is hard to give a definitive answer on whether the remaining unmod-

ifiable gadgets would be sufficient for constructing useful ROP code. This depends on the

code in the non-ASLR address space of the particular vulnerable process, as well as on the

actual operations that need to be achieved using ROP code. Note that Turing-completeness
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is irrelevant for practical exploitation [Schwartz et al., 2011], and none of the gadget sets

used in the tested ROP payloads is Turing-complete. For this reason, we emphasize that

in-place code randomization should be used as a mitigation technique, in the same fashion

as application armoring tools like EMET [Microsoft, a], and not as a complete prevention

solution.

As previous studies [Schwartz et al., 2011; Shacham, 2007; Dullien et al., 2010] have

shown, though, the feasibility of building a ROP payload is proportional to the size of the

non-ASLR code base, and reversely proportional to the complexity of the desired function-

ality. Our experimental evaluation shows that in all cases, the space of the remaining useful

gadgets after randomization is sufficiently small to prevent the automated generation of a

ROP payload. At the same time, the tested ROP payloads are far from the complexity

of a fully blown ROP-based implementation of the operations required for carrying out

an attack, such as dumping a malicious executable on disk and executing it. Currently,

this functionality is handled by the embedded shellcode, which in essence allows us to

view these ROP payloads as sophisticated versions of return-to-libc. We should stress that

the randomization coverage of our prototype implementation is a lower bound for what

would be possible using a more sophisticated code extraction method [Nanda et al., 2006;

Smithson et al., 2010]. In our future work, we also plan to relax some of the conservative

assumptions that we have made in instruction reordering and register reassignment, using

data flow analysis based on constant propagation.

Given its practically zero overhead and direct applicability on third-party executables,

in-place code randomization can be readily combined with existing techniques to improve

diversity and reduce overheads. For instance, compiler-level techniques against ROP at-

tacks [Li et al., 2010; Onarlioglu et al., 2010] increase significantly the size of the generated

code, and also affect the runtime overhead. Incorporating code randomization for eliminat-

ing some of the gadgets could offer savings in code expansion and runtime overheads. Our

technique is also applicable in conjunction with randomization methods based on code block

reordering [Forrest et al., 1997; Bhatkar et al., 2005; Kil et al., 2006], to further increase

randomization entropy.

In-place code randomization at the binary level is not applicable for software that per-
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forms self-checksumming or other runtime code integrity checks. Although not encountered

in the tested applications, some third-party programs may use such checks for hindering

reverse engineering. Similarly, packed executables cannot be modified directly. However,

in most third-party applications, only the setup executable used for software distribution is

packed, and after installation all extracted PE files are available for randomization.

Code randomization in general is not designed to prevent against attackers that have

access to the randomized code. As it was recently shown, such attacks are practical in some

environments (e.g., in the browser) [Snow et al., 2013]. It is trivial to see that this kind of

attacks could be prevented by setting the permissions of code regions to execute-only (and

not readable). This, however, is not easy to accomplish in some architectures like x86 where

the execute permission implies readability. Still, making code regions unreadable is possible

in recent x86 chips by using the Extended Page Tables (EPT) [Intel, 2014, Sec. 28.2] or

by using a technique called Split TLB [Wurster et al., 2005]. A more generic approach,

with added benefits, would be to combine in-place code randomization with Instruction Set

Randomization (ISR) [Kc et al., 2003; Barrantes et al., 2003].

Finally, although quite effective as a standalone mitigation, in-place code randomization

is not meant to be a complete prevention solution, as it offers probabilistic protection and

thus cannot deliver any protection guarantees. However, it can be applied in tandem with

existing randomization techniques to increase process diversification. This is facilitated by

the practically zero overhead of the applied transformations, and the ease with which they

can be applied on existing third-party executables. Section 4.6 describes the benefits of

combining it with our second technique.
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Table 3.5: Number of useful gadgets identified by Monain the original code segments / in

their unmodifiable parts after in-place randomization was applied.

Gadget Type Reader Integard Mplayer msvcr71 mscorie mfc71u total (%)

add eax -> ebx - - - 3/0 - - 3/0 (0.00)
add ebp -> eax 1/0 - - - - 1/0 2/0 (0.00)
add ebp -> ebx - - - - - 1/1 1/1 (100.00)
add ebp -> edi - - - - - 1/1 1/1 (100.00)
add ebp -> edx - - 2/0 - - - 2/0 (0.00)
add ebx -> eax 1/0 - 4/0 - - - 5/0 (0.00)
add ebx -> ecx - - 1/0 - - - 1/0 (0.00)
add ebx -> edx 1/0 1/1 1/0 1/0 1/1 1/0 6/2 (33.33)
add ecx -> eax 5/0 - 4/0 2/0 - - 11/0 (0.00)
add ecx -> ebp - - 3/1 - - - 3/1 (33.33)
add edi -> eax 4/0 - 3/0 - - 1/0 8/0 (0.00)
add edi -> ecx - - 8/0 - - - 8/0 (0.00)
add edi -> edx - - 4/0 - - - 4/0 (0.00)
add edx -> eax 3/0 - 5/0 - - - 8/0 (0.00)
add esi -> eax 9/0 - 5/0 2/0 - - 16/0 (0.00)
add esi -> ecx - - 16/0 - - - 16/0 (0.00)
add esi -> edi - - 3/0 - - 4/4 7/4 (57.14)
add value to eax 3/2 2/1 2/2 2/2 2/1 4/1 15/9 (60.00)
add value to ebx 1/0 - - - - - 1/0 (0.00)
add value to edi - - - - - 1/0 1/0 (0.00)
add value to edx - - 1/0 - - - 1/0 (0.00)
add value to esi - - - - - 1/0 1/0 (0.00)
dec eax 24/9 - 84/24 22/4 1/1 33/11 164/49 (29.88)
dec ebp - - 3/0 - - 1/1 4/1 (25.00)
dec ebx - - 4/3 - - - 4/3 (75.00)
dec ecx 2/0 5/5 18/12 63/59 1/1 186/177 275/254 (92.36)
dec edi 2/0 - 2/0 - - 2/2 6/2 (33.33)
dec edx 111/87 - 3/2 1/1 - 3/2 118/92 (77.97)
dec esi 1/0 - 5/3 1/0 - 1/0 8/3 (37.50)
empty eax 156/2 1/0 133/0 89/0 5/0 196/4 580/6 (1.03)
empty edi - - - 1/0 - - 1/0 (0.00)
empty edx 2/0 - 2/0 - - 5/0 9/0 (0.00)
inc eax 51/19 2/0 53/6 108/95 9/2 281/141 504/263 (52.18)
inc ebp - - 134/0 1/1 - 2/1 137/2 (1.46)
inc ebx 6/2 - 9/3 12/1 - 6/1 33/7 (21.21)
inc ecx 0/5 - 9/0 1/0 - 12/8 22/13 (59.09)
inc edi 3/0 - 1/1 2/0 - 7/0 13/1 (7.69)
inc edx 3/0 - 37/1 1/0 - 1/1 42/2 (4.76)
inc esi 14/1 1/0 2/0 3/0 - 11/1 31/2 (6.45)
move eax -> ebp 3/0 - 23/2 - - 5/1 31/3 (9.68)
move eax -> ebx - - 52/0 3/0 - 2/1 57/1 (1.75)
move eax -> ecx 1/0 1/1 7/1 - - - 9/2 (22.22)
move eax -> edi 4/0 - 7/0 - - 17/1 28/1 (3.57)
move eax -> edx - - 10/1 - - - 10/1 (10.00)
move eax -> esi 2/0 - 19/0 - - 13/1 34/1 (2.94)
move eax -> esp 11/2 - 30/3 1/0 - 43/23 85/28 (32.94)
move ebp -> eax 34/0 - 80/2 2/0 - 17/1 133/3 (2.26)
move ebp -> ebx - - 2/0 - - 1/1 3/1 (33.33)
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Table 3.6: Continuation of Talbe 3.5

Gadget Type Reader Integard Mplayer msvcr71 mscorie mfc71u total (%)

move ebp -> edi 5/0 - 2/0 - - 2/1 9/1 (11.11)
move ebp -> edx - - 6/0 - - - 6/0 (0.00)
move ebx -> eax 96/0 2/0 151/0 8/0 1/0 37/1 295/1 (0.34)
move ebx -> ecx - - 1/0 - - - 1/0 (0.00)
move ebx -> edi 1/0 - - - - 3/0 4/0 (0.00)
move ebx -> edx 1/0 1/1 1/0 1/0 1/1 1/0 6/2 (33.33)
move ebx -> esp 4/0 - 2/0 2/1 - - 8/1 (12.50)
move ecx -> eax 26/1 3/2 46/1 10/4 1/0 41/2 127/10 (7.87)
move ecx -> ebp - - 3/1 - 1/0 3/1 7/2 (28.57)
move ecx -> ebx - - 4/0 - - - 4/0 (0.00)
move ecx -> edi - - 1/0 - - 6/0 7/0 (0.00)
move ecx -> edx 2/0 - - - - 2/0 4/0 (0.00)
move ecx -> esi 1/0 - - - - 5/0 6/0 (0.00)
move ecx -> esp - - - - - 2/0 2/0 (0.00)
move edi -> eax 125/0 - 92/8 15/0 6/0 96/1 334/9 (2.69)
move edi -> ebp 1/0 - - - - - 1/0 (0.00)
move edi -> ebx - - 1/0 - - - 1/0 (0.00)
move edi -> ecx 1/0 - 8/0 - - - 9/0 (0.00)
move edi -> edx - - 19/0 - - - 19/0 (0.00)
move edi -> esi - - 3/0 - - 5/5 8/5 (62.50)
move edi -> esp - - 19/0 - - - 19/0 (0.00)
move edx -> eax 17/1 - 92/1 1/0 1/1 6/0 117/3 (2.56)
move edx -> ebx 1/0 - 3/0 - - - 4/0 (0.00)
move edx -> ecx - - - 1/0 - - 1/0 (0.00)
move edx -> edi 1/0 - - - - 1/0 2/0 (0.00)
move edx -> esi 1/0 - - - - 1/0 2/0 (0.00)
move esi -> eax 488/0 2/0 136/0 58/0 12/1 513/2 1209/3 (0.25)
move esi -> ebx - - 2/0 - - - 2/0 (0.00)
move esi -> ecx 2/0 - 16/0 - - - 18/0 (0.00)
move esi -> edi - - 3/0 - - 4/4 7/4 (57.14)
move esi -> edx - - 8/0 - - - 8/0 (0.00)
move esi -> esp 1/0 - 17/0 - - - 18/0 (0.00)
move esp -> eax 1/0 - 1/0 - - - 2/0 (0.00)
move esp -> ebp - - 1/0 - - - 1/0 (0.00)
move esp -> ebx 5/0 - 85/0 - - - 90/0 (0.00)
move esp -> ecx 8/0 - - 1/0 - - 9/0 (0.00)
move esp -> edi 37/0 - 10/0 - - 2/0 49/0 (0.00)
move esp -> esi 20/0 - 4/0 2/0 - 5/0 31/0 (0.00)
neg eax 3/1 - 1/1 7/0 - 9/8 20/10 (50.00)
neg edx - - - 1/0 - - 1/0 (0.00)
put ptr into eax 15/10 1/0 12/3 2/1 - 23/15 53/29 (54.72)
put ptr into ecx - - 2/0 - - - 2/0 (0.00)
pushad 7/0 - 26/4 1/0 - 17/12 51/16 (31.37)
xor ebp -> eax 1/0 - - - - - 1/0 (0.00)
xor edx -> eax - - 1/0 - - - 1/0 (0.00)
xor esi -> eax 1/0 - - - - - 1/0 (0.00)
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Chapter 4

Indirect Branch Tracing

As previously stated in Section 1.2, transparency is a key factor for enabling the practical

applicability of techniques that aim to protect proprietary software. The absence of any

need for modifications to existing binaries ensures an easy deployment process, and can even

enable the protection of applications that are already installed on end-user systems [Mi-

crosoft, a]. At the same time, to be practical, mitigation techniques should introduce

minimal overhead, and should not affect the proper execution of the protected applications

due to incompatibility issues or false positives.

