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ABSTRACT

Compiler-assisted Adaptive Software Testing

Theofilos Petsios

Modern software is becoming increasingly complex and is plagued with vulnera-

bilities that are constantly exploited by attackers. The vast numbers of bugs found

in security-critical systems and the diversity of errors presented in commercial off-

the-shelf software require effective, scalable testing frameworks. Unfortunately, the

current testing ecosystem is heavily fragmented, with the majority of toolchains tar-

geting limited classes of errors and applications without offering provably strong

guarantees. With software codebases continuously becoming more diverse and com-

plex, the large-scale deployment of monolithic, non-adaptive analysis engines is likely

to increase the aforementioned fragmentation. Instead, modern software testing re-

quires adaptive, hybrid techniques that target errors selectively.

This dissertation argues that adopting context-aware analyses will enable us to

set the foundations for retargetable testing frameworks while further increasing the

accuracy and extensibility of existing toolchains. To this end, we initially exam-

ine how compiler analyses can become context-aware, prioritizing certain errors over

others of the same type. As a use case of our proposed approach, we extend a state-

of-the-art compiler’s integer error detection pipeline to suppress reports of benign

errors by up to 89% in real-world workloads, while allowing for reporting of seri-

ous errors. Subsequently, we demonstrate how compiler-based instrumentation can

be utilized by feedback-driven evolutionary fuzzers to provide multifaceted analyses

targeting broader classes of bugs. In this direction, we present differential diversity

(δ-diversity), we propose a generic methodology for offering state-aware guidance

in feedback-driven frameworks, and we demonstrate how to retrofit state-of-the-art

fuzzers to target broader classes of errors. We provide two such prototype implemen-



tations: Nezha, the first differential generic fuzzer capable of handling logic bugs, as

well as SlowFuzz, the first generic fuzzer targeting complexity vulnerabilities. We

applied both prototypes on production software, and demonstrate their effectiveness.

We found that Nezha discovered hundreds of logic discrepancies across a wide vari-

ety of applications (SSL/TLS libraries, parsers, etc.), while SlowFuzz successfully

generated inputs triggering slowdowns in complex, real-world software, including zip

parsers, regular expression libraries, and hash table implementations.



Contents

List of Figures v

List of Tables vii

Acknowledgements ix

1 Introduction 3

1.1 Towards Software Correctness . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Adaptive Testing for the Modern Era . . . . . . . . . . . . . . . . . . 5

1.3 Compiler-assisted Adaptive Software Testing . . . . . . . . . . . . . . 8

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Dissertation Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Related Work 13

2.1 Static Analyses & Compiler Toolchains . . . . . . . . . . . . . . . . . 13

2.2 Unguided Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Guided Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Differential Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Symbolic Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Compiler-assisted Testing 21

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

i



3.2 Augmenting Compiler Analyses . . . . . . . . . . . . . . . . . . . . . 23

3.3 Context-aware Compiler Analyses . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Use-case: Context-aware Integer Error Reporting . . . . . . . 26

3.3.2.1 Integer Errors and Undefined Behavior . . . . . . . . 26

3.3.2.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2.3 Implementation & Evaluation . . . . . . . . . . . . . 30

3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Adaptive Differential Testing 35

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Example Use-case . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.2 Differential Diversity . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.3 Example: Gray-box Guidance . . . . . . . . . . . . . . . . . . 40

4.1.4 Example: Black-box Guidance . . . . . . . . . . . . . . . . . . 42

4.2 NEZHA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.2 δ-diversity Guidance . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.2.1 Gray-box Guidance . . . . . . . . . . . . . . . . . . 45

4.2.2.2 Black-box Guidance . . . . . . . . . . . . . . . . . . 48

4.2.2.3 Automated Debugging . . . . . . . . . . . . . . . . . 51

4.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . 52

4.2.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . 53

4.2.4.2 Effectiveness in Discovering Discrepancies . . . . . . 54

4.2.4.3 Comparison with State-of-the-art Domain-specific

Frameworks . . . . . . . . . . . . . . . . . . . . . . 56

ii



4.2.4.4 Comparison with State-of-the art Coverage-guided

Domain-independent Fuzzers . . . . . . . . . . . . . 59

4.2.4.5 Engine Evaluation . . . . . . . . . . . . . . . . . . . 60

4.2.4.6 Case Studies of Logic Errors . . . . . . . . . . . . . 66

4.2.4.7 Memory Corruption Bugs . . . . . . . . . . . . . . . 73

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Evolutionary Testing for Complexity Vulnerabilities 77

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 A Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 SlowFuzz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1.1 Fitness Functions . . . . . . . . . . . . . . . . . . . 84

5.3.1.2 Mutation Strategies . . . . . . . . . . . . . . . . . . 85

5.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.3.2 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.3.3 Regular Expressions . . . . . . . . . . . . . . . . . . 93

5.3.3.4 Hash Tables . . . . . . . . . . . . . . . . . . . . . . 98

5.3.3.5 ZIP Utilities . . . . . . . . . . . . . . . . . . . . . . 101

5.3.3.6 Engine Evaluation . . . . . . . . . . . . . . . . . . . 104

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Conclusion 111

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

iii



6.3.1 Semantic Abstractions . . . . . . . . . . . . . . . . . . . . . . 113

6.3.2 “Old” is the New “New” . . . . . . . . . . . . . . . . . . . . . 115

Bibliography 117

iv



List of Figures

3.1 Common Idioms Corresponding to Undefined Behavior. . . . . . . . . . . 28

3.2 Examples of Integer Overflows. . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Information Flows to and from the Location of an Arithmetic Error. . . 30

3.4 IntFlow’s Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Typical Architecture for Feedback-driven Testing Frameworks. . . . . . . 33

4.1 Semantic Discrepancy Example. . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Nezha Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Discrepancies Found by Nezha vs Domain-specific Frameworks. . . . . . 57

4.4 Unique Discrepancies Found by Nezha vs Domain-specific Frameworks. 58

4.5 Discrepancies Found by Nezha vs Domain-agnostic Frameworks. . . . . 60

4.6 Unique Discrepancies Found by Nezha vs Domain-agnostic Frameworks. 61

4.7 Unique Discrepancies Found by Nezha’s Different δ-diversity Engines. . 62

4.8 Bug Distributions for Nezha Under Different Engines. . . . . . . . . . . 62

4.9 Discrepancies in SSL/TLS for Varying Numbers of Error Codes. . . . . . 63

4.10 Coverage Increase for Each of Nezha’s Engines. . . . . . . . . . . . . . . 65

4.11 Population Size Increase for Each of Nezha’s Engines. . . . . . . . . . . 65

5.1 Quicksort With a Simple Pivot Selection Mechanism Example. . . . . . . 81

5.2 SlowFuzz Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Best Slowdown for Toy Sorting Implementations. . . . . . . . . . . . . . 92

v



5.4 Best Slowdown Achieved in Real-world Sorting Implementations. . . . . 93

5.5 Probability of SlowFuzz Finding Regexes Causing a Slowdown. . . . . 94

5.6 NFA for the Regular Expression (b+)+c . . . . . . . . . . . . . . . . . . 96

5.7 Best Slowdown Achieved for WAF Regular Expressions. . . . . . . . . . 97

5.8 Number of Collisions in PHP Hashtable Implementation. . . . . . . . . . 100

5.9 Slowdowns Observed in bzip2 Decompression. . . . . . . . . . . . . . . . 102

5.10 Comparison of SlowFuzz’s Guidance Engines. . . . . . . . . . . . . . . 105

5.11 Comparison of SlowFuzz’s Mutation Engines. . . . . . . . . . . . . . . 106

vi



List of Tables

3.1 Examples of Defined and Undefined Arithmetic Operations . . . . . . . . 27

4.1 Semantic Bug Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Result Summary for our Analysis of Nezha. . . . . . . . . . . . . . . . . 55

4.3 Unique Pairwise Discrepancies for Different SSL Libraries . . . . . . . . 55

5.1 Result Summary for Applications Tested With SlowFuzz. . . . . . . . 90

5.2 Sample Regexes Generated by SlowFuzz. . . . . . . . . . . . . . . . . . 96

vii





Acknowledgements

This thesis would have not been made possible had it not been for all the amazing

people that supported me throughout my PhD. I would first and foremost like to

thank my advisor Angelos Keromytis, for giving me the opportunity to join the team

at the Network Security Lab (NSL) of Columbia University, as well as my advisor

Steven M. Bellovin, for his mentorship in the last stages of my studies. I am also

grateful to all the faculty at Columbia with whom I had the privilege of collaborating,

especially Suman Jana, Junfeng Yang and Roxana Geambasu.

I would also like to particularly thank Vasileios Kemerlis, who has been a mentor

and friend throughout my studies, as well as all the bright colleagues with whom I

had the privilege of discussing and collaborating. Particularly I would like to thank

George Argyros, Vaggelis Atlidakis, Adrian Tang, Marios Pomonis, George Kontaxis,

Michalis Polychronakis, Suphannee Sivakorn, Dimitris Mitropoulos, Kangkook Jee,

Jason Polakis, and David Williams-King. I would not be who I am today as a

researcher without you.

It goes without saying that I would like to wholeheartedly thank my family, who

have supported me throughout my life with all means available to them, and still

do. Finally, there is not enough words to express my gratitude to my wife, who has

supported me more than anyone throughout my PhD and has been a companion and

friend.

ix





To Stella.

xi





“..and in those days one often encountered the naive expectation that,

once more powerful machines were available, programming would no

crisis! How come?”
Dijkstra, “The Humble Programmer”





Chapter 1

Introduction

The impact of software errors is nowadays more dramatic than ever, with bugs result-

ing in human casualties [175, 102, 194, 182], catastrophic economic losses [1, 93, 80],

massive outages [174, 127], even jeopardizing the national security of nations [193,

169]. As humanity relies more and more on software correctness, it is our duty as

computer scientists to build robust error detection, prevention, and recovery tools.

1.1 Towards Software Correctness

Over the past decades, major research efforts have been made to mitigate the vast

numbers of bugs found in production code. Such efforts involve, amongst others,

abstract interpretation [43, 31], formal verification [92, 101, 12, 197, 72], static and

dynamic analysis [190, 108, 126, 23], fuzzing [65, 206, 105], symbolic execution [21,

143, 28, 190, 90] as well as hybrid approaches that combine the above techniques [67,

65, 168, 70, 66, 34].

In addition to the advances in the areas of testing and verification, significant

progress has also been made in the fields of programming languages and compil-

ers [178, 107, 100]: existing programming languages are continuously improving,

whereas languages with increasingly stronger memory [55, 113], type-safety [58], and
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correctness guarantees [172] are being developed and deployed in production. Like-

wise, compilers are constantly becoming more robust and incorporate passes to proac-

tively guard against programming errors [151, 154, 107, 100, 155, 167].