Aiming to fulfill the above requirements, in this chapter we present a fully transparent

runtime ROP exploit mitigation technique for the protection of third-party applications.

Our approach is based on monitoring the executed indirect branches at critical points dur-

ing the lifetime of a process, and identifying abnormal control flow transfers that are in-

herently exhibited during the execution of ROP code. The technique is built around Last

Branch Recording (LBR), a recent feature of Intel processors. Relying mainly on hard-

ware for instruction-level monitoring allows for minimal runtime overhead and completely

transparent operation, without requiring any modifications to the protected applications.

Our current design performs two checks on indirect branches. First, it restricts the

targets of return instructions to leginimate code locations. Second, it checks for sequences

of relatively short code fragments chained through any kind of indirect branches. The first

check detects traditional ROP attacks (i.e., using gadgets ending in return instructions),

whereas the second is more general and detects even ROP code that uses gadgets ending
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with indirect jmp or call instructions. We have developed a prototype implementation for

Windows 7, named kBouncer. To minimize context switching overhead, branch analysis is

performed only before critical system operations that could cause any harm. We evaluated

the effectiveness and practical applicability of our technique using publicly available ROP

exploits against widely used software, including Internet Explorer, Adobe Flash Player, and

Adobe Reader. In all cases, kBouncer blocks the exploit successfully, and notifies the user

through a standard error message window. We also verified that kBouncer introduces min-

imal overhead by stress-testing our implementation with workloads that trigger excessively

the protected system.

4.1 Practical Indirect Branch Tracing for ROP Prevention

The proposed approach uses runtime process monitoring to block the execution of code

that exhibits return-oriented behavior. In contrast to typical program code, the code used

in ROP exploits consists of several small instruction sequences, called gadgets, scattered

through the executable segments of the vulnerable process. Gadgets end with an indirect

branch instruction that transfers control to the following gadget according to a sequence

of gadget addresses contained in the “payload” that is injected during the attack. As the

name of the technique implies, gadgets typically end with a ret instruction, although any

combination of indirect control transfer instructions can be used [Checkoway et al., 2010].

The key observation behind our approach is that the execution behavior of ROP code

has some inherent attributes that differentiate it from the execution of legitimate code. By

monitoring the execution of a process while focusing on those properties, kBouncer can

identify and block a ROP exploit before its code accomplishes any critical operation.

In this section, we discuss in detail how kBouncer leverages the Last Branch Recording

feature of recent processors to retrieve the sequence of the most recent indirect branch

instructions that took place right before the invocation of a system function. In the following

section, we discuss how kBouncer uses this information to identify the execution of ROP

code. As the vast majority of in-the-wild ROP exploits target Windows software, our

design focuses on achieving transparent operation for existing Windows applications without
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Table 4.1: Qualitative comparison of alternative techniques for runtime branch monitoring.

Technique Overhead Requirements Compatibility Deployment

Compiler-level med source some hard

Binary rewriting med pdb no med

Dynamic instrumentation high - yes med

LBR monitoring low - yes easy

raising any compatibility issues or false alerts.

4.1.1 Branch Tracing vs. Other Approaches

Execution monitoring at the instruction level usually comes with an increased runtime

overhead. Even when tracking only a particular subset of instructions, e.g., in our case only

indirect control transfer instructions, the overhead of interrupting the normal flow of control

and updating the necessary accounting information is prohibitive for production systems.

There are several different approaches that can be followed for monitoring the execution

of indirect branch instructions, each of them having different requirements, performance

overhead, transparency level, and deployment effort.

Extending the compiler to generate and embed runtime checks in the executable binary

at compile time is one of the simplest techniques [Onarlioglu et al., 2010]. However, the

high frequency of control transfer instructions in typical code means that a lot of additional

instrumentation code must be added. Also, deployment requires a huge effort as all pro-

grams have to be recompiled. Another option is static binary rewriting. Its main advantage

over compiler-level techniques is that no source code is required, but only debug symbols

(e.g., PDB files) [Abadi et al., 2005]. Still, all control transfers need to be checked. Even

worse, it breaks self-checksumming or signed code and cannot be applied to self-modifying

programs. Dynamic binary instrumentation is another alternative that can handle even

stripped binaries (no need for source code or debug symbols), but the runtime performance

overhead of existing binary instrumentation frameworks slows down the normal execution

of an application by a factor of a few times [Davi et al., 2011].

In contrast to the above approaches, our system monitors the executed indirect branch
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instructions using Last Branch Recording (LBR) [Intel, 2014, Sec. 17.4], a recent feature of

Intel processors introduced in the Nehalem architecture. When LBR is enabled, the CPU

tracks the last N (16 for the CPU model we used) most recent branches in a set of 64-bit

model-specific registers (MSR). Each branch record consists of two MSR registers, which

hold the linear addresses of the branch instruction and its target instruction, respectively.

Records from the LBR stack can be retrieved using a special instruction (rdmsr) from

privileged mode. The processor can be configured to track only a subset of branches based

on their type: relative/indirect calls/jumps, returns, and so on.

Table 4.1 shows a summarized comparison of the alternative strategies discussed above.

For our particular case, the use of LBR has several advantages: it incurs zero overhead for

storing the branches; it is fully transparent to the running applications; is does not cause

any incompatibility issues as it is completely decoupled from the actual execution; it does

not require source code or debug symbols; and it can be dynamically enabled for already

installed applications—there is no need for recompilation or instruction-level instrumenta-

tion.

4.1.2 Using Last Branch Recording for ROP Prevention

Although the CPU continuously records the most recent branches in the LBR stack with

zero overhead, accessing the LBR registers and retrieving the recorded information unavoid-

ably adds some overhead. Considering the limited size (16 entries) of the LBR stack, and

that it can be accessed only from kernel-level code, checking the targets of all indirect con-

trol transfer instructions would incur a prohibitively high performance overhead. Indirect

branches occur very frequently in typical programs, and a monitored process should be

interrupted once every 16 branches with a context switch. In fact, the implementation of

such a scheme is not facilitated by the current design of the LBR feature, as it does not

provide any means of interrupting execution whenever the stack gets full after retrieving its

previous 16 records.

Fortunately, when considering the actual operations of a ROP exploit, it is possible to

dramatically reduce the number of control transfer instructions that need to be inspected.

The typical end goal of malicious code is to give the attacker full control of the victim
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Figure 4.1: Illustration of a basic scheme for ROP code detection. Whenever control is

transferred from user to kernel space (vertical line), the system inspects the most recent

indirect branches to decide whether the system call was invoked by ROP code or by the

actual program.

system. This usually involves just a few simple operations, such as dropping and executing

a malicious executable on the victim system, which unavoidably require interaction with

the OS through the system call interface. Based on this observation, we can refine the

set of indirect branches that need to be inspected to only those along the final part of the

execution path that lead to a system call invocation. (Depending on the vulnerable program,

exploitation might be possible without invoking any system call, e.g., by modifying a user

authentication variable [Chen et al., 2005], but such attacks are rarely found in the client-

side applications that are typically targeted by current ROP exploits, and are outside the

scope of this work.)

Figure 4.1 illustrates this approach. Vertical bars correspond to snapshots of the address

space of a process, and arrows correspond to indirect control transfers. The vertical line

denotes the point at which the flow of control is transferred from user space to kernel space

through a system call. At this point, by interposing at the OS’s system call handler, the

system can access the LBR stack and retrieve the targets of the indirect branches that led

to the system call. It can then check the control flow path for abnormal control transfers

and distinctive properties of ROP-like behavior using the techniques that will be described

in Sec. 4.2, and decide whether the system call is part of malicious ROP code, or it is being
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invoked legitimately by the actual program.

4.1.2.1 System Calls vs. API Calls

User-level programs interact with the underlying system mainly through system calls. Unix-

like systems provide to applications wrapper functions for the available system calls (often

using the same name as the system call they invoke) as part of the standard library. In

contrast, Windows does not expose the system call interface directly to user-level programs.

Instead, programs interact with the OS through the Windows API [Microsoft, d], which is

organized into several DLLs according to different kinds of functionality. In turn, those

DLLs call functions from the undocumented Native API [Russinovich, 2006], implemented

in ntdll.dll, to invoke kernel-level services.

Exploit code rarely relies on the Native API for several reasons. One problem is that

system call numbers change between Windows versions and service pack levels [Bania, 2005;

Jurczyk, 2011], reducing the reliability of the exploit across different targets (or increasing

attack complexity by having to adjust the exploit according to the victim’s OS version).

Most importantly, the desired functionality is often not conveniently exposed at all through

the Native API, as for example is the case with the socket API [Skape, 2003]. Typi-

cally, the purpose of ROP code is to give execute permission to a second-stage shellcode

using VirtualProtect or a similar API function [Erlingsson, 2007; Corelan Team, b;

Metasploit, 2010; Nate M, 2011; Metasploit, 2012b; Metasploit, 2012a]. The second-stage

shellcode can be avoided altogether by implementing all the necessary functionality solely

using ROP code, as is the case with a recent exploit against Adobe Reader XI, in which

the ROP code calls directly the fsopen, write, fclose, and LoadLibraryW functions

to drop and execute a malicious DLL [Bennett et al., 2013].

The implementation of many of the functions exported by the Windows API is quite

complex, and often involves several internal functions that are executed before the invoca-

tion of the intended system call. Due to the limited size of the LBR stack, this means that

by the time execution reaches the actual system call, the LBR stack might be filled with

indirect branches that took place after the Windows API function was called. To assess the

extent of this effect, we measured the average number of indirect branch instructions (ret,
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Figure 4.2: LBR overwriting due to indirect branches that take place within Windows API

functions, prior to the execution of a system call.

jmp, and call) that are executed between the first instruction of a Windows API function

and the system call it invokes, for a set of 52 “sensitive” functions that are commonly used

in Windows shellcode and ROP code implementations (a complete list of the tested func-

tions is provided in the appendix). As shown in Fig. 4.2, about 34% of the API functions

execute less that 16 indirect branches, while the rest of them completely overwrite the LBR

stack.

As these branches are made as part of legitimate execution paths, calling a function that

completely overwrites the LBR stack would allow ROP code to evade detection. However,

this scheme can be improved to provide robust detection of ROP code that calls any sensitive

API function, irrespectively of the extent of overwriting in the LBR stack due to code in

the function body.

4.1.2.2 LBR Stack Inspection on API Function Entry

Given that i) exploit code usually calls Windows API functions instead of directly invoking

system calls, and ii) most API functions overwrite the LBR stack with legitimate indirect

branches before invoking a system call, kBouncer inspects the LBR stack at the time an
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Figure 4.3: Overview of the detection scheme of kBouncer. Before the invocation of pro-

tected Windows API functions, the system inspects the LBR stack to identify whether the

execution path that led to the call was part of ROP code, and writes a checkpoint. To ac-

count for ROP code that would bypass the check by jumping over kBouncer’s function hook,

the system then verifies the entry point of the API function at the time of the corresponding

system call invocation.

API function is called, instead upon system call invocation. This allows the detection of

ROP code that uses any sensitive API function, irrespectively of the number of legitimate

indirect branches executed within its body. In case an API function is called by ROP code,

all entries in the LBR stack at the time of function entry will correspond to the indirect

branches of the gadgets that lead to the function call, as depicted in Fig. 4.3.

Still, without any additional precautions, this scheme would allow an attacker to bypass

the LBR check at the entry point of a function. An implementation of the LBR check in the

system call handler—within the kernel—safeguards it from user-level code and any bypass

attempt. In contrast, implementing the LBR check as a hook to a user-level function’s entry

point does not provide the same level of protection. An attacker could avoid the check by

jumping over the hook at the function’s prologue, instead of jumping at its main entry

point, and then normally executing the function body. Alternatively, by trading off some

of its reliability, the ROP code could avoid calling the API function altogether by invoking

directly the relevant Native API call.

Fortunately, as the Native API is not exposed to user-level programs, i.e., applications
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never invoke Native API calls directly; we can solve this issue by ensuring that system calls

are always invoked solely through their respective Windows API functions. After a clear

LBR check at an API function’s entry point, kBouncer writes a checkpoint that denotes a

legitimate invocation of that particular function. When the respective system call is later

invoked, the system call handler verifies that a proper checkpoint was previously set by the

expected API function, and clears it. If the checkpoint was not set, then this means that

the flow of control did not pass through the proper API function preamble, and kBouncer

reports a violation.

We should note that user-level ROP code cannot bypass kBouncer’s checks by faking

a checkpoint. The code for setting a checkpoint can only run with kernel privileges, and

the checkpoint itself is stored in kernel space so that i) the system call handler can later

access it, and ii) any user-level code (and consequently the ROP code itself) cannot tamper

with it. The checkpoint code is tied with and comes right after the code that inspects the

LBR stack, and both run in an atomic way at kernel level, i.e., the checkpoint cannot be

set without previously analyzing the LBR for the presence of ROP code. This prevents

any ROP code from faking a checkpoint without being detected—the part of the ROP code

with the task of setting the checkpoint would be detected by the LBR check before the

checkpoint is actually set.

4.2 Identifying the Execution Behavior of ROP Code

Before allowing a Windows API function call to proceed, kBouncer analyzes the most recent

indirect branches that were recorded in the LBR cache prior to the function call. LBR is

configured to record only ret, indirect jmp, and indirect call instructions. The execution

of ROP code is identified by looking for two prominent attributes of its runtime behavior:

i) illegal ret instructions that target locations not preceded by call sites, and ii) sequences

of relatively short code fragments “chained” through any kind of indirect branches.

Returns that do not transfer control right after call sites is an illegitimate behavior

exhibited by all publicly available ROP exploits against Windows software, which rely

mainly on gadgets ending with ret instructions (ret conveniently manipulates both the
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call f1

mov eax, esi

...

xchg eax, edi

ret

call f2

test al, al

...

pop ecx

ret

call f3

add esp, 0Ch

...

add eax, edx

ret

pop eax

ret

normal

execution

ROP code

execution

Figure 4.4: In normal code, ret instructions target valid call sites (left), while in ROP

code, they target gadgets found in arbitrary locations (right).

program counter and the stack pointer). The second, more generic attribute captures

an inherent property of not only purely return-oriented code, but also of advanced (and

admittedly harder to construct) jump-oriented code (or even “hybrid” ROP/JOP code that

might use any combination of gadgets ending with jmp, call, and ret instructions).

4.2.1 Illegal Returns

When focusing on the control flow behavior of ROP code at the instruction level, we expect

to observe the successive execution of several ret instructions, which correspond to the

transfer of control from each gadget to the next one. Although this control flow pattern

is quite distinctive, the same pattern can also be observed in legitimate code, e.g., when

a series of functions consecutively return to their callers. However, when considering the

targets of ret instructions, there is a crucial difference.

In a typical program, ret instructions are paired with call instructions, and thus



CHAPTER 4. INDIRECT BRANCH TRACING 58

the target of a legitimate ret corresponds to the location right after the call site of the

respective caller function, i.e., an instruction that follows a call instruction, as illustrated

in the left part of Fig. 4.4. In contrast, a ret instruction at the end of a gadget transfers

control to the first instruction of the following gadget, which is unlikely to be preceded by a

call instruction. This is because gadgets are found in arbitrary locations across the code

image of a process, and often may correspond to non-intended instruction sequences that

happen to exist due to overlapping instructions [Shacham, 2007].

At runtime, the ret instructions of ROP code can be easily distinguished from the legit-

imate return instructions of a benign program by checking their targets. A ret instruction

that transfers control to an instruction not preceded by a call is considered illegal, and the

observation of an illegal ret is flagged by kBouncer as an indication of ROP code execution.

Ensuring call-ret pairing by verifying caller-callee semantics, e.g., using a shadow

stack [Davi et al., 2011], constrains the control flow of a process in a much stricter way than

the proposed scheme. In practice, though, enforcing such a strict policy is problematic, due

to the use of setjmp/longjmp constructs, call/pop “getPC” code commonly found in

position-independent executables, tail call optimizations, and lightweight user-level threads

such as Windows fibers, in which the context switch function called by the current thread

returns to the thread that is scheduled next.

Instead of enforcing a strict control flow, kBouncer simply makes sure that ret instruc-

tions always target any among all valid call sites (even those that correspond to non-intended

call instructions). This is a more relaxed constraint that is not expected to be violated

(and which did not, for the set of applications tested as part of our experimental evalua-

tion) even in programs that use constructs like the above. Its implementation is also much

simpler, as there is no need to track the execution of call instructions—checking that the

target of each ret falls right after a call is enough.

Call-preceded Gadgets Although the above scheme prohibits the execution of illegal

returns, which are prominently exhibited by typical ROP exploits, an attacker might still

be able to construct functional ROP code using gadgets that begin right after call instruc-

tions, to which we refer as call-preceded gadgets. Note that call-preceded gadgets may
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Table 4.2: Details about the dataset used for gadget analysis.

Indirect Branches System Protected

Application Workload jump call ret Calls API Calls

Windows Media Player Music playback for ˜30 secs 7.3M 7.5M 30.0M 196K 5150

Internet Explorer 9 Browse to google.com 3.4M 4.8M 17.7M 87K 7092

Adobe Flash Player Watch a youtube video 9.6M 21.7M 94.1M 317K 46658

Microsoft Word Scroll through a document 3.3M 11.5M 38.8M 178K 5425

Microsoft Excel Open a rich spreadsheet 6.3M 18.1M 54.5M 212K 3957

Microsoft PowerPoint View a presentation 10.2M 19.3M 68.8M 275K 6577

Adobe Reader XI Scroll through a few pages 9.7M 19.5M 100.6M 101K 5026

begin after either intended or unintended call instructions. As kBouncer cannot know

which call instructions were actually emitted by the compiler, if any of the possible valid

instructions immediately preceding the instruction at a target address is a call instruction,

then that address may correspond to the beginning of a call-preceded gadget.

The observation of a ret that targets an instruction located right after a call is

considered by kBouncer as normal, and thus ROP code comprising only call-preceded

gadgets would not be identified based on the first ROP code attribute kBouncer looks for

during branch analysis. Although such code would still be identified due to its “chained

gadgets” behavior, which we will discuss below, we first briefly explore the feasibility of

such an attempt.

For our analysis we use a set of typical Windows applications, detailed in Table 4.2.

The data is collected using a purpose-built execution analysis framework, described in

Sec. 4.3.2. We consider as a gadget any (intended or unintended) instruction sequence that

ends with an indirect branch, and which does not contain any privileged or invalid instruc-

tion. In contrast to the gadget constraints typically considered in relevant studies [Shacham,

2007; Checkoway et al., 2010; Schwartz et al., 2011; Chen et al., 2009; Yuan et al., 2011;

Pappas et al., 2012; Hiser et al., 2012; Wartell et al., 2012] and the actual gadgets used

in real exploits [Corelan Team, b; Bennett et al., 2013; Metasploit, 2010; Nate M, 2011;

Metasploit, 2012b; Metasploit, 2012a], i.e., contiguous instruction sequences no longer than

five instructions, we follow a more conservative approach and consider gadgets that i) may

be split into several fragments due to internal conditional or unconditional relative jumps,
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Figure 4.5: Among all gadgets that end with a ret instruction, only a small fraction (6.4%

in the worst case for Adobe Reader) begin right after call sites.

and ii) have a maximum length of 20 instructions.

Figure 4.5 shows the fraction of call-preceded gadgets among all gadgets that end

with a ret instruction, for different Windows applications. In the worst case, only 6.4% of

the gadgets begin right after call sites, a percentage much smaller compared to all available

ret gadgets. Given that many of them are longer than the typical gadget size, and are thus

harder to use in ROP code due to the many different operations and register or memory

state changes they incur, an attacker would be left with a severely limited set of gadgets to

work with. For comparison, the ROP payloads of the exploits we used in our evaluation,

listed in Table 4.4, collectively use 44 unique gadgets with an average length of just 2.25

instructions, and only three of them happen to be call-preceded—the rest of them would

all result in illegal returns.

4.2.2 Gadget Chaining

It is clear from the previous section that even a “lighter” version of kBouncer that would

just prohibit the execution of illegal returns would still significantly raise the bar, as i) it

would prevent the execution of the ROP code typically found in publicly available Windows

exploits, and more importantly, ii) it would force attackers to either use only a limited set

of ret gadgets, or resort to jump-oriented code—options of increased complexity.
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Figure 4.6: The state of the LBR stack at the time kBouncer blocks an exploit against

Adobe Flash.Diagonal pairs of addresses with the same shade correspond to the first and

last instruction of each gadget.

To account for potential future exploits of these sorts, the second attribute that kBouncer

uses to identify the execution of ROP code is an inherent characteristic of its construction:

the observation of several short instruction sequences chained through indirect branches.

This is a generic constraint that holds for both return-oriented and jump-oriented code (or

potential combinations—in the rest of this section we refer to both techniques as ROP).

Although legitimate programs also contain an abundance of code fragments linked with

indirect branches, these fragments are typically much larger than gadgets, and more impor-

tantly, they do not tend to form long uninterrupted sequences (as we show below).

The CPU records in-sequence all executed indirect branches, enabling kBouncer to re-

construct the chain of gadgets used by any ROP code. Each LBR record R[b, t] contains

the address of the branch (b) and the address of its target (t), or from the viewpoint of

ROP code, the end of a gadget and the beginning of the following one.
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Figure 4.6 illustrates the contents of the LBR stack at the time kBouncer blocks the ROP

code of an exploit against Adobe Flash [Metasploit, 2012a] (although kBouncer blocks this

exploit due to illegal returns, we use it for illustrative purposes, as we are not aware of any

publicly available JOP exploit). Starting with the most recent (bottom-most) record, the

detection algorithm checks whether the target (located at address Rn−1[t]) of the previous

branch, is an instruction that precedes the branch (located at address Rn[b]) of the current

record. If starting from address Rn−1[t], there exists an uninterrupted sequence of at most

20 instructions that ends with the indirect branch at address Rn[b], then the sequence is

considered as a gadget. Recall that kBouncer treats as gadgets even fragmented instruction

sequences linked through conditional or unconditional relative jumps. The same process

repeats with the previous records, moving upwards, as long as chained gadgets are found.

The ROP code in this example consists of 11 gadgets, all ending with a ret instruction

except the final one (G11), which is a single-instruction gadget with an indirect jmp that

transfers control to VirtualProtect in kernel32.dll (note the difference in the high

bytes of the target address in record 13). The two bottom-most records in the LBR stack

correspond to kBouncer’s function hook (from VirtualProtect to DeviceIoControl,

which signals the kernel component), and a ret from SEH prolog4 which is called by

DeviceIoControl.

A crucial question for the effectiveness of the above algorithm is whether legitimate code

could be misclassified as ROP code due to excessively long chains of gadget-like instruction

sequences. To assess this possibility, we measured the length of the gadget chains observed

across all inspected LBR stack instances for the applications and workloads listed in Ta-

ble 4.2. As described in Sec. 4.1.2.2, kBouncer inspects the LBR stack right before the

execution of a sensitive Windows API function. In total, kBouncer inspected 79,885 LBR

stack instances, i.e., the tested applications legitimately invoked a sensitive API function

79,885 times.

Figure 4.7 (solid line) shows the percentage of instances with a given gadget chain

length. In the worst case, there is just one instance with a chain of five gadgets, and

there are no instances with six or more gadgets. On the other hand, complex ROP code

that would rely on call-preceded or non-ret gadgets would result in excessively long
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Figure 4.7: Percentage of LBR stack instances with a given gadget chain length for i) the

instances inspected by kBouncer at the entry points of protected API function calls, and ii)

the instances taken at the entry points of all function calls.

gadget chains, filling the LBR stack. Indicatively, a jump-oriented Turing-complete JOP

implementation for Linux uses 34 gadgets [Checkoway et al., 2010]. Furthermore, current

JOP code implementations rely on a special dispatcher gadget that always executes between

useful gadgets, at least doubling the amount of executed gadgets.