Unfortunately, despite the aforementioned advances, the current software ecosys-

tem is far from sound. This is partly due to the fact that all existing binary application

testing techniques suffer from limitations. For instance, static analysis tools pre-

dominantly suffer from false positives and inter-procedural analysis constraints [98],

dynamic techniques are slow [133] and unsound [53], whereas approaches based on

symbolic execution do not scale and suffer from path explosion [143]. To make mat-

ters worse, modern binary application testing frameworks do not equally address all

types of errors. Instead, in their majority they target few classes of bugs, such as

those related with temporal or spatial safety [4], whereas tools that attempt detection

of different families of errors such as logic bugs, race conditions, complexity, data-

leakage or side-channel vulnerabilities, are scarce. Finally, not only are testing tools

limited in their analysis or scope, but any non-trivial property of a Turing-complete

programmming language is undecidable [39, 153, 26, 207, 51]. As a consequence, a

multitude of bugs are making their way into production code year after year [185],

with even well understood errors like buffer overflows plaguing commercial off-the-

shelf software [185, 52].

Except for the limitations of the analysis and scope of current testing frame-

works, the software ecosystem status quo is largely shaped by the existence of mas-

sive legacy codebases, which are critical to the operation of currently deployed in-

frastructure. The necessity for such backwards compatible software dictates that,

despite the fact that new programming languages with stronger properties are con-

stantly being developed, their large-scale adoption is impeded due to cost, usability,

lack of expertise, or performance constraints [117, 146]. Moreover, it is often the

case that these exact new technologies are built using non memory-safe languages,
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predominantly C and C++, which are still widely deployed and serve as the building-

blocks for performance-critical applications, operating systems or other programming

languages. Such complex dependencies are not without cost: although several of

the foundational codebases (e.g., libc) have been thoroughly tested throughout the

years, software errors might be lurking at all levels of the development stack, or in

the hardware-software interaction.

From all the above it is made clear that the effort towards improving software

quality is twofold: on one hand we need better programming languages, compilers,

software development practices and frameworks, and on the other we need to improve

and extend the existing testing infrastructure, both to address errors in new codebases

but, more importantly, as a necessity in order to continue improving legacy software.

This thesis focuses on improving the state-of-the-art in the current binary application

testing ecosystem and presents novel techniques by which the modern toolchains

can be retrofitted to provide finer-grained analyses and target broader classes of

errors. In the rest of this Chapter, we elaborate on the limitations of the current

infrastructure that motivated this work, as well as outline the contributions this

thesis makes towards overcoming the aforementioned inefficiencies.

1.2 Adaptive Testing for the Modern Era

Although previous work has set the foundations for exploring the state space of large

applications, the testing ecosystem has traditionally followed a monolithic approach

towards bug detection, in the sense that errors are reported in a quantitative rather

than a qualitative manner. For instance, compilers report violations of language

specifications while being predominantly agnostic to the context in which these vio-

lations appear. However, not all errors are equally critical: some might be exploitable

whilst others not, some may result in resource underutilization, whereas others might
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constitute developer-intended violations of the specification. Of course, compilers

are not the only frameworks adopting such a context-agnostic design: fuzzers and

symbolic execution engines utilize different metrics to explore the application space,

and do so traditionally without any notion of selectivity regarding which application

components might be more relevant to the performed analysis.

Another popular characteristic of modern testing frameworks is that, predomi-

nantly, they focus on particular bug classes, frequently even targeting only specific

programs. For instance, MongoDB’s Javascript fuzzer [69] only targets the MongoDB

engine and builds inputs by maintaining domain-specific valid Abstract Syntax Trees,

tailored to the MongoDB API. Such tailor-made targeting is not surprising given the

difficulty of the task in hand: different systems have different characteristics and

break in different ways, thus it is natural that one-fits-all testing tools are doomed

to be incomplete, especially when solutions that eradicate the existence of even one

specific bug class are rare and hard to design. However, a downside of this approach is

that, due to the fact that the analyses performed are usually very specific to the par-

ticular application being tested, reusing parts of a framework in different applications

is impeded. Likewise, little or no knowledge can be transferred from one framework

to another, or across different testing sessions of the same application. As a result, a

fuzzer that is very successful in testing a particular TLS library might not be equally

successful at testing other TLS libraries, and even more so when targeting completely

different applications such as media players. Finally, it is usually the case that, even

if a testing tool is application-agnostic, it performs its testing in a stateless manner,

with previous testing sessions not affecting future invocations.

Characteristics such as the ones outlined above (e.g., non-transferability of knowl-

edge as well as adopting monolithic, stateless and non-adaptive engines), have led to

a fragmented testing ecosystem, where particular tools are useful only for limited sets

of applications and bug types, without offering (provably) strong guarantees. With
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software applications becoming increasingly diverse and complex, it will be harder

and harder for the testing infrastructure to keep-up with change without further

increasing this fragmentation. The hypothesis behind this thesis is that adopting

context-aware analyses increases the accuracy and extensibility of existing toolchains.

To better understand this motivation, let us elaborate on some differences between

the proposed approach and current monolithic, non-adaptive designs.

For one, adopting a monolithic design such as the ones described previously may

hinder testing workflows, since analysts, in order to discern which errors are more

relevant to their analysis, are usually required to perform manual filtering of the gen-

erated error reports, a process which is non-trivial for large codebases. Such filtering,

however, can be performed automatically by the testing framework, if the latter is

able to support prioritization of certain analysis states over others. In such cases,

the analysis essentially becomes context-aware, since each state may be given an at-

tribute based on its relevance to particular characteristics of interest (see Section 3.2).

This, for instance, can be achieved by assigning scores to the different states of the

analysis engine based on a context-indicative metric. Thus, a tool that reports inte-

ger errors ignoring the context in which they occur could be augmented to prioritize

analysis of errors that involve inputs controlled by the user, or errors that propagate

into memory allocations. Likewise, a symbolic execution framework that attempts to

blindly solve constraints to explore an application’s state could prioritize solutions to

constraints involving input sanitization.

Contrary to monolithic, context-agnostic architectures, context-aware designs of-

fer the additional benefit of providing a basis upon which to construct adaptive anal-

yses: if the analysis engine is capable of maintaining an internal hierarchy of its

states, it may adjust this hierarchy either at runtime or at bootstrapping to target

different areas of the program under scrutiny or different classes of errors. Thus, a

fuzzer that explores new components of an application to maximize code coverage,
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may adapt its engine to maximize the number of encountered memory deallocations

instead. Moreover, being context-aware increases the selectivity of the performed

analyses and therefore, by limiting their search space, their accuracy. This property

is beneficial towards overcoming common limitations linked with state explosion, as

well as enables the analysts to fine-tune their testing, focusing on specific areas of

interest in the application under scrutiny. Finally, it is important to note that by

augmenting existing toolchains to support adaptive analyses, essentially by adding

the appropriate abstractions into the analysis and instrumentation engines, current

frameworks are still capable of reusing the components of their infrastructure that are

truly context-agnostic, without any modifications, to target broader classes of bugs.

For instance, an evolutionary fuzzing framework will be able to re-use its components

that handle the input corpus evolution, however steering its input generation towards

different types of bugs like crashes, complexity vulnerabilities or logic errors, by sim-

ply adapting its context-aware logic to the different use-cases. Thus, by adopting such

abstractions to separate context-aware and context-agnostic components, the scope

of existing tools can increase to include additional bug classes while simultaneously

achieving an increase in the frameworks’ modularity, which in turn will enable better

integration with other toolchains.

1.3 Compiler-assisted Adaptive Software Testing

Prior to elaborating on how modern systems can provide more adaptive and context-

aware testing, it is necessary to understand the core structural components of their

analysis engines. Over the past years, increasingly more frameworks have adopted

white-box and grey-box architectures that make use of the internal state of the appli-

cation being tested. This internal state provides feedback to the testing engine and

its use yields superior results compared to black-box approaches, since more infor-

8



mation is available to the analysis. As a result, such designs find many applications

in fuzzing and concolic execution frameworks, where the main engine performs some

form of bookkeeping, for instance through the number of total Control Flow Graph

(CFG) edges accessed, or the number of new sets of solutions to a given constraint

solving problem. This bookkeeping, which is performed during the execution of a

testing session, subsequently affects future testing invocations.

In order to enable these feedback-driven analyses, the application is usually in-

strumented either using dynamic binary instrumentation (DBI), directly through the

compiler toolchain, or executes under a hypervisor, and the gathered information from

each session is then made available to the testing framework. Dynamic techniques

have the advantage of not requiring access to the application source code and offer

large versatility with respect to the available instrumentation choices, however are

slower than static methods, and are often cumbersome to use by the vast majority of

developers. On the other hand, compiler-based instrumentations are readily-available

and offer fine-grained tracking, but are less flexible than dynamic approaches due to

the fact that any analysis is performed once, at the time of compilation. However,

empirical evidence suggests that developers are not widely adopting a software testing

or hardening scheme, unless the latter is simultaneously effective and usable [50, 77].

It is thus of no surprise that analyses that are integrated into compiler toolchains [154,

82] are amongst the most popular due to their ease of use, effectiveness, and perfor-

mance.

As mentioned in the previous Section, although compiler-based tools detect a

variety of bugs ranging from undefined behavior to integer errors, invalid memory

accesses, memory leaks, etc., they are providing generic protections, in the sense that

they are not context-aware, and thus do not adapt their logic to particularly match

the state of the application been tested. This is sub-optimal for the prospective ana-

lyst, as bugs that are more critical in the context of a particular application are not
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given a higher priority based on their severity. In the first part of this thesis, we will

outline a methodology under which such information can be provided by the com-

piler toolchain. In particular, by adding specially crafted static analysis passes and

combining them with compiler-constructed dynamic monitors, we will examine how

compilers’ analyses can become context-aware, prioritizing certain errors of the same

type over others. Subsequently, we will demonstrate how compiler-based instrumen-

tation can be utilized by feedback-driven evolutionary fuzzers to provide multifaceted

analyses targeting broader classes of errors. To this end, we will extend a state-of-the-

art fuzzer to target, except for crash-inducing bugs, logic errors, as well as complexity

vulnerabilities. We will prototype our designs in Nezha, the first differential generic

fuzzer capable of finding logic bugs, as well as SlowFuzz, the first generic fuzzer

targeting complexity vulnerabilities. Note that both Nezha and SlowFuzz have

common core components, and can also target traditional crash-inducing vulnera-

bilities. However, being adaptive, they are able to target their analysis engine on

different types of bugs as needed. As noted previously, we believe that such modular

designs are essential towards achieving generally applicable testing: in the concluding

Chapter of this thesis, we will discuss how the contributions made in this work can be

utilized towards this end, as well as outline promising future directions for research

on the topic.

1.4 Contributions

In short, this thesis makes the following contributions:

• We present a methodology to augment monolithic frameworks to support

context-aware testing.

• We introduce differential diversity (δ-diversity), a novel metric to be used for

selective input generation guidance. We demonstrate δ-diversity can be utilized
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to achieve testing in a white-box or grey-box manner, and also demonstrate how

δ-diversity generalizes known black-box schemes.

• We experimentally evaluate δ-diversity against coverage-based guidance

schemes and demonstrate that it yields superior results in the context of dif-

ferential testing while simultaneously achieving equally good performance in

single-application testing, with respect to coverage and bugs found.

• We design, implement and evaluate the first fuzzing framework particularly

targeted towards differential testing.

• We design, implement and evaluate the first resource-feedback driven fuzzing

engine targeting complexity vulnerabilities.

• We report multiple previously unknown security vulnerabilities in security-

critical applications and make all the presented testing frameworks publicly

available for the community.

1.5 Dissertation Roadmap

The rest of this work is outlined as follows: Chapter 2 provides background informa-

tion on modern application testing and analyzes the core state-of-the-art techniques

relevant to this thesis. Chapter 3 discusses compiler toolchains in the context of

testing and how their analyses can be augmented to achieve context-aware error re-

porting, whereas Chapters 4 & 5 examine how compiler-based instrumentation can be

used in modern evolutionary fuzzing frameworks to provide adaptive testing. To this

end, Chapter 4 introduces differential diversity (δ-diversity), a novel methodology

for peforming differential testing, and outlines Nezha, the first, to the best of our

knowledge, differestial fuzzer targeting logic bugs. Chapter 5 outlines how the core

components of an evolutionary fuzzer such as the one used in Nezha can be utilized

11



to target different types of bugs. The methodologies presented are prototyped and

evaluated in SlowFuzz, which shares the same core components as Nezha, how-

ever adapts its analysis engine to target complexity-vulnerabilities instead. Finally,

Chapter 6 summarizes this work and discusses points not addressed in this thesis, as

well as promising directions for future research.
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Chapter 2

Related Work

In this Chapter, we outline some lines of work which are closer to the material dis-

cussed in this thesis. Although software testing covers many different areas of research

that can often be orthogonally combined with the techniques presented in this thesis,

for our purposes we will not discuss a series of topics that are beyond the scope of this

work, such as formal verification [92, 101, 12, 197, 72], abstract interpretation [43,

31] or model checking [121, 60].

2.1 Static Analyses & Compiler Toolchains

A series of compiler-assisted tools target spatial and temporal safety errors, and

attempt to prevent against their exploitation. These tools can be separated into

three main categories, based on whether they provide protection using pointer-based,

object-based or tripwire approaches.

Object-based techniques: J&K [87] improved upon techniques using fat pointers by

utilizing a splay tree that holds a bounds table for created objects, and checking both

pointer arithmetic as well as load/store, operations however is limited by pointers

in external libraries and suffers from program intermediate pointer use. CRED [149]

creates an out-of-bounds (OOB) in the heap for every stored OOB value, whereas
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Dhurjati et al. improve upon CRED by utilizing automatic pool allocation and main-

taining a different splay tree per pool. Finally, Baggy Bounds Checking (BBC) [bbc]

uses a buddy allocator to allocate memory at the granularity of fixed slots, and store

the respective bounds in a bounds array [4].

Pointer-based techniques: SoftBound [123] provides spatial safety by associat-

ing base and bounds info with each pointer in a disjoint-data space, and checking

bounds upon dereferences, propagating the respective metadata upon function calls.

CETS [122], on the other hand, provides temporal safety for C programs by main-

taining a unique allocation key and lock address for each pointer and changing the

lock every time the respective memory region is deallocated. Y&H [204] perform

static analysis to identify unsafe pointers (that might go out of bounds), as well as

their points-to sets, and tag each byte of memory as appropriate or not (maintain-

ing a shadow mirror of memory), keeping a runtime set of referents for each pointer.

Finally, MemSafe [160] provides both spatial and temporal safety guarantees by mod-

eling temporal errors as spatial errors and keeping a hybrid metadata representation

for objects and pointers.

Tripwire approaches: In the past years, several testing schemes utilizing red-zone

guarding of memory (insertion of memory-protected memory regions around allocated

memory) have been integrated into compiler toolchains, to detect out-of-bounds ac-

cesses [154]) use-after free vulnerabilities and data races [82]. Such tools advance

compiler-assisted dynamic detection and do not generate false positives, however

come at a high performance cost and have no notion of selectivity in case a bug is

found.

Static analysis tools provide more sophisticated analyses and achieve larger code

coverage but generally suffer from a high rate of false positives. For instance, KINT

[190] is a static tool that generates constraints representing the conditions under

which an integer overflow may occur. It operates on LLVM IR and defines untrusted
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sources and sensitive sinks via user annotations. KINT avoids path explosion by

performing constraint solving at the function level and by statically feeding the gen-

erated constraints into a solver. After this stage, a single path constraint for all

integer operations is generated. Unfortunately, despite the optimization induced by

the aforesaid technique, the tool’s false positives remain high and there is a need for

flagging false positives with manual annotations in order to suppress them. Moreover,

KINT attempts to denote all integer errors in a program and does not make a clean

distinction between classic errors and errors that constitute vulnerabilities.

Finally, a family of static analysis tools that are relevant to the discussion pre-

sented in Chapter 3 are those particularly targeted at detection of integer errors:

IntPatch [209] is built on top of LLVM [97] and detects vulnerabilities utilizing the

type inference of LLVM IR. IntPatch uses forward & backward analysis to classify

sources and sinks as sensitive or benign. SIFT [106] uses static analysis to generate

input filters against integer overflows. If an input passes through such filter, it is

guaranteed not to generate an overflow. Initially, the tool creates a set of critical

expressions from each memory allocation and block copy site. These expressions con-

tain information on the size of blocks being copied or allocated, and are propagated

backwards against the control flow, generating a symbolic condition that captures all

the points involved with the evaluation of each expression. The free variables in the

generated symbolic conditions represent the values of the input fields and are com-

pared against the tool’s input filters. IntScope [189] decompiles binary programs into

IR and then checks lazily for harmful integer overflow points. To deal with false posi-

tives, IntScope relies on a dynamic vulnerability test case generation tool to generate

test cases which are likely to cause integer overflows. If no test case generates such

error, the respective code fragment is flagged appropriately. Finally, RICH [23] is a

compiler extension which enables programs to monitor their execution and detect po-

tential attacks exploiting integer vulnerabilities. Although RICH is very lightweight,
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it does not handle cases of pointer aliasing and produces false positives in cases where

developers intentionally abuse the undefined behavior of C/C++ standards.

2.2 Unguided Testing

Unguided testing tools generate test inputs independently across iterations without

considering the test program’s behavior on past inputs. Domain-specific evolutionary

unguided testing tools have successfully uncovered numerous bugs across a diverse

set of applications [118, 79, 148, 88, 84]. Another parallel line of work explores

building different grammar-based testing tools that rely on a context free grammar

for generating test inputs[114, 110]. LangFuzz [74] uses a grammar to randomly

generate valid JavaScript code fragments and test JavaScript VMs. TestEra [111]

uses specifications to automatically generate test inputs for Java programs whilst

lava [161] is a domain-specific language designed for specifying grammars that can

be used to generate test inputs for testing Java VMs.

2.3 Guided Testing

Evolutionary testing was designed to make the input generation process more effi-

cient by taking program behavior information for past inputs into account, while

generating new inputs [131]. Researchers have since explored different forms of code

coverage heuristics (e.g., basic block, function, edge, or branch coverage) to efficiently

guide the search for bug-inducing inputs. Coverage-based tools such as AFL [206],

libFuzzer [105], and the CERT Basic Fuzzing Framework (BFF) [75] refine their input

corpus by maximizing the code coverage with every new input added to the corpus.

Another line of research builds on the observation that the problem of new input

generation from existing inputs can be modeled as a stochastic process. These tools

leverage a diverse set of statistical techniques to drive input generation [99, 38, 20].
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Chen et al.’s perform differential testing of JVMs using MCMC sampling for input

generation [38] however their approach is domain-specific (i.e., requires details knowl-

edge of the Java class files and uses custom domain-specific mutations). Likewise,

Veggalam et al. [183] combine genetic programming with grammar-based fuzzing to

test Javascript interpreters. Vuzzer [145] utilizes control- and data-flow analysis, to

prioritize deep paths when mutating inputs, as well as determine where and how to

mutate those inputs.

Finally, a series of techniques for similarity code detection [200], function identi-

fication [159], and automata learning [7, 162], as well as synthesis from input/output

examples of SQL queries [186] or input grammars [10], can be combined with guided

testing methodologies such as the ones described above.

2.4 Differential Testing

Differential testing [116] shares parallels with N-version programming [36]. Both aim

to improve the reliability of systems by using independent implementations of func-

tionally equivalent programs, provided that the failures (or bugs) of the multiple

versions are statistically independent. Researchers have leveraged this approach to

find bugs across many types of programs, such as web applications [35], different

Java Virtual Machine (JVM) implementations [38], various security implementations

of security policies for APIs [165], compilers [202] and multiple implementations of

network protocols [24]. KLEE [28] used symbolic execution to perform differential

testing, however suffers from scalability issues. SFADiff [7] performs black-box differ-

ential testing using Symbolic Finite Automata (SFA) learning, however, can only be

applied to applications such as XSS filters that can be modeled by an SFA. Brubaker

et al.’s unguided differential testing system that synthesizes frankencerts by randomly

combining parts of real certificates [22]. They use these syntactically valid certificates
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to test for semantic violations of SSL/TLS certificate validation across multiple imple-

mentations. Chen et al. build on top of frankencerts to perform coverage-guided dif-

ferential testing of SSL/TLS implementations using MCMC sampling in Mucerts [37].

However, Mucerts requires knowledge of the partial grammar of the X.509 certificate

format and its input generation is very slow, requiring multiple days to generate even

10,000 inputs. Finally, besides testing software, researchers have applied differential

testing to uncover program deviations that could lead to malicious evasion attacks

on security-sensitive programs. Jana et al. use differential testing (with manually

crafted inputs) to look for discrepancies in file processing across multiple antivirus

scanners [83]. Recent works have applied differential testing to search for inputs that

can evade machine learning classifiers for malware detection [199, 96].