Although we can never rule out the possibility that benign code in some other application

might result in a false positive, to ascertain that this possibility is unlikely, we also analyzed

97,554,189 LBR stack instances taken at the entry points of all executed functions during

the lifetime of the same tested applications. In this orders-of-magnitude larger data set, the

maximum gadget chain length observed is nine (dashed line), which is still far from filling

up the LBR stack. This means that even if there is a need in the future to protect more

API functions, or perform LBR checks in other parts of a program, we will more than likely

still be able to set a robust detection threshold that will not result in false positives. For

the current set of protected functions we use a threshold of eight gadgets, which allows for

increased resilience to false positives.

Finally, note that in the above benign executions, the vast majority of the gadget-like
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chains stem from our conservative choice of considering fragmented gadgets of up to 20

instructions long—significantly more complex and longer than the gadgets used in actual

exploits. Although we could choose more reasonable constraints about what is considered

as a gadget, we preferred to stress the limits of the proposed approach.

4.3 Implementation

4.3.1 kBouncer

To demonstrate the effectiveness of our proposed approach, we developed a prototype im-

plementation for the x86 64-bit version of Windows 7 Professional SP1. Our prototype,

kBouncer, consists of three components: i) an offline gadget extraction and analysis toolkit,

ii) a user-space thin interposition layer between the applications and Windows API func-

tions, and iii) a kernel module.

For the executable segments of a protected application, the gadget extraction toolkit

identifies any instruction sequence ending in an indirect branch, starting from each and every

byte of a segment. In the current version of our prototype we assume that the complete

set of an application’s modules is available in advance. However, it is possible to trivially

relax this assumption by processing new modules on-the-fly at the time they are loaded

by a protected application. The maximum gadget length is given as a parameter—in our

experiments we conservatively used a length of 20 instructions. As discussed in Sec. 4.2.1,

our extraction algorithm differs from previous approaches as it considers even instruction

sequences that contain conditional or unconditional relative jumps. For this reason, code

analysis explores all possible paths from every offset within a code segment, and follows

recursively any conditional branches. The output of the analysis phase is two hash tables:

one containing the offsets of call-preceded gadgets, and another containing the rest of the

found gadgets. In the future, we will consider switching to Bloom filters to save space.

The overall operation of the runtime system is depicted in Fig. 4.8. The interposition

component is implemented on top of the Detours framework [Hunt and Brubacher, 1999],

which provides a library call interception mechanism for the Windows platform. During ini-

tialization, it requests by kBouncer’s kernel module to enable the LBR feature on the CPU.
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Figure 4.8: Overview of kBouncer’s implementation. At the entry point of Windows API

functions, kBouncer detours the execution, inspects the LBR stack in kernel mode, and

then returns control back to the application.

The two components communicate through control messages over a pseudo-device that is

exported by the kernel module (using the DeviceIoControl API function). Then, it

selectively hooks the set of the protected Windows API functions. Each time a protected

function is called, the detour code sends a control message to the kernel component, in-

structing it to inspect the contents of the LBR stack for abnormal control transfers.

We note here that, althougt the use of Detours might seems to break the transparency

feature of kBouncer, it is merely an implementation option. There are alternative ways

to implement the same functionality, while still remaining completely transparent. For

instance, by manipulating the page table permissions of the import address table, we could

gain control each time a library call is performed.

The kernel module is responsible for three main tasks: i) enabling or disabling the

LBR facility, ii) analyzing the recorded indirect branches, and iii) writing and verifying the

appropriate checkpoint before allowing a system call to proceed. The first task involves
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reading and writing a few Model Specific Registers (MSR) using the rdmsr and wrmsr

instructions. For the second task, whenever a control request is received from the user-space

component, kBouncer analyzes the contents of the LBR stack, looking for the attributes

described in Sec. 4.2. The MSR registers that hold the recorded information and config-

uration parameters are considered part of the running process context, and are preserved

during context switches.

To identify illegal return instructions, the kernel module fetches a few bytes before each

return target and attempts to decode any call instruction located right before the target

instruction (call site check). Gadget chaining patterns are identified as follows: starting

from the most recent branch in the LBR stack, the number of consecutive targets that

point to gadgets are counted. Any ret targets are looked up in the call-preceded gadgets

hash table, whereas call or jmp targets are looked up in both hash tables, call-preceded

or not. The most recent branch target is not considered, as it does not point to a gadget,

but to the protected API function. To protect the kernel-level component from potential

crashes when accessing invalid user-level locations, we use the ProbeForRead function of

the Windows kernel API.

Unfortunately, the final task for API call verification has been only partly implemented,

as it is not possible to perform system-call interposition in the current version of Windows 7.

A recently added kernel feature in the 64-bit version of Windows, called PatchGuard [Field,

], protects against kernel-level rootkits by preventing any changes to critical data structures,

such as the System Service Descriptor Table (SSDT). Although this is effective against

rootkits, PatchGuard removed the ability of legitimate applications, such as antivirus soft-

ware, to intercept system calls. In response, Microsoft added a set of kernel-level APIs for

filtering network and file-system operations (Windows Filtering Platform [Microsoft, f]).

Hopefully, future OS versions will provide system call filtering capabilities as well.

Still, we did verify the correct operation of checkpoint verification by simulating it using

the dataset of Table 4.2. We should note that this is not a design limitation, but only an

implementation issue stemming from our choice of the target platform. For example, this

would not have been an issue had we decided to implement kBouner for Linux, or any other

open platform. For now, we plan to implement the checkpointing functionality for 32-bit
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Figure 4.9: A screen capture of kBouncer in action, blocking a zero-day exploit against

Adobe Reader XI.

applications by hooking system calls at user level through the WOW64 layer [Bremer, 2012]

(which, however, will not provide the same protection guarantees as an actual kernel-level

implementation).

In case an attack attempt is detected after the analysis of the recorded branches, the

process is terminated and the user is informed with an alert message, as shown in Fig. 4.9.

In this example, kBouncer blocks a malicious PDF sample that exploits an (at the time of

writing) unpatched vulnerability in the latest version of Adobe Reader XI [Bennett et al.,

2013]. The displayed information, such as branch locations and targets, is supplied from

the kernel-level module.

4.3.2 Analysis Framework

Moving from the basic concept to a functional prototype required a number of decisions

that were mostly based on analyzing the behavior of large applications. To ease the effort
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required to perform this type of analysis, we developed an LBR analysis framework. Its

goal is to provide a way to iterate over the LBR instances during the lifetime of an applica-

tion, while at the same time providing useful information, such as translating addresses to

function or image names. The framework is split in two parts: data gathering and analysis.

The data-gathering component is based on dynamic binary instrumentation. Although

the runtime overhead of dynamic instrumentation is quite high (as discussed in Sec. 4.1.1),

we use it here only for data gathering, which is an off-line and one-time operation. The

tool we developed is built on top of Pin [Skaletsky et al., 2010; Luk et al., 2005], and

records the following information during process execution: i) the file path and starting and

ending address of any loaded executable image, ii) the location and name of any recognized

function (e.g., exported functions), iii) the thread ID, location, and target of executed

indirect branches (ret, call or jmp), iv) the thread ID, location, and number of system

calls, and v) the thread ID, location, and return address of any identified function that was

called.

The analysis part is a set of Python scripts that process the gathered data for each

application. It provides a configurable LBR iterator which simulates different scenarios,

such as returning LBR stack instances before system calls or certain function calls, or even

after each branch is executed. To avoid mixing branches from different system threads in

the same LBR instance, it internally keeps a list of separate LBRs per thread id. Finally,

it provides convenient methods to translate addresses to function or image names when

available.

4.4 Evaluation

In this section we present the results of our experimental evaluation of kBouncer in terms of

runtime overhead and effectiveness against real-world ROP exploits. All experiments were

performed on a computer with the following specifications: Intel i7 2600S CPU, 8GB RAM,

128GB SSD, 64-bit Windows 7 Professional SP1.
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Table 4.3: Microbenchmarks.

Number of Avg. Total Time Avg. Single Time

Type Iterations ms (stddev) ns

HashLookup 1B 8231.6 ( 9.8) 8.2

IllegalRet 1B 10889.9 ( 312.9) 10.8

SysNull 10M 5145.0 ( 66.0) 514.5

SysLBR 10M 19981.8 ( 504.5) 1998.1

SysRead 10M 47267.7 (30925.6) 4726.7

4.4.1 Performance Overhead

4.4.1.1 Microbenchmarks

We started with some micro-benchmarks of different parts of kBouncer’s functionality.

Specifically, we measure the average time needed for the following operations, also listed

in Table 4.3: hash table lookups (“HashLookup”), checks for illegal returns (“IllegalRet”),

performing a system call (“SysNull”), reading the contents of the LBR stack (“SysLBR”),

and reading parts of a process’ address space (“SysRead”).

In each case, we isolated the measured operation and tried to make the experiment as

realistic as possible. For example, we extracted the hash table characteristics (domain size,

hash table size, hit ratio) based on the dataset shown in Table 4.2. The data we used for the

illegal return checks come from kernel32.dll, and use a worst-case workload by treating

each location in its code segment as a possible return target. The next three experiments

where measured in kernel level, as opposed to the first two. We measured the time needed

to perform a no-op system call, a system call that only reads the LBR stack contents, and

finally, a system call that in addition to reading the LBR stack, also fetches data from the

sources and targets of each branch.

Table 4.3 shows the results of these benchmarks. Each benchmark runs the number of

operations shown in the second column ten times, and calculates the average and standard

deviation (next two columns). The last column shows the average time for a single operation.

As we can see, looking up the hash table and checking for an illegal return are both very

fast operations, in the order of a few nanoseconds. Performing a system call and reading
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the LBR stack are relatively more expensive, but still, in the order of a few microseconds.

When attempting to access the instructions located at the source and target addresses of

each branch record, the measured duration starts to fluctuate. We are not sure whether this

behavior is normal, or it is a result of non-optimal use of the kernel API for accessing user-

level memory. Overall, these microbenchmarks show that kBouncer’s LBR stack analysis

on each protected API function call takes on average no more than 5 microseconds.

4.4.1.2 Runtime Overhead

Measuring the performance overhead impact on interactive applications, such as web browsers

and document viewers, is a challenging task. Instead, we decided to measure the perfor-

mance overhead on programs that stress the core functionality of kBouncer, by making

heavy use of the monitored Windows API functions. For this purpose, we used a subset

of the tests provided in the test suite of Wine [Wine, ], which repeatedly call Windows

API functions with different arguments. To get more confident timing results, we kept only

tests that do not interfere with external factors, such as network communication. The final

set we used performs about 100,000 calls to Windows API functions that are protected by

kBouncer, which is 20 times more than the protected calls made by the actual applications

we previously tested (listed in Table 4.2).

Figure 4.10 shows the completion time for each of the different tests, with and without

kBouncer. The average runtime overhead is 1%, with the maximum being 4% in the worst

case. The total extra time spent across all tests when enabling kBouncer was 0.3 sec, a result

consistent with the average cost of 5 µs per check based on our microbenchmarks (100,000

calls × 5 µs = 0.5 sec). Based on these results, which show that the performance overhead

is negligible even for workloads that continuously trigger the core detection component, we

believe that kBouncer is not likely to cause any noticeable impact on user experience.

4.4.2 Effectiveness

In the final part of our evaluation, we tested whether our prototype can effectively pro-

tect applications that are typically targeted by in-the-wild attacks, using the ROP exploits

shown in Table 4.4. All exploits except the ones against Internet Explorer work on the
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Figure 4.10: Execution time with and without kBouncer for Wine’s kernel32.dll test

suite, which resulted in the invocation of about 100K monitored Windows API functions.

The average runtime overhead is 1%.

latest and up-to-date version of Windows 7 Professional SP1 64-bit. For the IE exploits to

work, we had to uninstall the updates that fixed the relevant vulnerabilities (KB2744842

and KB2799329). We also had to tweak the ROP payload of the MPlayer exploit to cor-

rectly calculate the offset of VirtualProtect for the latest version of kernel32.dll,

as the public version of the exploit was based on a previous version of that DLL.

The ROP code in the exploit against Adobe Reader v9.3.4 creates a file (CreateFileA),

memory-maps the file in RWX mode (CreateFileMappingA, MapViewOfFile), copies

the shellcode in the newly mapped area, and executes it. Similarly, the MPlayer and IE 8

exploits change the permissions of the memory region where the shellcode resides to RWX

(VirtualProtect) and execute it. What is interesting about the IE 8 ROP code, is that it

is constructed from the statically loaded Skype protocol handler DLL (skype4com.dll).

The last two exploits in Table 4.4 were generated using the Metasploit Framework [Metas-

ploit, ]. For vulnerable applications that include widely used non-ASLR modules (like

Java’s msvcrt71.dll, which is loaded in Internet Explorer), Metasploit uses the same

ROP payload based on msvcrt71.dll, which has been pre-generated by Mona [Corelan
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Table 4.4: Tested ROP exploits.

Application Vulnerability

Adobe Reader v11.0.1 Function pointer overwrite [Bennett et al., 2013]

Adobe Reader v9.3.4 Stack-based overflow [Metasploit, 2010]

MPlayer Lite r33064 SEH pointer overwrite [Nate M, 2011]

Internet Explorer 8 Use-after-free vulnerability [Parvez, 2013]

Internet Explorer 9 Use-after-free vulnerability [Metasploit, 2012b]

Adobe Flash 11.3.300 Integer overflow [Metasploit, 2012a]

Team, b]. This payload is similar to the one used in the MPlayer exploit, as it also uses

VirtualProtect to bypass Data Execution Prevention (DEP). Finally, the Adobe Reader

XI (v11.0.1) exploit is more complex, as it is the first in-the-wild exploit that uses ROP-

only code, i.e., it does not carry any shellcode [Bennett et al., 2013]. The malicious sample

we tested (“Visaform Turkey.pdf”) exploits a first vulnerability to escape from Reader’s

sandboxed process, and a second one to hijack the execution of its privileged process by

loading a malicious DLL using LoadLibraryW.

In the first five exploits, the embedded shellcode simply invokes calc.exe using the

WinExec Windows API call. The Reader XI exploit drops a malicious DLL. In all cases, we

verified that the exploits worked properly on our testbed, by confirming that the calculator

was successfully launched, or, for the Reader XI exploit, that the malicious DLL was loaded

successfully. When kBouncer was enabled, it successfully blocked all exploits due to the

identification of illegal returns at the time one of the CreateFileA, VirtualProtect

or LoadLibraryW functions was invoked by the ROP code in each case.

4.5 Discussion

The Last Branch Recording feature of recent Intel processors is what enables kBouncer to

achieve its transparent and low-overhead operation. Many of our design decisions are corol-

laries of the very limited size of the LBR stack, which in the most recent processors holds

only 16 records. Given that previous processor generations had even more size-constrained

LBR implementations, this is definitely a significant improvement, and hopefully future

processors will support even larger LBR stacks. This would allow kBouncer to achieve even
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higher accuracy by inspecting longer execution paths, making potential evasion attempts

even harder.

Currently, an attacker could evade kBouncer by ensuring that the final 16 executed

gadgets before the invocation of an API function are considered legitimate. Specifically,

given that kBouncer looks for both illegal returns and gadget chaining in parallel, this

would require i) all 16 gadgets to be either call-preceded or non-ret gadgets, and ii) at

least one out of every eight of them (eight is our current gadget chaining detection threshold)

to be longer than 20 instructions.

Recent work confirmed that manually constructing such ROP payloads is possible in

some cases [Carlini and Wagner, 2014; Schuster et al., 2014; Göktaş et al., 2014b; Davi et

al., 2014]. However, a more thorough analysis is still missing and it is not clear whether

it is possible to automate the construction of these payloads as the available gadgets are

significantly more complex. Our preliminary evidence (Section 4.2.1), shows that only

6.4% of all gadgets ending with ret are call-preceded, and this is when considering

even fragmented gadgets up to 20 instructions long (this percentage drops to 3% when

considering gadgets with at most five instructions). The number of call-preceded can be

further decreased by putting additional restrictions on the targets of return instructions

(part of our future work — see Section 6.2). In addition, ROP compilers like Q [Schwartz

et al., 2011] typically take into account non-fragmented gadgets up to five instructions long.

Longer gadgets incur more CPU state changes, which complicate the (either manual or

automated) gadget arrangement process. Indicatively, for a similar set of applications, even

when 20% of all gadgets are available, Q could not generate a functional payload [Pappas

et al., 2012]. Note that the selection of a maximum gadget length of 20 instructions was

arbitrary—four times the typically used standard seemed enough. If evasion becomes an

issue, longer gadgets could be considered during the gadget chaining analysis of an LBR

snapshot.

Alternatively, an attacker could look for a long-enough execution path that leads to the

desired API call as part of the application’s logic. Such a path should satisfy the following

constraints: (i) contain at least 16 indirect branches, the targets of which happen to lead

to the execution of the desired API function, and (ii) the executed code along the path
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should not alter the state or the function arguments set by the previously executed ROP

code. Finding such a path seems quite challenging, as in many cases the desired function

might not be imported at all, and the path should end up with the appropriate register

values and arguments to properly invoke the function. This is even more difficult in 64-bit

systems, where the first four parameters are passed trough registers, as opposed to the

32-bit standard calling conventions in which parameters are passed through the stack.

A way to extend kBouncer’s view of the execution paths that lead to API function calls

would be to dynamically insert additional inspection hooks at previous locations along a

path. At runtime, the first time a particular API function is called, the system can “walk”

back on the execution path that led to the call, up to 16 indirect branches away, and insert

a detection hook (without any checkpointing) at the farthest appropriate place. The next

time the flow of control goes through the same path, the ROP code check will also be

triggered at an earlier point. The same process can continue on future invocations in a

“push-back” way, until a long enough path has been covered. New checks can be inserted

using a dynamic binary instrumentation framework, like Pin [Luk et al., 2005]. The number

of instrumented points should only be a small fraction of the executed instructions, so the

performance overhead is expected to remain low. The path distance can be selected to

allow for an acceptable trade-off between detection depth and potential increases in the

runtime overhead due to the larger number of hooks. Apart from protecting against long

execution paths to erase branch history, the push-back extension could be used to validate

known execution paths — assuming checkpoints are added during a training phase. In this

case, even if an attacker tries to use long-enough or allowed gadgets, the execution path will

probably be flagged as unknown. Another, more promising, approach for preventing the use

of long gadgets is changing the gadget chain length to count chains based on the usefulness

of the gadgets, rather than length alone. For instance, a long gadget that does not clobber

any register is probably more useful that a shorter one that clobbers a few. Computed

memory accesses is another factor that can limit the usefulness of a gadget. Exploring this

direction is part of our future work (see Section 6.2).

Our selection of sensitive Windows API functions was made empirically based on a large

set of different shellcode and ROP payload implementations [Metasploit, ; Nepenthes, 2007;
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Polychronakis et al., 2009; Immunity, 2010; Corelan Team, b; Schwartz et al., 2011]. A list

of the 52 currently protected functions is provided in the appendix. Although current ROP

exploits rely mainly on only a handful of API functions (see Sec. 4.4.2), we have included

many others that have been used in the past in legacy shellcode, as some exploits might

implement their whole functionality using purely ROP code (as demonstrated recently by

an exploit against the latest version of Adobe Reader XI [Bennett et al., 2013]). The

set of protected functions can be easily extended with any additional potentially sensitive

functions that we might have left out. Although it would be possible to protect all Windows

API calls, we believe that this would not offer any additional protection benefits, and would

just introduce unnecessary overhead.

4.6 Combining with In-place Code Randomization

In this section, we explore the benefits of combining in-place code randomization with

indirect branch tracing. As stated before, these techniques are both compatible and com-

plementary to each other.

The biggest advantage of combining the techniques is in the protection coverage. Most of

the proposed ROP defenses fall under either of these two categories: (i) break the knowledge

of the code layout, or, (ii) restrict the use of indirect branches (see Section 2.2). Specifically

to our work, in-place code randomization falls under the first, whereas indirect branch

tracing falls under the second. Thus, combining them leads to a more complete solution

against ROP. On the other hand, the combination of the two techniques will inevitably lack

one of indirect branch tracing’s features: transparency. Still, giving up transparency for a

more complete solution is arguably justifiable under many scenarios.

There are two ways in which the techniques complement each other. First, indirect

branch tracing can prevent ROP attacks from using non-randomized gadgets. As shown in

Section 3.3, in-place code randomization breaks 80% of the gadgets, on average. Although

we also showed that the remaining gadgets in our dataset are not enough for automated

construction toolkits, there is still the possibility that a determined attacker could manually

construct a ROP payload. This is where indirect branch tracing could help by detecting
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Table 4.5: In-place code randomization coverage on gadgets, found in extracted code, rang-

ing from one to five instructions compared to twenty up to fifty instructions. Coverage

improves by 20% for longer gadgets.

1-5 Instr. Gadgets 20-50 Instr. Gadgets

Software Total Modifiable (%) Total Modifiable (%)

Adobe Reader 9 1,207K 943K (78.1) 101K 99K (98.1)

Firefox 4 455K 381K (83.7) 46K 45K (98.7)

iTunes 10 373K 293K (78.5) 43K 42K (97.4)

Windows XP SP3 7,897K 6,452K (81.7) 636K 627K (98.5)

Windows 7 SP1 15,703K 12,970K (82.6) 1,583K 1,551K (98.0)

Total 25,636K 21,041K (82.1) 2,412K 2,366K (98.1)

ROP attacks using static gadgets. Second, in-place code randomization can break long

gadgets more easily, thus preventing an attacker for using them to evade the gadget chain

length check of indirect branch tracing. Using long gadgets is already much harder because

of their side-effects, and severely limiting their number might make it impossible in many

cases. In the current evaluation of in-place code randomization, we set the maximum gadget

length to five instructions. This limit does not only reflect the reality better, but stresses

in-place code randomization as is it harder to randomize smaller code fragments.

Intuitively, we expect the gadget randomization coverage to improve for longer gadgets,

as the probability of randomizing some bytes within them is greater. We re-ran the coverage

evaluation using the same dataset (detailed in Table 3.1), while increasing the gadget length

to the range of twenty to fifty instructions, instead of one to five. Table 4.5 compares the

results for longer gadgets, which basically confirms our intuition. There are two pairs of

columns with raw numbers for the total gadgets within the extracted code and the modifiable

ones for the two gadget length ranges we considered. The drop in the second pair is due

to the fact that is it less frequent to find long instruction sequences without control flow

transfers. Overall, randomization coverage, in terms of modifiable gadgets, increased from

82.1% to 98.1%. This clearly demonstrates the robustness of in-place code randomization

against loner gadgets, and, moreover, the potential for combining the techniques.
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Chapter 5

Dynamic Relocation

Reconstruction

Keeping systems up-to-date with the latest patches, updates, and operating system versions,

is a good practice for eliminating the threat of exploits that rely on previously disclosed

vulnerabilities. Major updates or newer versions of operating systems and applications

also typically come with additional or improved security protection and exploit mitigation

technologies, such as the stack buffer overrun detection (/GS), data execution prevention

(DEP), address space layout randomization (ASLR), and many other protections of Win-

dows [Miller et al., 2011], which help in defending against future exploits.