2.5 Symbolic Execution

Symbolic execution [90] is a white-box technique that executes a program symbol-

ically, computes constraints along different paths, and uses a constraint solver to

generate inputs that satisfy the collected constraints along each path. KLEE [28]

uses symbolic execution to generate tests that achieve high coverage for several pop-

ular UNIX applications, however, due to path explosion, it does not scale to large

applications. UC-KLEE [90, 144] aims to tackle KLEE’s scalability issues by per-

forming under-constrained symbolic execution, i.e., directly executing a function by

skipping the whole invocation path up to that function. However, this may result

in an increase in the number of false positives. To mitigate path explosion, several

lines of work utilize symbolic execution only in certain parts of their analysis to aid

the testing process, and combine it with concrete inputs [29]. Another approach to-

wards addressing the limitations of pure symbolic execution is to outsource part of

the computation away from the symbolic execution engine using fuzzing [67, 65, 168,
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70, 66, 34].
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Chapter 3

Compiler-assisted Testing

3.1 Background

Before examining how compiler analyses can be augmented to provide context-aware

error reporting, let us outline some of the ways in which they are used to prevent

the occurrence and exploitation of software errors. Subsequently, we will provide a

methodology to augment state-of-the-art toolchains to achieve adaptive testing.

By construction, compilers and interpreters check the syntactic correctness of the

code they analyze and report deviations from the respective language specifications.

This is usually achieved during the different passes of the compilation toolchain [3].

Additionally to reporting syntactic errors and relevant warnings, however, over the

past decades compilers have also been actively used in a multitude of different con-

texts, including defending against stack smashing [44, 40, 133] and Return Oriented

Programming (ROP) [130, 141, 103] exploits, as well as to provide stronger code, data

pointer [95, 25, 5] control flow [177, 112, 89] and data flow [32] integrity properties.

This is usually achieved by re-organizing the code of the application appropriately at

compile-time, as well as by inserting callbacks, dynamic monitors, instrumentation

hooks and red-zones (memory-protected regions) at the binary. The aforementioned
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techniques have found extensive use not only in binary hardening defenses, but also

in compiler-assisted testing frameworks. Most notably, the combination of red-zone

insertion with the use of dynamic monitors has been used to detect memory safety

errors, such as invalid memory accesses or use-after-free violations [154, 181, 82],

whereas instrumentation hooks and callbacks that provide execution information [151]

are extensively used by fuzzers or other feedback-driver testing frameworks [206, 105,

134, 135, 20, 168].

Typically, compiler-assisted testing toolchains can be separated into two main

categories, based on whether testing is performed statically or dynamically. In cases

were testing is performed purely statically, several analysis passes that may or may

not be receiving external inputs are performed, and error reports are generated with-

out the need to execute the application. In dynamic compiler-assisted testing, on the

other hand, the binary is appropriately modified at compile-time and subsequently

executed, and violations are reported at runtime. For instance, AddressSanitizer [154]

inserts red-zones around all allocated memory, and, during program execution, mon-

itors accesses in these red zones, reporting the respective out-of-bounds error. Simi-

larly, modern evolutionary fuzzers exercise different inputs on the application being

tested and, after each input execution, examine how many previously unseen basic

block edges have been accessed during that execution: if the respective input exer-

cised edges that were not encountered before, it is added into the input corpus to

affect the generation of future inputs. The information on what edges were accessed

is made available to the fuzzer via the appropriate hooks that the compiler inserted

at each basic block during compilation. Likewise, support for the bookkeeping of

the accessed edges is also provided by the compiler, and the appropriate callbacks to

manipulate this bookkeeping metadata is exposed to the fuzzing engine.

Regardless of whether errors are reported with or without executing inputs, how-

ever, as mentioned in Chapter 1, modern compiler-based techniques predominantly
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report errors indiscriminately rather than qualitatively. Section 3.2 describes context-

aware testing and how it can be used to provide such qualitative information, whereas

Section 3.3 outlines a methodology under which compiler analyses can be augmented

to provide qualitative information, and presents the design of one such prototype

implementation focusing on context-aware reporting of integer errors.

3.2 Augmenting Compiler Analyses

Static analyses are known to suffer from false positives and state-explosion limita-

tions [98, 53]. However, as mentioned in Chapter 1, context-aware designs offer more

targeted analyses, limiting the search space for the analysis engine. In the context of

this work, we classify an analysis as context-aware 1 if its results can be grouped into

more than one (possibly overlapping) sets, each of which is semantically associated

with a single user-defined property. If such grouping is feasible, then the respective

resulting subsets can be prioritized by the analysis engine, with their ordering denot-

ing a hierarchy in the (context-dependent) semantic characteristics of each group’s

properties.

For instance, suppose we want to modify a coverage-based fuzzer so that it focuses

its testing into the application’s source code rather than in external libraries that may

be linked into the binary. Normally, evolutionary coverage-based fuzzers keep track of

the unique basic block edges of the application that have been encountered so far, and

favor inputs that exercise new edges [206, 105]. However, simply partitioning edges

into two groups based on whether they have been accessed in previous sessions does

not suffice, in itself, to provide context-aware guidance, since no semantic property

is associated with both sub-groups: for each input that executes, the fuzzer knows

that it accessed edges that may or may not have been encountered previously, but all

1The term should not be confused with testing of context-aware applications [192, 150, 9, 205].
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edges that are discovered fall within the same bucket and are treated equally, exactly

as compilers treat, for instance, all integer errors equally. Instead, one alternative

(naive) way in which the fuzzing engine could provide context-aware guidance would

be to split the covered edges into two sets, based on whether they belong to external

libraries (e.g., libc) or the source code of the application and subsequently, when

forming the input corpus, favor inputs that contributed more edges to the group of

interest, essentially “steering” the testing towards exploring the respective regions.

At this point we should mention that, for the above example, even if a differ-

ent metric that is more expressive of the application state is used instead of code

coverage, unless it is tied semantically with particular attributes of interest (either

user-defined or automatically determined), and used to prioritize certain states over

others, it cannot be used for context-aware guidance as described in this work. To

make this point clearer, let us consider that instead of using code coverage, our fuzzer

instead bases its input generation on the different call stack traces from the execu-

tion of each input. Thus, every time an input executes, the respective function call

sequences are recorded (given the appropriate compiler support or using dynamic

binary instrumentation/binary rewriting), and, if an input exercises a call stack trace

that was not encountered before, it is preserved in the input corpus. Despite the fact

that each call frame stack is representative of the state of the program, no semantic

information is tied with that particular state, thus the fuzzer will not be able to

prioritize certain states over others, and instead is forced to blindly explore the appli-

cation space. Instead, if there is a grouping of the possible call stacks, e.g., depending

on whether they involve particular addresses/functions of interest (such as functions

performing cryptographic operations, parsing, etc.) then, using that grouping it will

be possible to prioritize the generated inputs, and this prioritization will reflect the

significance of the respective semantic groups.

As we will demonstrate in the rest of this thesis, this methodology can provide
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fine-grained testing without impacting performance or the total errors reported, and

can be equally applied to both static and dynamic techniques.

3.3 Context-aware Compiler Analyses

As mentioned in Section 3.1, compiler-based toolchains may locate errors either stat-

ically or dynamically. Thus, context-aware clustering can be achieved either during

the compilation phase or at runtime, using inline dynamic monitors that rely on the

compiler’s instrumentation. In this Section we will provide an example of a real-world

implementation of the approach proposed in Section 3.2, modifying a state-of-the-art

compiler, so that the latter may provide context-aware discovery of integer errors,

in which bugs are prioritized based on their likelihood to be exploitable or to have

unintended consequences in software execution.

3.3.1 Motivation

Error debugging is amongst the biggest development hurdles [33, 61, 11], since error

reports for production applications may be prohibitively large, with several errors be-

ing particularly hard to debug [203]. Requiring human analysts to manually examine

errors in large projects is costly and, in certain software deployment scenarios, even

infeasible. Ideally, developers should be receiving reports with low or zero false posi-

tives, and should be able to prioritize which errors they should debug first, based on

their criticality. Unfortunately, static analysis frameworks and compiler toolchains

generate reports without any prioritization of certain errors over others, and thus it

is often infeasible to discern which errors are more critical directly from the gener-

ated report and without additional analysis. This problem becomes even worse in

cases where the software code is conflicting with compilers’ optimizations, or in cases

involving undefined behavior. In these scenarios, developers may intentionally be
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utilizing exotic or erroneous code constructs to achieve custom functionality or en-

hanced performance. However, such constructs are detected by compilers and linters

as errors, and are reported in bulk together with other errors that may be lurking

in the code and which may be completely unknown to the software authors. In the

following, we will examine how compiler passes can be augmented to aid developers

in such scenarios. Particularly, we will augment the LLVM compiler toolchain [97] to

achieve context-aware reporting of integer errors, which are frequently encountered

in contexts involving undefined behavior and optimizations.

3.3.2 Use-case: Context-aware Integer Error Reporting

3.3.2.1 Integer Errors and Undefined Behavior

Although the C and C++ language standards explicitly define the outcome of most in-

teger operations, a number of corner cases are left undefined. As an example, the C11

standard considers an unsigned integer overflow as a well-defined operation, whose

result is the minimum value obtained after the wrap-around, while leaving signed

integer overflows undefined. This choice facilitates compiler implementations to pro-

duce optimized binaries [191]. For instance, signed integer overflows (or underflows)

enable compiler developers to implement an optimization that infers invariants from

expressions such as i+1 > i and replaces them with a constant Boolean value [3].

Table 3.1 lists special cases of integer operations and their definedness. It should

be noted that although more instances of undefined behavior (not necessarily re-

stricted to integer operations) are declared in the language specification, we only

consider integer operations for this work.

As in practice not all cases of undefined behavior necessarily result in actual

errors, the difficulty of dealing with these types of bugs lies in distinguishing critical

integer errors from intended violations of the standard. The intention of a developer,

however, cannot be formally defined or automatically derived, as the code patterns
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Table 3.1: Examples of defined and undefined arithmetic operations according to the
C/C++ language specification.

Arithmetic Operation Definedness
Unsigned overflow (underflow) defined
Singed overflow (underflow) undefined
Signedness conversion undefined∗

Implicit type conversion undefined∗

Oversized/negative shift undefined
Division by zero undefined
∗if value cannot be represented by the new type

used in a piece of code are deeply related to the author’s knowledge, preference,

and programming style. Although writing code that intentionally relies on undefined

operations is generally considered a bad programming practice (as the outcome of

those operations can be arbitrary, depending on the architecture and the compiler),

there are several cases in which the community has reached consensus on what is

the expected behavior of the compiler in terms of the generated code, mainly due

to empirical evidence. This explains why idioms that take advantage of undefined

behavior are still so prevalent: although according to the standard the result of

an operation is undefined, developers have an empirically derived expectation that

compilers will always handle such cases in a consistent manner. This expectation

creates serious complications whenever developers check the validity of their code

with state-of-the-art static analysis tools. These tools evaluate code based on strict

conformance to the language specification, and consequently generate a large amount

of false positives. As a result, the generated reports are often overlooked by developers

who struggle to spot which of the reported bugs are actual errors. Unfortunately, tools

based on dynamic code analysis also do not provide strong guarantees in these cases,

as they suffer from low code coverage.