At the same time, however, updates and patches often result in compatibility issues,

reliability problems, and rising deployment costs. Administrators are usually reluctant

to roll out new patches and updates before conducting extensive testing and cost-benefit

analysis [Rescorla, 2003], while old, legacy applications may simply not be compatible with

newer OS versions. It is indicative that although Windows XP SP3 went out of support on

April 8th, 2014 [Microsoft, g], many home users, organizations, and systems still rely on it,

including the majority of ATMs [Summers, 2014]. In fact, the UK and Dutch governments

we forced to negotiate support for Windows XP past the cutoff date, to allow public-sector

organizations to continue receiving critical security updates for one more year [UKX, 2014].

As a step towards enhancing the security of legacy programs and operating systems



CHAPTER 5. DYNAMIC RELOCATION RECONSTRUCTION 78

that do not support the most recent exploit mitigation technologies, application hardening

tools such as Microsoft’s EMET (Enhanced Mitigation Experience Toolkit) [Microsoft, a]

can be used to retrofit these and even newer (sometimes more experimental) protections

on third-party legacy applications. An important such protection is address space layout

randomization, which aims to defend against exploitation techniques based on code reuse,

such as return-to-libc [Designer, 1997] and return-oriented programming (ROP) [Shacham,

2007].

ASLR randomizes the load address of executables and DLLs to prevent attackers from

using data or code residing at predictable locations. In Windows, though, this is only

possible for binaries that have been compiled with relocation information. In contrast to

Linux shared libraries and PIC executables, which contain position-independent code and

can be easily loaded at arbitrary locations, Windows portable executable (PE) files contain

absolute addresses, e.g., immediate instruction operands or initialized data pointers, that

are valid only if an executable has been loaded at its preferred base address. If the actual

load address is different, e.g., because another DLL is already loaded at the preferred address

or due to ASLR, the loader adjusts all fixed addresses appropriately based on the relocation

information included in the binary.

Unfortunately, PE files that do not carry relocation information cannot be loaded at

any address other than their preferred base address, which is specified at link time. Relo-

cation information is often stripped from release builds, especially in legacy applications,

to save space or hinder reverse engineering. Furthermore, in 32-bit Windows, it is not

mandatory for EXE files to carry relocation information, as they are loaded first, and thus

their preferred base address is always available in the virtual address space of the newly

created process. For these reasons, tools like EMET unavoidably fail to enforce ASLR for

executables with stripped relocation information. Consequently, applications with stripped

relocation information may remain vulnerable to code reuse attacks, as DEP alone can

protect only against code injection attacks. Furthermore, recently proposed protection

mechanisms for Windows applications rely on accurate code disassembly, which depends on

the availability of relocation information, to apply control flow integrity [Zhang et al., 2013]

or code randomization [Pappas et al., 2012].
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In this work, we present a technique for reconstructing the missing relocation infor-

mation from stripped binaries, and enabling safe address space layout randomization for

executables which are currently incompatible with forced ASLR. The technique is based

on discovering at runtime any stale absolute addresses that need to be modified according

to the newly chosen load address, and applying the necessary fixups, replicating in essence

the work that the loader would perform if relocation information were present. Again, as

transparency is a key requirement for the practical applicability of protections tailored to

third-party applications (see Section 1.2), the proposed approach relies only on existing op-

erating system facilities (mainly page table manipulation) to monitor and intercept memory

accesses to locations that need fixup.

We have evaluated the performance and effectiveness of our prototype implementation

using the SPEC benchmark suite, as well as several Windows applications. Based on our re-

sults, incremental runtime relocation patching is practical, incurs modest runtime overhead

for initial runs of protected programs, and has negligible overhead on subsequent runs, as

the reconstructed relocation information is preserved. Besides forced ASLR, the proposed

technique can also be used to resolve conflicts between stripped binaries with overlapping

load addresses, a problem that occasionally occurs when running legacy applications, and to

significantly improve code disassembly. Finally, the use of relocation information improves

the accuracy of disassembling binary code, which in turn enables or improves other protec-

tion techniques that rely on it [Pappas et al., 2012; Hiser et al., 2012; Wartell et al., 2012;

Zhang et al., 2013; Zhang and Sekar, 2013].

5.1 Relocation Information in Windows

In Windows, which is the main focus of this work, ASLR support was introduced in Windows

Vista. By default, it is enabled only for core operating system binaries and programs

that have been configured to use it through the /DYNAMICBASE linker switch. For legacy

applications, not compiled with ASLR support and other protection features, Microsoft

has released the Enhanced Mitigation Experience Toolkit (EMET) [Microsoft, a], which

can be used to retrofit ASLR and other exploit mitigation technologies on third-party
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applications. A core feature of EMET is Mandatory ASLR, which randomizes the load

address of modules even if they have not been compiled with the /DYNAMICBASE switch,

but do include relocation information. This is particularly important for applications that

even though have opted for ASLR, may include some DLLs that remain in static locations,

which are often enough for mounting code reuse attacks [Fresi Roglia et al., 2009; Zovi,

2010b; Johnson, 2011]. EMET’s ASLR implementation also provides higher randomization

entropy through additional small memory allocations at the beginning of a module’s base

address. Many of the advanced ASLR features of EMET have been incorporated as native

functionality in Windows 8, including forced ASLR.

The above recent developments, however, are not always applicable on legacy executa-

bles. Typically, when creating a PE file, the linker assumes that it will be loaded to a

specific memory location, known as its preferred base address. To support loading of mod-

ules at addresses other than their preferred base address, PE files may contain a special

.reloc section, which contains a list of offsets (relative to each PE section) known as

“fixups” [Skape, 2007]. The .reloc section contains a fixup for each absolute addresses at

which a delta value needs to be added to maintain the correctness of the code in case the

actual load address is different [Pietrek, 2002]. Although DLLs typically contain relocation

information, release builds of legacy applications often strip .reloc sections to save space

or hinder reverse engineering. This can be achieved by providing the /FIXED switch at link

time. Furthermore, in older versions of Visual Studio, the linker by default omits relocation

information for EXEs when performing release builds, as the main executable is the first

module to be loaded into the virtual address space, and thus its preferred base address is

always expected to be available.

As modules (either EXEs or DLLs) with stripped relocation information cannot be

loaded at arbitrary addresses, the OS or tools like EMET cannot protect them using ASLR.

Legacy applications may also occasionally encounter address conflicts due to different mod-

ules that attempt to use the same preferred base address. Our system aims to enable

the randomization of the load address of modules with stripped relocation information by

incrementally adjusting stale absolute addresses at runtime.
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5.2 Approach

Our approach to the problem of relocating stripped binaries relies on reconstructing the

missing relocation info by discovering such relocatable offsets at runtime. We note here

that a static approach, i.e., using disassembly to find all the relocatable offsets, would be

much more difficult, if not infeasible in many cases—the reason being that stripped binaries

also lack debugging symbols, so complete disassembly coverage would be impossible in most

cases.

5.2.1 Overview

The basic idea of our approach is to load the stripped binary at a random location and

monitor any data accesses or control transfers to its original location. Any such access to

the original location is either a result of using a relocatable offset or an attack attempt (the

attacker might try to reuse parts of the original code, not knowing that the binary was

relocated). The next step is to identify the source of the access by checking whether it was

indeed caused by a relocatable offset. In this case, the offset it located, its value is fixed

to the new random base, and the relocation info is reconstructed so as next time the same

program is executed a fixup for that address can be automatically applied.

Although there are a few different ways to monitor memory access and control transfers

at runtime, we followed an approach that minimizes its effects and dependencies on third-

party components. For instance, instruction-level dynamic binary instrumentation was not

considered for this reason, as it requires the installation of third-party dynamic binary

instrumentation frameworks (and typically incurs a prohibitively high runtime overhead).

Our monitoring facility is built around basic operating system functionality, mostly memory

protection mechanisms. More precisely, after a binary is loaded to a random location, we

change the permissions of its original location to inaccessible, so as each time a memory

access or control transfer happens to one of the original locations, a memory violation

exception is raised. This type of exception usually contains the location of the instruction

that caused it, the faulting address (can be the same as the instruction location), and the

type of access (read or write).
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The main challenge of our approach now becomes to identify whether an access to

the original binary location is caused by a relocatable offset and how to trace it back to

that offset. To better explain this issue, consider the following example. Assume that

an instruction updates the contents of a global variable using its absolute address (e.g.,

0x1000). When the instruction is executed from the new, randomly chosen location of the

binary, an exception will be raised. At this point, we know the location of the instruction

and the faulting address (0x1000). After analyzing the faulting instruction, we see that

one of its operands is actually the faulting address. In this case, we have to fix the operand

by adjusting it to the new random base, and also reconstruct the relocation info of this

offset.

The example above is the most straightforward case of identifying a relocatable offset.

In practice, in most cases the relocatable offset is not part of the faulting instruction. For

example, consider the case of dereferencing a global pointer. There is an instruction to

load the value of the pointer, probably in a register, and another instruction to read the

contents of the memory location stored in the register. In this case, the faulting address is

not directly related with the faulting instruction. Even worse, there are cases in which the

relocatable offset has been changed before it is used. For example, accessing a field from a

structure in a global array would only require a single relocatable address (the location of

the array) and would result in many runtime accesses within the range of the array. It is

very difficult to trace such an access reliably back to its source relocatable offset.

However, code-reuse attacks rely solely on the knowledge of the code’s location, regard-

less of the location of data. Based on this observation, and due to the problematic nature

of data pointer tracing, we focus on randomizing the load address of code segments only.

Code pointers are usually guaranteed not to support any arithmetic—it would be difficult

to imagine code that depends on expressions such as adding a few bytes to the location of

a function start, at least for compiler-generated code. An exception to this is jump tables

that contain relative offsets, but this is a case that can be easily covered, as we will see later

on. This simplifies the overall approach, without sacrificing any of the security guarantees.

Figure 5.1 shows a high-level overview of our approach. When a stripped binary is

loaded for execution (left side), its code segment is moved to a random location, while the
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Figure 5.1: High-level overview of runtime relocation fixup. The code segment of a stripped

binary is loaded to a randomly chosen location, and its original memory area is marked

as inaccessible. Memory accesses and control transfers to any of the original locations are

trapped. Relocation information is then reconstructed by analyzing the faulting instruction.

original location becomes inaccessible (right side). Then, whenever there is a memory access

or control transfer to the original location (solid arrow), the faulting address along with the

instruction that caused it are analyzed. Based on this analysis, the source relocatable offset

is pinpointed, gets fixed, and its relocation information is reconstructed. In the following,

we describe in more detail how this analysis is being performed.

5.2.2 Access Analysis

The series of steps performed after a memory access violation exception is raised due to a

memory access in the original code location is depicted in Figure 5.2. Broadly speaking,

access violations are grouped into two categories based on their root cause: (i) reading

the contents of the original code segment, and (ii) control transfers to the original code

segment. To distinguish between the two, the system checks whether the value of the

instruction pointer is within the original code segment.
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Figure 5.2: Flow graph of the procedure followed after a memory access exception (trap) is

generated. If the instruction pointer (EIP register) at the time of the exception is within

the original code segment, the system performs pointer verification, otherwise the faulting

instruction is fixed.

In practice, the first case corresponds mostly to indirect jump instructions that read

their target from the code segment. These are typically part of jump tables, which are used

for the implementation of switch statements in C. In the second case, control is transfered

to the original code segment because a code pointer that has not been relocated is used.

This could be a simple function pointer, part of a C++ virtual table (vtable), or a static

one, represented as an immediate value in an instruction. In the following subsections we

describe in detail how each of these cases is handled.

When control is transferred to locations in the original code segments for which there is

no code pointer, or when we can not verify it as a legitimate code pointer, these transfers
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are flagged as code-reuse attempts (see Fig. 5.2). This effectively allows attackers to reuse

code paths for which there are legitimate code pointers (e.g., function entries or jump table

targets), given that they have not been reconstructed yet. Arguably, this leaves a very

limited set of gadgets for the attacker, which quickly shrinks further as relocatable code

pointers are identified.

5.2.3 Jump Tables

A jump table is an array of code targets that is usually accessed through an indirect jump.

The following is an example of such a jump table in x86 assembly (taken from gcc’s binary):

.text:004D5CCE jmp ds:off_4D6864[eax*4] ; switch jump

...

; DATA XREF: _main+2CE ; jump table for switch statement

.text:004D6864 off_4D6864 dd offset loc_4D5D53

.text:004D6868 dd offset loc_4D5D63

.text:004D686C dd offset loc_4D5D93

.text:004D6870 dd offset loc_4D5D8B

When the jmp instruction is executed from the new random location, an exception is going

to be raised, with the faulting address being (0x4D6864 + eax * 4). This is handled

as follows: i) starting from the location pointed to by the faulting address, we scan the

bytes before and after that location for more addresses and fix them, and ii) we also fix the

relocatable offset in the address operand of the indirect jump instruction. In case of jump

tables with relative offsets, we just skip the first step.

5.2.4 Pointer Verification

After jump tables are covered, we only expect to see control flow transfers to the locations of

the original code. In these cases, the location of the faulting instruction is also the faulting

address—there is no information about the source instruction. Given a faulting address,

the whole code segment and initialized data are scanned for all its occurrences. If there is a

single occurrence, we assume that it is a relocatable offset, which is handled appropriately.



CHAPTER 5. DYNAMIC RELOCATION RECONSTRUCTION 86

Otherwise, for each occurrence in the code segment, we verify that it is indeed part of a

valid instruction—more precisely, an immediate operand.

Occurrences found in the initialized data segments are a bit more complicate to cover.

Usually, for such a hit to be indeed a relocatable offset, it has to be a variable holding a

function pointer, so there should be a way of accessing that variable. To verify this, we just

need to find a data reference to that variable. In addition, function pointers can be parts

of structures, arrays, or a combination of both. In general, we verify that an occurrence of

the faulting address in the data segment is a relocatable offset that needs to be fixed if we

can find a reference to or near its location (given as a parameter).

The following example illustrates the function pointer verification process. Assume there

is a global variable that is statically initialized with the address of a function. Also, there is

an indirect call instruction that reads the value of the global variable and transfers control

to its value. At runtime, the value is going to be read (because the data segment is not

relocated) and an exception is going to be raised when control is transfered to the function.

Both the faulting address and the faulting instruction will correspond the beginning of the

target function. At this point, we find an occurrence in the code segment and verify that it

belongs to an instruction—which is the indirect call in this case.

Another use of function pointers is in C++ virtual tables, which is how dynamic class

methods are represented. These pointers are handled a bit differently than simple function

pointers, and, for this reason, we have introduced special checking rules. We first verify

that there is a move instruction that copies the head of the table to a newly created class

instance, by finding a move instruction that references a memory location close to the place

where the code pointer was found. We then also verify that the control was transferred by

an indirect call through a register, by reading the current value at the top of the runtime

stack (return address) and disassembling the instruction right before the location it points

to. Bellow is a real example taken from the eon binary of the SPEC benchmarks suite:

;; function call

.text:004017F9 mov eax, [ecx] ; ecx is this ptr

.text:004017FB mov eax, [eax+24h]

.text:004017FE push edx
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.text:004017FF mov edx, [ebp+arg_4]

.text:00401802 push edx

.text:00401803 mov edx, [ebp+arg_0]

.text:00401806 push edx

.text:00401807 call eax

.....

;; vtable (the static part)

; DATA XREF: sub_409B40+8o ; sub_40B0E0+2Fo

.rdata:00461D24 off_461D24 dd offset sub_40AAD0

.rdata:00461D28 dd offset sub_409BB0

.rdata:00461D2C dd offset sub_409BC0

.....

;; copying the head of the table

.text:0040B10C lea ecx, [esi+4] ; this

.text:0040B10F mov dword ptr [esi], offset off_461D24

The top part of the example shows the code that loads the function pointer from the vtable

to the eax register and then transfers control there by calling it. The call instruction at

the end will actually going to raise an exception. While handling the exception, we check

(i) the table that contains the faulting address at 0x461D24 (middle part) is referenced by

a move instruction at 0x40B10F (bottom part), and (ii) the instruction before the return

address is a call instruction with a register operand (at 0x401807).

5.2.5 Dynamic Data

Although in order to reconstruct the missing relocation information we need to locate

relocatable offsets within the image of the executable module, copies of such values also

appear in dynamic data (e.g., in the stack or heap). This is the result, for example, of a

global pointer being copied in a structure field that was dynamically allocated. In this case,

an exception is going to be raised when the copy of the pointer (in the structure) is used.

As described before, our technique is going to trace the original relocatable offset. This is

sufficient for reconstructing the relocation information for this pointer, and avoid dealing
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with the same problem next time the same program is executed. However, we do not take

any further actions to deal with copies in dynamic data. Thus, we might have to handle

more than one exceptions for the same relocatable value during the same run in which it

was first discovered. This, of course, does not affect the correctness and robustness of the

technique in any way, but can affect overall performance.

To avoid the performance penalty under some cases, while not weakening our original

approach, we added a simple optimization for global pointers. Each time a relocatable offset

is fixed, and it is found to be the source operand of an instruction that copies it over to a

global data location, we check whether the destination memory location contains the same

value and relocate that copy, too. Below is an example of a few such instructions (taken

from gcc’s binary):

.text:004D5A69 mov dword_550968, offset loc_4D1F10

.text:004D5A73 mov dword_550AAC, offset loc_4D1C20

.text:004D5A7D mov dword_5509C4, offset nullsub_1

The first mov instruction in the above example copies the (relocatable) offset loc 4D1F10

to the global data memory location 0x550968. At the time an exception is raised because

control was transfered to address 0x4D1F10, the source operand of the first mov instruction

will be fixed, and, if the same value is found at address 0x550968, that will be fixed as

well. In this way, future copies of the relocatable offset will point to the new code location,

and no more exceptions will be raised for this instance.

In general, when this optimization is not applicable and there are many copies of relo-

catable offsets being repeatedly used, we have the option to set an access threshold, beyond

which the system can inform the user that restarting the program would greatly increase its

performance. Still, we believe that this is a minor issue, as it might occur only in the first

few times a program is executed. After that, the relocation information of the majority of

the relocatable offsets will have been reconstructed.
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5.3 Implementation

We built a prototype of the described technique for the Windows platform. Most of the

development of the tool was done on Windows XP. However, as the APIs we use have not

changed in more recent versions of the operating system, our prototype supports even the

latest version, which is Windows 8.1 at the time of writing.

The most significant part of the implementation is built on top of the Windows De-

bugging API [Microsoft, e], with the addition of some other standard functions (e.g.,

CreateProcess). This API is designed to work between two processes: the parent pro-

cess is responsible for spawning a child process, and then capture and analyze any debug

events the child generates. Debug events include memory access violation exceptions, pro-

cess/thread startup/termination, and so on. Our implementation is bundled as a single

application (about 1.5 KLOC) which can be executed from the command prompt, and

receives the path of the target program to be protected as a command-line argument.

At a higher level, there are two phases of operation: initialization and runtime. We

discuss both in sufficient detail in the rest of this section.

5.3.1 Initialization

The first step during the initialization phase is to spawn the process, while passing the

appropriate arguments in order to enable debugging. The very first debug event gener-

ated by the child process is a process creation event, which is handled by the parent by

performing the following tasks before resuming the execution of the child process. Ini-

tially, the Portable Executable (PE) headers are parsed. These headers include information

such as the boundaries of each section (data, code, etc.) and the entry point of the code.

Given that information, we proceed by copying the code section to a new, randomly cho-

sen location using the ReadProcessMemory and WriteProcessMemory API functions,

while changing the memory protections of the original code segment to inaccessible using

VirtualProtectEx.

In order to improve the performance of certain runtime operations, a hash table of all

possible code pointer values is built. This is done by scanning all sections and inserting any
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four-byte values (assuming 32-bit processes) that fall into the address range of the original

code segment. Finally, we check whether there is a file that contains relocation information

that was discovered as part of previous runs, and apply them.

5.3.2 Runtime

After initialization is completed and control is given back to the child process, the parent

blocks while waiting for the next debugging event. Usually, we expect memory access

violation exceptions to be generated after this stage. New DLL loaded events might happen

as well, but rarely. Whenever a new DLL is loaded in the address space of the child process,

the system checks whether it contains relocations. In case it does not, the same initialization

steps that were previously described are performed.

As described in Section 5.2, the core of our technique is implemented as part of the han-

dling mechanism of memory access violation exceptions. Each exception record contains

information about the location of the instruction that caused it, along with the faulting ad-

dress. Based on this information, we distinguish between two main cases: i) the instruction

pointer falls within the address range of the original (inaccessible) code segment (instruc-

tion address and faulting address are the same), and ii) an illegal memory access was made

by an instruction located in the relocated code segment (instruction address and faulting

address are different).

If the instruction pointer after a memory exception is received falls within the original

code segment, this means that the control flow was transfered there and the program failed

when it tried to execute the next instruction. In this case, the faulting address corresponds

to the location of the instruction in the exception record. The exception is handled by

first looking up the faulting address in the hash table—which is constructed during the

initialization phase. A single hit is the simplest case, because it means that this is the

source of the exception. If there are more than one hits, each one is verified using the rules

described in Section 5.2 for immediate values or function pointers.

Alternatively, if the faulting instruction belongs to the relocated code segment, this

means that one of its operands caused the fault. This happens under two circumstances:

the instruction is an indirect jump, reading a jump table target from the original code
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location, or an instruction that uses a copy of a relocatable value from dynamic data.

5.4 Evaluation

In this section we present the results of the experimental evaluation of our prototype in terms

of correctness and performance overhead. For the largest part of our evaluation, we used

benchmarks from SPEC CPU2006 [SPEC, 2006], as well as some real-world applications,

such as Internet Explorer and Adobe Reader. All the experiments were performed on a

computer with the following specifications: Intel Core i7 2.00GHz CPU, 8GB RAM, 256GB

SSD with 64-bit Windows 8.1 Pro.

5.4.1 Statistics

We started our evaluation with the goal of getting a better feeling on the differences of

applying our technique to programs with distinct characteristics. First, we selected all the

test programs in the integer suite that come with the SPEC benchmark and stripped the

relocation information from the compiled binaries. Out of the twelve programs in that

set, only libquantum had to be left out because it uses some C99 features that are not

supported by Visual C++ (as noted in the SPEC configuration file Example-windows-ia32-

visualstudio.cfg). Then, we executed each one using our prototype and gathered some

valuable statistics that provide insights about the runtime behaviour of our technique. At

the same time, we checked that the output of the benchmark test runs was correct, which

in turn verified the correctness of our implementation under these cases.

Table 5.1 shows the results of this run. The first column contains the name of each SPEC

test program, followed by the number of possible pointers that we identified for each during

the initialization phase. The next three columns show the number of identified jump tables

and the number of verified pointers along with the percentage of them that had a single

hit in the possible pointers set. Next, we have the number of times that an already fixed

relocatable offset reappeared at runtime because of copies of it in dynamic data, followed by

the number of global pointer copies that we were able to apply the optimization described

in the last part of Section 5.2. Finally, the number of actual relocatable offsets that we were
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Table 5.1: Statistics from running the SPEC benchmarks using the reference input data

(largest dataset).

Possible Jump Verified Single Dynamic Global Reconst.

Program Pointers Tables Pointers Hit Data Opt. Reloc.

perlbench 31,260 118 633 83.0% 43M 41 2,614

bzip2 2,147 4 11 84.6% 25 4 76

gcc 98,955 510 1,008 65.2% 73M 269 7,849

mcf 1,875 1 13 100.0% 19 - 22

gobmk 69,852 21 968 63.5% 4M 54 1,270

hmmer 4,798 15 17 94.4% 42 2 152

sjeng 8,460 12 17 100.0% 18 - 135

h264ref 17,526 17 27 71.0% 320K 61 209

omnetpp 24,861 13 1,509 90.6% 269K 8 1,669

astar 2,690 2 20 100.0% 31 - 42

xalancbmk 141,246 54 4,402 84.2% 9M 24 5,392

able to reconstruct their relocation information in shown in the last column.