Thus, while the task of automatically detecting undefined arithmetic operations

is relatively easy, the true difficulty lies in identifying critical or unintended violations
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the language standard. To further illustrate the complexity of this issue, let us

consider the code pattern presented in Figure 3.1 which one of the most prevalent

cases of undefined operation abuse.

1 UINT_MAX = (unsigned) -1;
2 INT_MAX = 1 << (INT_WIDTH - 1) - 1;

Figure 3.1: Widely used idioms that according to the standard correspond to unde-
fined behavior.

The two C statements of Figure 3.1 are often intentionally used by develop-

ers mainly to achieve persistent representation across different system architectures.

Both are based on assumptions on the numerical representation used by the under-

lying system (two’s complement). Line 1 shows a case of signedness casting in which

the original value cannot be represented by the new type. In Line 2, a shift operation

of INT_WIDTH - 1 is undefined2 but it conventionally returns the minimum value of the

type, while the subtraction operation incurs a signed underflow which is also unde-

fined. Although these cases are violations of the language standard, the desirable

operation of an integer overflow checker would be to not report them as of high risk,

as they most likely correspond to developer-intended violations, and from developers’

view, in case they were indeed intentional, would be considered false positives [53].

On the contrary, in the example of Figure 3.2, the unsigned integer variable

(alloc_size) might overflow as a result of the multiplication operation at line 5. This

behavior is well-defined by the standard, but the overflow may result in the allocation

of a memory chunk of invalid (smaller) size, and consequently, to a heap overflow.

An effective arithmetic error checker should be able to identify such potentially ex-

ploitable vulnerabilities and give high priority to the respective error, as most likely

the developer did not intend for this behavior.

2According to the C99 and C11 standards. The C89 and C90 (ANSI C) standards define this
behavior.
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1 /* struct containing image data, 10KB each */
2 img_t *table_ptr;
3 unsigned int num_imgs = get_num_imgs();
4 ...
5 unsigned int alloc_size = sizeof(img_t) * num_imgs;
6 ...
7 table_ptr = (img_t*) malloc(alloc_size);
8 ...
9 for (i = 0; i < num_imgs; i++)

10 { table_ptr[i] = read_img(i); } /* heap overflow */

Figure 3.2: An unsigned integer overflow as a result of a multiplication (line 5), which
results in an invalid memory allocation (line 7) and unintended access to the heap
(line 10).

3.3.2.2 Design

In order to achieve the integer error reporting at granularity described previously, we

build upon the following observations:

• Integer errors may be developer-intended if they fall within known programming

constructs as those of Figure 3.1. From the perspective of developers, the

respective errors are generally considered of low-priority.

• Integer errors that originate from trusted sources that are not user-controlled

and do not affect sensitive operations (memory-allocations, system persistent

data, permissions, etc.) are not likely to be exploitable. Such errors, for in-

stance, are integer errors that originate from constant assignments, or errors

whose sources are non-security critical system calls and trusted library functions

(e.g., uname()).

• Errors that may propagate into sensitive operations such as system calls, mem-

ory allocations, etc., or errors that originate from untrusted sources should

receive high priority.

Based on the above observations, we can create a semantic partitioning of the dif-

ferent errors reported by the compiler and let its engine appropriately prioritize them
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Figure 3.3: Information Flows to and from the Location of an Arithmetic Error.

when presenting results to the user. This partitioning can be achieved either stati-

cally or dynamically. In our prototype, we adopt static Information-Flow Tracking

(IFT) [119, 85], to appropriately partition and report errors based on their criticality.

An overall view of how IFT can by used towards this end is presented in Figure 3.3:

arithmetic operations that result in integer errors are analyzed to determine if un-

trusted inputs affect or may affect the operation, or if the arithmetic operation’s

result propagates (or may propagate3) into for sensitive locations. With respect to

criticality, highest priority is given to errors propagating into sensitive operations,

followed by errors with variables originating from untrusted inputs. Trusted sources

and well known coding constructs (such as constant assignments that may result in

an overflow) are considered as low priority errors.

3.3.2.3 Implementation & Evaluation

We prototype the aforementioned design in IntFlow, a framework build on top

of the LLVM [97] compiler. In particular, IntFlow extends the IOC [53] integer

error detection toolchain to achieve context-aware reporting. The architecture of our

prototype is depicted in Figure 3.4: IntFlow’s two main components are an integer

error detection engine module (IOC [53]) as well an information flow tracking module

3due to the nature of static IFT, it is often infeasible to determine at compile time if an error
actually affects a subsequent operation. This use of static IFT is not without limitations: long call
chains could impact the effectiveness of IntFlow at reducing false positives. However, alternate
methods could be used to perform the desired partitioning of errors. Such methods could combine,
for instance, runtime monitors with dynamic flow tracking.
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(llvm-deps [119]), which can be fine-tuned through user-provided configuration files.

During compilation, arithmetic error checks are inserted by IOC at all points involving

integer operations. These checks are subsequently selectively filtered by IntFlow to

determine any errors that may occur at runtime fall within known code constructs

(such as constant assignments), whether they involve variables that originate from

trusted or untrusted inputs, or whether the operation affects sensitive operations.

Once this filtering is complete, IntFlow creates a report for the analyst, denoting the

context in which the respective error occured (e.g., if it affects a sensitive operation).

Clang 
ASTC/C++ LLVM-IR Compile, 

Link

Arith. Operations 
Instrumented

IFT Integration

IntFlow 
Binary

Training with 
regular inputs 

IntFlow 
Binary

Conf. 
file

Figure 3.4: IntFlow’s Architecture.

IntFlow is implemented as an LLVM [97] pass consisting of ∼3,000 lines of C++

code.4 This pass is placed at the earliest stage of the LLVM pass dependency tree

to prevent subsequent optimization passes from optimizing away any critical integer

operations.

We evaluated IntFlow on both artificial and real-world vulnerabilities [140, 85]

Artificial vulnerabilities corresponding to various types of the Common Weakness

Enumeration (CWE) [49] system were inserted to a set of real-world applications.

This set of applications was independently provided by the MITRE organization [14].

For evaluating IntFlow over real-world vulnerabilities, we used four widely-used

applications and analyzed whether IntFlow detects known integer-related CVEs in-

cluded in these programs. The programs under scrutiny where Dillo [54], GIMP [62],

SWFTools [173] and Pidgin [139], and the respective CVEs corresponded to integer

4IntFlow can be invoked by simply passing the appropriate flags to the compiler, without any
further action needed from the side of the developer. Although IOC has been integrated into the
LLVM main branch since version 3.3, for the current prototype of IntFlow we used an older branch
of IOC that supports a broader set of error classes than the latest one.
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overflows and signedness errors [140]. To collect error reports, we ran each application

with benign inputs as follows: for Gimp, we scaled a sample image and exported it

as GIF [140]; for SWFTools, we used the pdf2swf utility with a popular e-book as

input; for Dillo, we visited a webpage and downloaded content [140]; and for Pidgin,

we performed various common tasks such as registering a new account and logging

in and out of the service. Finally, we evaluated the effectiveness of IntFlow’s IFT

analysis in reducing false positives by running IntFlow on the SPEC CPU2000

benchmarking suite and comparing its reported errors with those of IOC. The above

experiments demonstrated that IntFlow achieves up to 89% suppression of bening

error reports over standalone static code instrumentation, without a negative impact

on non-bening errors.

3.3.3 Discussion

In the previous Section we examined how compiler analyses can become more tar-

geted providing contextual information when detecting given classes of errors. To

demonstrate this point, we described the design of IntFlow, which reports integer

errors with an accompanying criticality score and drastically reduces false positives

so that developers are able to prioritize the respective fixes accordingly.

IntFlow employs static infromation flow tracking for to augment the compiler’s

passes and partitions the respective errors based on their semantic properties. How-

ever, similar analyses can be performed via different techniques, such as by deploying

dynamic information flow tracking, hypervisors or compiler-inserted runtime moni-

tors. Additionally, in the more general case of feedback-driven testing frameworks,

context-aware partitioning of states can be used not only to achieve more selective

targeting of errors of a given type but also as a means of re-using existing infrastruc-

ture to target broader classes of bugs. To make this point clearer, let us consider the

design depicted in Figure 3.5 which is typical of common feedback-driven frameworks
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like concolic testing toolchains [67, 168] and fuzzers [206, 105].

Figure 3.5: Typical Architecture for Feedback-driven Testing Frameworks.

In a typical compiler-assisted feedack-driven framework, the compiler inserts in-

strumentation into the compiled binary (highlighted in red in Figure 3.5), which is

then used by dynamic components and state-aware modules (coverage buffers, sani-

tizers , etc.) to compute the state in which the tested application is in, when executing

a particular input. This state information is passed into the analysis engine, which

then computes subsequent inputs to be passed into the binary under scrutiny. In re-

cent years, more and more toolchains deploy evolutionary or generational techniques

for their input creation: if an input is deemed useful for testing, it is preserved as

part of an active input corpus, together with other successful inputs. Inputs in the

corpus are mutated and combined in order to produce future generations. As such,

if the analysis engine prioritizes inputs that test particular portions or properties of

the application, it is possible to steer the evolutionary input generation appropriately

without implementing an input generation strategy from scratch. Instead, by com-

bining a context-agnostic, generic mechanism (such as the evolutionary engine or the

compiler passes) with context-aware modules (the fitness functions in use, taint-aware

modules or context-aware compiler analyses), it is possible to re-use existing frame-

works to target new types of bugs. In the next Chapters we will elaborate on how

this can be achieve, presenting appropriate examples. Particularly, we will discuss
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how context-aware guidance can aid in retrofitting fuzzers that traditionally target

crash-inducing bugs to also address different classes of errors such as logic bugs or

compilexity vulnerabilities.
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Chapter 4

Adaptive Differential Testing

In the previous Chapter, we elaborated on how we can utilize context-aware analyses

to target errors at a finer granularity. However, as discussed, the same technique can

be used to retrofit feedback-driven frameworks so that the latter may target broader

classes of errors. In this Chapter, as well as in Chapter 5, we will present two such

prototype implementations built on top of state-of-the-art fuzzers.

4.1 Motivation

As we outlined in the Introduction, modern binary application testing frameworks

predominantly focus on detection of memory safety violations. Binary application

fuzzers, which are widely used by the application testing community, are perhaps

the most typical example of this, since they almost solely focus on crash-inducing

bugs. Other types of bugs, such as logic errors and semantic bugs, although equally

important, are usually out-of-scope. However, semantic bugs are particularly dan-

gerous for security-sensitive programs that are designed to classify inputs as either

valid or invalid according to certain high-level specification. For instance, malware

detectors are required to parse different file formats according to their respective spec-

ification, whereas libraries implementing particular RFCs (such as SSL/TLS libraries
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handling X.509 certificates), need to conform to multiple, complex requirements. If

semantic errors are present in security-critical software such as the above, attack-

ers can exploit existing discrepancies between the implementation and its respective

specification and cause the software to misbehave: in the case of malware detectors,

attackers may mount evasion attacks, whereas in the case of SSL/TLS implementa-

tions, they may compromise the security guarantees of the respective connections by

making the libraries accept invalid certificates.

In order to be able to detect deviations from a given specification or expected

handling logic, however, it is necessary to have a point of reference, which will act

as the ground-truth provider. Traditionally, a popular technique to use towards this

end is differential testing [116, 202, 24]: differential testing uses similar programs as

cross-referencing oracles to find semantic bugs that do not exhibit explicit erroneous

behaviors like crashes or assertion failures. Even if different applications are not

available, it is possible to perform differential testing using different versions of the

same application (e.g., before and after a given patch). Unfortunately, existing tools

are domain-specific and inefficient, requiring large numbers of test inputs to find a

single bug.

In this Chapter, we will examine how to utilize context-aware guidance to achieve

differential fuzzing so as to discover program discrepancies in this setting, i.e., where

at least one test program validates and accepts an input and another program with

similar functionality rejects the same input as invalid. Particularly, we will demon-

strate how, switching from a monolithic guidance engine based on code coverage, it

will be possible to re-use a fuzzer’s core components to target logic bugs additionally

to crash-inducing vulnerabilities. A core observation motivating our work is that,

in cases where execution is expected to conform to a particular logic, any deviations

from the behavior dictated by that logic will somehow become observable throughout

the program execution. Whether in the form error codes or messages, side effects or
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via deviations in the expected control and data flow, context-specific information is

present in the execution. Thus, if the analysis engine is able to partition the states

in a way such as to steer the testing towards locating the source of the deviation, it

will be able to detect semantic discrepancies such as the ones described above.

4.1.1 Example Use-case
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int checkVer_B(int v) {
  if (v < 3 || v > 7)
    return -2;
  if (v % 2 != 0)
    return -1;
  return 0;    
}
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int checkVer_A(int v) {
  if (v % 2 != 0)
    return -1;
  if (v < 1 || v > 7)
    return -2;
  return 0;    
}

1
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3
4
5
6
7

Figure 4.1: (Top) Simplified example of a semantic discrepancy and (Bottom) the
corresponding simplified Control Flow Graphs.

To demonstrate the basic principles of our approach, let us consider the following

example: suppose A and B are two different programs with similar functionality and

that checkVer_A and checkVer_B are the functions validating the version number of

the input files used by A and B respectively, as shown in Figure 4.1. Both of these

functions return 0 to indicate a valid version number or a negative number (−1 or

−2) to indicate an error. While almost identical, the two programs have a subtle

discrepancy in their validation behavior. In particular, checkVer_A accepts an input
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of v == 2 as valid while checkVer_B rejects it with an error code of -2.

The above example, albeit simplified, is similar to semantic bugs found in de-

ployed, real-world applications. However, this discrepancy cannot be found by indi-

vidually testing each program without a formal specification, as it does not result in

any explicitly erroneous behavior like a crash or assertion failure. Moreover, even if

the above discrepancy constitutes a bug, it is hard for a state-of-the-art evolutionary

coverage-based fuzzer to steer its input generation towards triggering this difference,

since coverage is used in a context-agnostic manner. Thus, the fuzzer is agnostic

to the semantic properties of the code being covered, and, similarly to how, in the

example presented in Section 3.3, integer errors were reported by compilers without

contextual information with respect to the context they appeared in, whether an

input is more likely to trigger a logic error is not exposed to the analysis engine.

Similarly to our approach in Chapter 3, our key intuition is to augment existing

fuzzer analyses with context-aware guidance so as to enable the fuzzer to perform

differential, context-aware testing across several applications, steering its input gen-

eration towards the binaries’ portions that are more likely to have a deviation in their

expected behavior. This approach is expected to be successful in providing context-

aware guidance since simultaneously testing multiple programs on the same input

offers a plethora of information that can be used to compare the tested programs’

behaviors relative to each other. Such examples include error messages, debug logs,

rendered outputs, return values, observed execution paths of each program, etc. In

the rest of this Chapter we will demonstrate that semantic discrepancies across pro-

grams of the same functionality,1 are more likely to occur for the inputs that cause

relative variations of features like the above.

1Similarly, across different versions of the same program.
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4.1.2 Differential Diversity

Depending on the context-specific attributes of interest, we want to perform a context-

aware partitioning of states during the testing session, and based on these states

prioritize our input generation accordingly. Particularly, given n context-specific at-

tributes A = {a1, .., an}, we specify as a diversity tuple the tuple< m1, ...,mn > where

mi = f(ai), i ∈ 1..n are context-specific metrics computed via some relation f over

the attributes A. For instance, if we partition the edges of an application into three

sets e1, e2, e3 we can specify a coverage-diversity tuple as the portion of the edges of

each group that have been accessed at one input execution. Thus, ci denotes the sets

of edges of ei that were accessed throughout the execution of a given input, we can de-

note the edges covered across all groups for each input execution as {c1, c2, c3} and ex-

press the respective coverage diversity tuple as < ||c1||/||e1||, ||c2||/||e2||, ||c3||/||e3|| >.

Using such diversity tuples, we can construct higher-level context-aware guidance en-

gines. For instance, we can utilize the cardinality of the set of the different diversity

tuples seen throughout the execution to determine if an input exhibits a behavior

that we did not encounter in previous execution runs. In general, utilizing the above

methodology, we may summarize behavioral assymetries of multiple tested programs,

by creating the appropriate differential diversity (δ-diversity) metrics. In δ-diversity-

based guidance, tracing is generalized across multiple programs, with individual pro-

gram traces/behaviors being examined relative to each other, not in isolation, for

guided input generation

Program behaviors can be summarized in different ways, e.g., in either a black-box

(based on program log/warning/error messages, program outputs , etc.) or gray-box

(e.g., program paths taken during execution) manner. In the following, we will exam-

ine examples of how to construct such context-aware δ-diversity engines in real-world

scenarios. In particular, we will present Nezha, the first, to the best of our knowl-

edge, differential generic fuzzer, which utilizes δ-diversity-based context-aware guid-
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ance to target both crash-inducing errors and logic bugs. Adopting an evolutionary

algorithm approach, Nezha begins with a corpus of seed inputs, applies mutations

to each input in the corpus, and then selects the best-performing inputs for further

mutations. The fitness of a given input for the testing process is determined based on

the diversity it introduces in the observed context-aware attributes across the tested

programs. Thus, if the chosen context-specific attribute to be used is the signals

emitted by different applications or by different parts of the same application, in-

puts that generate the most diverse sets of signals (observed throughout the testing

session across all applications), will receive higher priority than those that result in

previously observed patterns.

4.1.3 Example: Gray-box Guidance

If program instrumentation is a feasible option, we can collect detailed runtime exe-

cution information from the test programs, for each input. For instance, knowledge

of the portions of the Control Flow Graph (CFG) that are accessed during each pro-

gram execution, can guide us into only mutating the inputs that are likely to visit

new edges in the CFG. An edge in a CFG exists between two basic blocks if control

may flow from one basic block to the other (e.g., A1 is an edge in the simplified CFG

for checkVer_A as shown in Figure 4.1). We illustrate how this information can be

collectively tracked across multiple programs revisiting the example of Figure 4.1.

Table 4.1: A semantic bug that is missed by differential testing using code coverage
but can be detected by Nezha’s path δ-diversity (gray-box) during testing of the
examples shown in Figure 4.1. Nezha’s black-box δ-diversity input generation scheme
(not shown in this example) would also have found the semantic bug.

Execution Paths Add to Corpus

Gen. Mut. Input A B Path Tuple δ-diversity Coverage δ-diversity

seed - 7 {A1} {B3, B2} P1 = ⟨{A1}, {B3, B2}⟩ {P1} √ √
seed - 0 {A3, A2} {B1} P2 = ⟨{A3, A2}, {B1}⟩ {P1, P2} √ √
seed - 1 {A1} {B1} P3 = ⟨{A1}, {B1}⟩ {P1, P2, P3} x √

1 increment 2 {A3, A4} {B1} P4 = ⟨{A3, A4}, {B1}⟩ {P1, P2, P3, P4} - √
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Suppose that our initial corpus of test files (seed corpus) consists of three input

files, with versions 7, 0, and 1 (I0 = {7, 0, 1}). We randomly extract one input from

I0 to start our testing: suppose the input with v=7 is selected and then passed to

both checkVer_A and checkVer_B. As shown in Table 4.1, the execution paths for

programs A and B (i.e., the sequence of unique edges accessed during the execution of

each program) are {A1} and {B3, B2} respectively. The number of edges covered in

each program is thus 1 and 2 for A and B respectively, whereas the coverage achieved

across both programs is 1+2 = 3. One may drive the input generation process favoring

the mutation of inputs that increase coverage (i.e., exercise previously unexplored

edges). Since v=7 increased the code coverage, it is added to the corpus that will

be used for the next generation: I1 = {7}. In the following stage of the testing, we

pick any remaining inputs from the current corpus and pass them to programs A

and B. Selecting v=0 as the next input will also increase coverage, since execution

touches three previously-unseen edges (A3, A2 and B1), and thus the file is picked for

further mutations: I1 = {7, 0}. At this stage, the only input of I0 that has not been

executed is v=1. This input’s execution does not increase coverage, since both edges

A1 and B1 have been visited again, and thus v=1 is not added to I1 and will not be

considered for future mutations. However, we notice that v=1, with a single increment

mutation, could be transformed to an input that would disclose the discrepancy

between programs A and B, had it not been discarded. This example demonstrates

that simply maximizing edge-coverage often misses interesting inputs that may trigger

semantic bugs. By contrast, had we tracked the δ-diversity using path tuples across

past iterations, input v=1 would invoke the path tuple ⟨{A1}, {B1}⟩, which, as a

pair/combination, would have not been seen before. Thus, using a path δ-diversity

state, instead of code coverage, results in v=1 been considered for further mutations.

As seen in Table 4.1, the mutated input v=2 uncovers the semantic bug.
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4.1.4 Example: Black-box Guidance

If program instrumentation or binary rewriting are not feasible options, we may still

adapt the notion of program diversity to a black-box setting. The key intuition

is, again, to look for previously unseen patterns across the observed outputs of the

tested programs. Depending on the context of the application being tested, available

outputs may vary greatly. For instance, a malware detector may only provide one bit

of information based on whether some input file contains a malware or not, whereas

other applications may offer richer sets of outputs such as graphical content, error

or debug messages, values returned to the executing shell, exceptions, etc. In the

context of differential testing, the outputs of a single application A can be used as a

reference against the outputs of all other applications being tested. For example, if

browsers A, B, and C are differentially tested, one may use browser A as a reference

and then examine the contents of different portions of the rendered Web pages with

respect to A, using an arbitrary number of values for the encoding (different values

may denote a mismatch in the CSS or HTML rendering, etc.).