An interesting observation is that most of the times we have a single hit during the

verification of a code pointer, which simplifies the overall procedure. Another interesting

thing to note is that there is a very high variation in the number of times that a copy of

an already fixed relocatable offset in dynamic data is used. This ranges from a few tens to

tens of millions using these test cases. At the same time, we note that there does not seem

to be any significant correlation of this number and the actual number of the reconstructed

relocatable offsets.

5.4.2 Performance Overhead

Next, we focus on evaluating the performance overhead. As already mentioned, the only

case where we expect our technique to affect the performance of a target application is

during the first (or, few first) times we execute it, where most of the relocations are being

discovered. Any consecutive execution should have a minimal runtime overhead impact.

Figure 5.3 shows the normalized slowdown for the first execution of the SPEC programs

under our prototype (Discovery run) and another execution after the relocations have been

discovered (Second run). In both cases, the slowdown is compared to a normal execution
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Figure 5.3: Normalized slowdown compared to normal execution (no relocation). Dark-

colored bars show the slowdown during the first run, where most of the relocations are

discovered and there are still copies of them in dynamic data. Light-colored bars show the

slowdown during the second run (and any subsequent runs) where most of the relocations

have already been discovered.

without relocating the program (baseline). Also, the input data used for this experiment

was the reference dataset (i.e., the largest dataset), where the average completion time for

each test program is a couple of minutes. As expected, we see that the overhead of the

second run is minimal (less than 5% on average) and mostly attributed to the unoptimized

way of applying the discovered relocation information. Currently, in our prototype imple-

mentation we relocate every offset separately. For each of them, we read its value, change

the memory permissions, update its value and restore the memory permissions. The un-

usually high performance overhead that we observed when executing gcc is due to the fact

that it contains a high number of relocatable offset copies in dynamic data (see Table 5.1).

Although, that overhead does disappear in any consecutive execution, there is not much we

can do at this point, except asking the user to restart the execution of the program in order

to take advantage of the already discovered relocatable offsets. An alternative strategy is to

ask the user to start with a very small input and progressively increase the workload of the

program during the first few executions, until the majority of the relocations are discovered.

To demonstrate the effectiveness of that strategy, we applied it on the SPEC CPU2006
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Figure 5.4: Avoiding the performance hit during the dynamic relocation discovery phase

(first run) by gradually increasing the input size on each execution. The overall time in this

case is much less compared to running a program using large input the first time.

benchmarks. These test programs come with three different inputs: a very small test

dataset used for verifying the functionality of the programs, a medium-sized train set used

for feedback-directed optimizations and the reference dataset, which is much larger that the

other two. For all the results up to this point, we have used the reference dataset. Figure 5.4

shows the normalized slowdown of applying our technique to the same SPEC programs, but

while increasing the workload (from test, to train and reference) this time. Also, during each

execution, we allow our prototype to use any reconstructed relocation information that has

been discovered from previous executions. The slowdown of the reference dataset is much

less compared to the one reported in Figure 5.3. Moreover, the overall discovery phase

(which is now broken down to three executions) is much quicker compared to Figure 5.3, in

absolute numbers. Even though gcc seems to have a larger slowdown with the test dataset

than before, this accounts for 22 seconds, plus a few minutes for the next two executions,

compared to 48 minutes when using the large reference dataset during the first execution.

5.4.3 Use Cases

The final part of our evaluation focuses on the feasibility of applying our technique on

popular, real-world applications. For this purpose, we installed older versions of both
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Internet Explorer and Adobe Reader, where the relocation info of their EXE files was

stripped. The exact versions we used were 6.0.2900.5512 and 8.1.2, respectively. In both

cases, the code size of the non-relocatable EXE was relative small, approximately 10KB.

Using our prototype implementation of our technique we were able to successfully relocate

the code segments to a new and random location, while not breaking the functionality of the

applications. The number of relocatable offsets for which we reconstructed their relocation

information was 18 for Internet Explorer and 3 for Adobe Reader. Although it is just a

small number of relocations, reconstructing this information is crucial in protecting these

applications.
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Chapter 6

Conclusions

6.1 Closing Remarks

The increasing number of exploits against Windows applications that rely on return-oriented

programming to bypass exploit mitigations such as DEP and ASLR, necessitates the deploy-

ment of additional protection mechanisms that can harden imminently vulnerable third-

party applications against these threats. Exploit mitigation add-ons that can be readily

enabled for the protection of already installed applications are among the most practical

ways for deploying additional layers of defenses on existing systems.

Towards this goal, we have presented in-place code randomization, a technique that

offers probabilistic protection against ROP attacks, by randomizing the code of third-party

applications using various narrow-scope code transformations. Our approach is practical:

it can be applied directly on third-party executables without relying on debugging informa-

tion, and does not introduce any runtime overhead. At the same time, it is effective: our

experimental evaluation using in-the-wild ROP exploits and two automated ROP code con-

struction toolkits shows that in-place code randomization can thwart ROP attacks against

widely used applications, including Adobe Reader on Windows 7, and can prevent the auto-

mated generation of ROP code resistant to randomization. Our prototype implementation

is publicly available, and as part of our future work, we plan to improve its randomization

coverage using more advanced data flow analysis methods, and extend it to support ELF

and 64-bit executables.
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To be even more usable in practice, any such solution could benefit from being com-

pletely transparent and not impacting in any way the normal operation of the protected

applications. Starting on this basis, we have presented the design and implementation of

kBouncer, a transparent ROP exploit mitigation based on the identification of distinctive

attributes of return-oriented or jump-oriented code that are inherently exhibited during

execution. Built on top of the Last Branch Recording (LBR) feature of recent processors

for tracking the execution of indirect branches at critical points during the lifetime of a

process, kBouncer introduces negligible runtime overhead, and does not require any mod-

ifications to the protected applications. We believe that the most important advantage of

the proposed approach is its practical applicability. We demonstrate that our prototype

implementation for Windows 7 can effectively protect complex, widely used applications,

including Internet Explorer, Adobe Flash Player, and Adobe Reader, against in-the-wild

ROP exploits, without any false positives.

Finally, we recognized the importance of relocation information in both enabling ASLR,

which has proven to be a very effective mitigation against code reuse attacks and in im-

proving disassembly coverage, which in tern improves the accuracy of many mitigations that

depend on it. As a step towards addressing this limitation in programs where relocation in-

formation is stripped, we designed and implemented a technique to dynamically reconstruct

this missing information, which effectively enables ASLR even on programs that are oth-

erwise incompatible. The results of our experimental evaluation focusing on performance

measurements and use cases with real-world applications clearly show the practicality of

the proposed approach.

6.2 Future Directions

Although our work so far demonstrates the practicality of our defense techniques, there is

still room for improvement. In this final section we outline some of the most important

directions that require further research.

The main idea behind in-place code randomization is that an attacker will most probably

avoid re-using any part of the code that might have been transformed. In case a ROP exploit
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does depend on transformed parts of code (e.g., if the attacker was not aware of it), in-

place code randomization will prevent it by crashing the application. That is because if

an attacker tries to re-use a piece of code that has been randomized, this will probably

lead to executing an illegal instruction or accessing out of bounds memory, etc. Being

able to detect ROP exploit attempts is a valuable feature, because, currently, there is no

way to distinguish whether the source of an application crash is due to a bug or due to

a failed ROP exploit attempt. This will not only make the technique more user-friendly,

but informing users about an attempted attack allows them to take further actions — like

quarantining the input file, blocking its sender, and so on. Ideally, an attack attempt could

be detected at runtime by inserting extra analysis code. However, this is not possible as no

new instructions are added by in-place code randomization. A more proper solution that

is aligned with the technique’s goals is to perform the analysis post-mortem: given a crash

dump report, try to identify the instruction which caused the application to crash and then

check if it was transformed or not.

The most important effectiveness metric of in-place code randomization is coverage. Al-

though achieving full coverage is a very challenging task, there is still space for improvement

by adding more transformation schemes. An area that current transformation do not affect

as much is basic blocks of a relatively small size. The intuition is that basic blocks with a

few instructions are usually left out, because their instructions have serial dependencies, or

there are cases where a single register is preserved and so on. A new transformation scheme

that would greatly improve coverage in these cases would be to entirely relocate small basic

blocks to a new and random locations. Although this may not seem to strictly follow the

in-place characteristic, the important part is for the basic block boundaries of the original

code to remain the same. Thus, from this point of view, it is still in-place. At a high level, to

implement this scheme we would need to copy the instructions of a basic block to a random

location, replace its first instruction in the original location with a transfer control and fill

up the rest of it with nop instructions — alternatively, a more optimized implementation

could accommodate smaller basic blocks in the empty spaces. Another important factor

that clearly affects randomization coverage is the instruction set itself. It would be very

interesting to evaluate the coverage for the same transformations on other architectures
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(ARM, x86-64, etc.), when applicable, or even design new transformations specific to these

new architectures.

Hardware features offer many great advantages when used for ROP protection as we

showed through this work. However, as discussed in Section 4.5, a determined attacker

might still be able to get around kBouncer. Our current design incorporates two indirect

branch checks, for illegal returns and chains of gadgets, but it can be easily extended

to include more. As an example, kBouncer could greatly reduce the number of allowed

call-preceded gadgets by refining the illegal return check. Instead of only checking for a

call instruction before the return target, we could also verify the call’s target, if it is a

direct one. Additionally, to prevent an attacker from using a long-enough useful gadget,

we could slightly change the gadget definition in the chain check. Instead of having a

maximum instructions length, we could score gadgets based on their usefulness. A gadget

that clobbers 6 registers is probably less useful than a gadget that does not clobber any,

irrespectively of their length. Both extension of course require an in-depth study, but still

demonstrate that there is greater potential in kBouncer.

Despite having the numerous advantages that were previously described in Section 4.1.1,

LBR feature’s main limitation is its size. The first generation of processors that included

this feature had a stack of only 4 registers. The size has since gradually expanded to 16,

but still it is limited. The disadvantage of having a small LBR stack is that it theoretically

allows the attackers to find a long enough execution path leading to a system call that

overwrites all the LBR entries with legitimate branches. Although finding such a path is

significantly difficult, as the arguments to the system call have to be preserved, it still poses

a threat. Thus, the more entries the LBR can hold, the longer the execution path has to

be and the longer it is the more difficult to find. To overcome this limitation we could push

extra check points further back in the execution paths leading to system calls, effectively

extending the size of the LBR stack. The idea is, given an LBR instance with the last 16

executed branches, we examine the source of the oldest branch and replace it with a check

point by patching the code. Next time the same execution path is followed, we will process

the LBR contents at this new check point and access the 16 previous branches. For this

case, this is equal to having an LBR stack of size 32. Of course, there are a few limitations



CHAPTER 6. CONCLUSIONS 100

and design choices that need to be made, but the overall idea seems quite promising.

Finally, we should not forget that the original purpose of the LBR feature was to assist

debugging and performance issues. A question that naturally rises here is: How would one

design a similar processor feature, specifically for building protection policies? A funda-

mental limiting factor, apart from the size of the LBR, is its lack of flexibility. On the

other hand, providing support for richer policies at the hardware level than simply record-

ing branches might come with non-negligible performance overhead. This is just one of the

trade offs that need to be considered. We do recognize that designing such a mechanism is

not trivial. However, even supporting a simple policy language would be better compared

to today’s standards where one has to wait a few years until a new security policy is im-

plemented in the next generation of a processor (e.g., Intel’s Supervisor Mode Execution

Protection (SMEP) and Supervisor Mode Access Prevention (SMAP) [Intel, 2014]).
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[Solé, 2010] Pablo Solé. Hanging on a ROPe, 2010. http://www.immunitysec.com/

downloads/DEPLIB20_ekoparty.pdf.

[SPEC, 2006] SPEC. SPEC CPU2006 Benchmark. http://www.spec.org/cpu2006,

2006.

[Summers, 2014] Nick Summers. ATMs Face Deadline to Upgrade From Win-

dows XP. http://www.businessweek.com/articles/2014-01-16/

atms-face-deadline-to-upgrade-from-windows-xp, 2014.
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