Regardless of the output formulation, however, for each input used during testing,

Nezha may receive a corresponding set of output values and then only select the

inputs that result in new output tuples for further mutations. In the context of the

example of Figure 4.1, let us assume that the outputs passed to Nezha are the values

returned by routines checkVer_A and checkVer_B. If inputs 0, 7, and 1 are passed

to programs A and B, Nezha will update its internal state with all unique output

tuples seen so far: {⟨−1,−1⟩, ⟨−2,−2⟩, ⟨−1,−2⟩}. Any new input which will result in

a previously unseen tuple will be considered for future mutations, otherwise it will be

discarded (e.g., with the aforementioned output tuple set, input 2 resulting in tuple

⟨0,−2⟩ would be considered for future mutations, but input 9 resulting in ⟨−1,−2⟩

would be discarded).
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4.2 NEZHA

4.2.1 Design

Nezha is input-format-agnostic and can optionally use a set of initial seed inputs

to bootstrap the input generation process. Note that the seed files themselves do

not need to trigger any semantic bugs. We empirically demonstrate that NEZHA can

efficiently detect subtle semantic differences in large, complex, real-world software. In

particular, we use Nezha for testing: (i) the ELF and XZ file parsing in two popular

command-line applications and the ClamAV malware detector, (ii) X.509 certificate

validation across six major SSL/TLS libraries and (iii) PDF parsing/rendering in

three popular PDF viewers. Nezha discovered 778 distinct discrepancies across all

tested families of applications, many of which constitute previously unknown security

vulnerabilities. For example, we found two evasion attacks against ClamAV, one for

each of the ELF and XZ parsers. Moreover, Nezha was able to pinpoint 14 unique

differences even among forks of the same code base like the OpenSSL, LibreSSL, and

BoringSSL SSL/TLS implementations.

In each testing session, Nezha observes the relative behavioral differences across

all tested programs to maximize the number of reported semantic bugs. To do so,

Nezha uses Evolutionary Testing (ET) [131], inferring correlations between the in-

puts passed to the tested applications and their observed behavioral asymmetries,

and, subsequently, refines the input generation, favoring more promising inputs. Con-

trary to existing differential testing schemes which drive their input generation using

monolithic metrics such as the code coverage that is achieved across the tested ap-

plications, Nezha utilizes the novel concept of δ-diversity: metrics that preserve the

differential diversity (δ-diversity) of the tested applications will perform better at

finding semantic bugs than metrics that overlook relative asymmetries in the appli-

cations’ execution. The motivation behind δ-diversity becomes clearer if we examine
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Algorithm 1 DiffTest: Report all discrepancies across applications A after n gener-
ations, starting from a corpus I

1: procedure DiffTest(I, A, n, GlobalState)
2: discrepancies = ∅ ;reported discrepancies
3: while generation ≤ n do
4: input = RandomChoice(I)
5: mut_input = Mutate(input)
6: generation_paths = ∅
7: generation_outputs = ∅
8: for app ∈ A do
9: app_path, app_outputs = Run(app,mut_input)

10: geneneration_paths ∪ = {app_path}
11: geneneration_outputs ∪ = {app_outputs}
12: end for
13: if NewPattern(generation_paths,

generation_outputs,
GlobalState) then

14: I ← I ∪mut_input
15: end if
16: if IsDiscrepancy(generation_outputs) then
17: discrepancies ∪ = mut_input
18: end if
19: generation = generation+ 1
20: end while
21: return discrepancies
22: end procedure

the following example. Suppose we are performing differential testing between appli-

cations A and B. Now, suppose an input I1 results in a combined coverage C across A

and B, exercising 30% of the CFG edges in A and 10% of the edges in B. A different

input I2, that results in the same overall coverage C, however exercising 10% of the

edges in A and 28% of the edges of B, would not be explored further under monolithic

schemes, despite the fact that it exhibits much different behavior in each individual

application compared to input I1.

We present Nezha’s core engine in Algorithm 1. In each testing session, Nezha

examines if different inputs result in previously unseen relative execution patterns

across the tested programs. Nezha starts from a set of initial seed inputs I, and
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performs testing on a set of programs A for a fixed number of generations (n). In

each generation, Nezha randomly selects (line 4) and mutates (line 5), one input

(individual) out of the population I, and tests it against each of the programs in

A. The recorded execution paths and outputs for each application are added to

the sets of total paths and outputs observed during the current generation (lines 8-

12). Subsequently, if Nezha determines that a new execution pattern was observed

during this input execution, it adds the respective input to the input corpus, which

will be used to produce the upcoming generation (lines 13-14). Finally, if there was

a discrepancy in the outputs of the tested applications, Nezha adds the respective

input to the set of total discrepancies found (lines 16-18). Whether a discrepancy

is observed in each generation depends on the outputs of the tested programs: if at

least one application rejects an input and at least one other accepts it, a discrepancy

is logged.

4.2.2 δ-diversity Guidance

In Algorithm 1, we demonstrated that Nezha adds an input to the active corpus only

if that input exhibits a newly seen pattern. In traditional evolutionary algorithms, the

fitness of an individual for producing future generations is determined by its fitness

score. In this section, we explain how δ-diversity can be used in Nezha’s guidance

engines, both in a gray-box and a black-box setting.

4.2.2.1 Gray-box Guidance

The most prevalent guidance mechanism in gray-box testing frameworks is the code

coverage achieved by individual inputs across the sets of tested applications. Code

coverage can be measured using function coverage (i.e., the functions accessed in

one execution run), basic block coverage or edge coverage. However, as discussed

previously, this technique is not well suited for finding semantic bugs. By contrast,
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Nezha leverages relative asymmetries of the executed program paths to introduce

two novel δ-diversity path selection guidance engines, suitable for efficient differential

testing.

Suppose a program p is executing under an input i. We call the sequence of

edges accessed during this execution the execution path of p under i, denoted by

pathp,i. Tracking all executed paths (i.e., all the sequences of edges accessed in the

CFG) is impractical for large-scale applications containing multiple loops and complex

function invocations. In order to avoid this explosion in tracked states, Nezha’s gray-

box guidance uses two different approximations of the execution paths, one of coarse

granularity and the other offering finer tracking of the relative execution paths.

Path δ-diversity (coarse): Given a set of programs P that are executing under

an input i, let PCP,i be the Path Cardinality tuple ⟨|pathp1,i|, |pathp2,i|, ..., |pathp|P|,i|⟩.

Each PCP,i entry represents the total number of edges accessed in each program

pk ∈ P , for one single input i. Notice that PCP,i differs from the total coverage

achieved in the execution of programs P under i, in the sense that PCP,i does not

maintain a global, monolithic score, but a per-application count of the edges accessed,

when each program is executing under input i. Throughout an entire testing session,

starting from an initial input corpus I, the overall (coarse) path δ-diversity achieved is

the cardinality of the set containing all the above tuples: PDCoarse = |
∪

i∈I{PCP,i}|.

This representation expresses the maximum number of unique path cardinality

tuples for all programs in P that have been seen throughout the session. However,

we notice that, although the above formulation offers a semantically richer repre-

sentation of the execution, compared to total edge coverage, it constitutes a coarse

approximation of the (real) execution paths. A finer-grained representation of the

execution can be achieved if we take into account which edges, specifically, have been

accessed.

Path δ-diversity (fine): Consider the path pathp,i, which holds all edges ac-
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cessed during an execution of each program pk ∈ P under input i. Let path_setp,i

be the set consisting of all unique edges of pathp,i. Thus path_setp,i contains no du-

plicate edges, but instead holds only the CFG edges of p that have been accessed at

least once during the execution. Given a set of programs P , the (fine) path diversity

of input i across P is the tuple PDP,i = ⟨path_setp1,i, path_setp2,i, ..., path_setp|P|,i⟩.

Essentially, PDP,i acts as a ”fingerprint” of the execution of input i across all tested

programs and encapsulates relative differences in the execution paths across applica-

tions. For an entire testing session, starting from an initial input corpus I, the (fine)

path δ-diversity achieved is the cardinality of the set containing all the above tuples:

PDFine = |
∪

i∈I{PDP,i}|.

To demonstrate how the above metrics can lead to different discrepancies, let us

consider a differential testing session involving two programs A and B. Let An, Bn

denote edges in the CFG of A and B, respectively, and let us assume that a given test

input causes the paths ⟨A1, A2, A1⟩ and ⟨B1⟩ to be exercised in A and B respectively.

At this point, PDCoarse = {⟨3, 1⟩}, and PDFine = {⟨{A1, A2}, {B1}⟩}. Suppose

we mutate the current input, and the second (mutated) input now exercises paths

⟨A1, A2⟩ and ⟨B1⟩ across the two applications. After the execution of this second

input, PDFine remains unchanged, because the tuple ⟨{A1, A2}, {B1}⟩ is already in

the PDFine set. Conversely, PDCoarse will be updated to PDCoarse = {⟨3, 1⟩, ⟨2, 1⟩}.

Therefore, the new input will be considered for further mutation under a coarse

path guidance, since it increased the cardinality of the PDCoarse set, however it will

be rejected under fine δ-diversity guidance. Finally, note that if we use total edge

coverage as our metric for input selection, both the first and second inputs result

in the same code coverage of 3 edges (two unique edges for A plus one edge for B).

Thus, under a coverage-guided engine, the second input will be rejected as it does

not increase code coverage, despite the fact that it executes in a manner that has not

been previously observed across the two applications.
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4.2.2.2 Black-box Guidance

As mentioned in Section 4.1.2, Nezha’s input generation can be driven in a black-

box manner using any observable and countable program output, such as error/debug

messages, rendered or parsed outputs, return values, etc. For many applications, espe-

cially those implementing particular protocols or RFCs, such outputs often uniquely

identify deterministic execution patterns. For example, when a family of similar

programs returns different error codes/messages, any change in one test program’s

returned error relative to the error codes returned by the other programs is highly

indicative of the relative behavioral differences between them. Such output asymme-

tries can be used to guide Nezha’s path selection.

Output δ-diversity: Let p be a program which, given an input i, produces an

output op,i. We define the output diversity of a family of programs P , executing with

a single input i, as the tuple ODP,i = ⟨op1,i, op2,i, ..., op|P|,i⟩. Across a testing session

that starts from an input corpus I, output δ-diversity tracks the number of unique

output tuples that are observed throughout the execution of inputs i ∈ I across all

programs in P : |
∪

i∈I{ODP,i}|. Input generation based on output δ-diversity aims

to drive the tested applications to result in as many different output combinations

across the overall pool of programs, as possible. This metric requires no knowledge

about the internals of each application and is completely black-box. As a result,

it can even be applied on applications running on a remote server or in cases were

binary rewriting or instrumentation is infeasible.

Output δ-diversity, as defined above, is not constrained solely to return values, er-

ror codes or other forms of inter-process communication messages. Instead, the same

metric (or other metrics with similar characteristics), can be applied to graphical out-

puts as well. For instance, if to compare how different browsers render an HTML

page, or how different image viewers render a particular image, we can define output

diversity tuples by capturing the graphical output of each program and utilizing a
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unique checksum - representative of the respective image that is displayed. Addi-

tionally, one may use finer-grained metrics for different outputs op|P|,i, focusing on

particular sub-components of the rendered graphical output, or on given attributes

of interest (color accuracy, font/graphics rendering , etc.). What is formulated as

“output” in each case, will also affect the quality of the respective guidance. We

demonstrate in Section 4.2.4 that this black-box performs equally well as Nezha’s

gray-box engines for programs that support fine-grained output values.

Algorithm 2 Determine if a new pattern has been observed
1: procedure NewPattern(gen_paths, gen_outputs, GlobalState)
2: IsNew =false
3: if GlobalState.UsePDCoarse then
4: IsNew | = PDCoarse(gen_paths,GlobalState)
5: end if
6: if GlobalState.UsePDFine then
7: IsNew | = PDFine(gen_paths,GlobalState)
8: end if
9: if GlobalState.UseOD then

10: IsNew | = OD(gen_outputs,GlobalState)
11: end if
12: return IsNew
13: end procedure

As described in Algorithm 1, whenever a set of applications is tested under Nezha,

a mutated input that results in a previously unseen pattern (Algorithm 1 - lines 13-

15) is added to the active input corpus to be used in future mutations. Procedure

NewPattern is called for each input (at every generation), after all tested applications

have executed, to determine if the input exhibits a newly observed behavior and

should be added in the current corpus. The pseudocode for the routine is described

in Algorithm 2: for each of the active guidance engines in use, Nezha calls the

respective routine listed in Algorithm 3 and, if the path δ-diversity and output δ-

diversity is increased for each of the modes respectively (i.e., the input results in a

discovery of a previously unseen tuple), the mutated input is added to the current

corpus.
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Algorithm 3 Nezha path selection routines
1: ; Path δ-diversity (coarse)
2: ; @generation_paths: paths for each tested app for current input
3: ; @GS: GlobalState (bookkeeping of paths, scores, etc.)
4: procedure PDCoarse(generation_paths,GS)
5: path_card = ∅
6: for path in generation_paths do
7: path_card ∪ = {|path|}
8: end for
9: ; See if path_card tuple has been seen in the stored tuples of GlobalState

10: new_card_tuple = {⟨path_card⟩} \GS.PDC_tuples
11: if new_card_tuple ̸= ∅ then
12: ; If new, add to GlobalState and update score
13: GS.PDC_tuples ∪ = new_card_tuple
14: GlobalState.PDC_Score = |GS.PDC_tuples|
15: return true
16: end if
17: return false
18: end procedure
19:
20: ; Path δ-diversity (fine)
21: procedure PDFine(generation_paths,GS)
22: path_set = ∅
23: for path in generation_paths do
24: path_set ∪ = {path}
25: end for
26: new_paths = {⟨path_set⟩} \GS.PDF_tuples
27: if new_path_tuple ̸= ∅ then
28: GS.PDF_tuples ∪ = new_path_tuple
29: GlobalState.PDF_Score = |GS.PDF_tuples|
30: return true
31: end if
32: return false
33: end procedure
34:
35: ; Output δ-diversity
36: procedure OD(generation_outputs,GS)
37: new_output_tuple = {⟨output_tuple⟩} \GS.OD_tuples
38: if new_output_tuple ̸= ∅ then
39: GS.OD_tuples ∪ = new_output_tuple
40: GlobalState.OD_Score = |GS.OD_tuples|
41: return true
42: end if
43: return false
44: end procedure
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4.2.2.3 Automated Debugging

Nezha is designed to efficiently detect discrepancies across similar programs. How-

ever, the larger the number of reported discrepancies and the larger the number of

tested applications, the harder it is to identify unique discrepancies and to localize

the root cause of each report. To aid bug localization, Nezha stores each mutated

input in its original form throughout the execution of each generation. Nezha com-

pares any input that caused a discrepancy with its corresponding stored copy (before

the mutation occurred), and logs the difference between the two. As this input pair

differs only on the part that introduced the discrepancy, the two inputs can subse-

quently be used for delta-debugging [208] to pinpoint the root cause of the difference.

Finally, to aid manual analysis of reported discrepancies, Nezha performs a bucket-

ing of reported differences using the return values of the tested programs. Moreover,

it reports the file similarity of reported discrepancies using context-triggered piece-

wise fuzzy hashing [94]. Automated debugging and bug localization in the context of

differential testing is not trivial. Future additions in the current Nezha design, as

well as limitations of existing techniques are discussed further in Section 4.3.

4.2.3 Implementation

We present Nezha’s architecture in Figure 4.2. Nezha consists of two main com-

ponents: its core engine and its runtime library. The runtime library collects all

information necessary for Nezha’s δ-diversity guidance and subsequently passes it to

the core engine. The core engine then generates new inputs through mutations, and

updates the input corpus based on its δ-diversity guidance. We implemented Nezha

using Clang v3.8. Our implementation consists of a total of 1545 lines of C++ code,

of which 1145 correspond to the Nezha core engine and 400 to Nezha’s runtime

library.
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Figure 4.2: Nezha Architecture.

4.2.4 Experimental Evaluation

In this section, we assess the effectiveness of Nezha both in terms of finding dis-

crepancies in security-critical, real-world software, as well as in terms of its core

engine’s efficiency compared to other differential testing tools. In particular, we

evaluate Nezha by differentially testing six major SSL libraries, file format parsers,

and PDF viewers. We also compare Nezha against two domain-specific differential

testing engines, namely Frankencerts [22] and Mucerts [37], and two state-of-the-art

domain-agnostic guided mutational fuzzers: American Fuzzy Lop (AFL) [206], and

libFuzzer [105]. Our evaluation aims at answering the following research questions:

1) is Nezha effective at finding semantic bugs? 2) does it perform better than

domain-specific testing engines? 3) does it perform better than domain-agnostic

coverage-guided fuzzers? 4) what are the benefits and limitations of each of Nezha’s

δ-diversity engines?
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4.2.4.1 Experimental Setup

X.509 certificate validation: We examine six major SSL libraries, namely

OpenSSL (v1.0.2h), LibreSSL (v2.4.0), BoringSSL (f0451ca2), wolfSSL (v3.9.6),

mbedTLS (v2.2.1) and GnuTLS (v3.5.0). Each of the SSL/TLS libraries is instru-

mented with SanitizerCoverage and AdressSanitizer so that Nezha has access to the

programs’ path and output information. For each library, Nezha invokes its built-in

certificate validation routines and compares the respective error codes: if at least one

library returns an error code on a given certificate whereas another library accepts

the same certificate, this is counted as a discrepancy.

For our experiments, our pool of seed inputs consists of 205,853 DER certificate

chains scraped from the Web. Out of these, we sampled certificates to construct 100

distinct groups of 1000 certificates each. Initially, no certificate in any of the initial

100 groups introduced a discrepancy between the tested applications thus all reported

discrepancies in our results are introduced solely due to the differential testing of the

examined frameworks.

ELF and XZ parsing: We evaluate Nezha on parsers of two popular file for-

mats, namely the ELF and the XZ formats. For parsing of ELF files, we compare the

parsing implementations in the ClamAV malware detector with that of the binutils

package, which is ubiquitous across Unix/Linux systems. In each testing session,

Nezha loads a file and validates it using ClamAV and binutils (the respective val-

idation libraries are libclamav and libbfd), and either reports it as a valid ELF

binary or returns an appropriate error code. Both programs, including all their ex-

ported libraries, are instrumented to work with Nezha and are differentially tested

for a total of 10 million generations. In our experiments, we use ClamAV 0.99.2

and binutils v.2.26-1-1_all. Our seed corpus consists of 1000 Unix malware files

sampled from VirusShare [184] and a plain ‘hello world’ program.

2This refers to a git commit hash from BoringSSL’s master branch.
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Similar to the setup for ELF parsing, we compare the XZ parsing logic of ClamAV

and XZ Utils [201], the default Linux/Unix command-line decompression tool for XZ

archive files. The respective versions of the tested programs are ClamAV 0.99.2 and

xzutils v5.2.2. Our XZ seed corpus uses the XZ files from the XZ Utils test suite

(a total of 74 archives) and both applications are differentially tested for a total of

10 million generations.

PDF viewers: We evaluate Nezha on three popular PDF viewers, namely the

Evince (v3.22.1), MuPDF (v1.9a) and Xpdf (v3.04) viewers. Our pool of tested

inputs consists of the PDFs included in the Isartor [81] testsuite. All applications are

differentially tested for a total of 10 million generations. During testing, Nezha forks

a new process for each tested program, invokes the respective binary through execlp,

and uses the return values returned by the execution to the parent process to guide

the input generation using its output δ-diversity. Determined based on the return

values of the tested programs, the discrepancies constitute a conservative estimate of

the total discrepancies, because while the return values of the respective programs

may match, the rendered PDFs may differ.

All our measurements were performed on a system running Debian GNU/Linux

4.5.5-1 while our implementation of Nezha was tested using Clang version 3.8.

4.2.4.2 Effectiveness in Discovering Discrepancies

The results of our analysis with respect to the discrepancies and memory errors

found are summarized in Table 4.2. Nezha found 778 validation discrepancies and 8

memory errors in total. Each of the reported discrepancies corresponds to a unique

tuple of error codes, where at least one application accepts an input and at least

another application rejects it. Examples of semantic bugs found are presented in

Section 4.2.4.6.

We observe that, out of the total 778 discrepancies, 764 were reported during
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Table 4.2: Result Summary for our Analysis of NEZHA.

Type SSL Certificate XZ Archive ELF Binary PDF File
Discrepancies 764 5 2 7

Errors & Crashes 6 2 0 0

our evaluation of the tested SSL/TLS libraries. The disproportionately large number

of discrepancies found for SSL/TLS is attributed to the fine granularity of the error

codes returned by these libraries, as well as to the larger number of applications being

tested (six applications for SSL/TLS versus three for PDF and two for ELF/XZ).

To provide an insight into the impact that the number of tested programs has over

the total reported discrepancies, we measure the total discrepancies observed between

every pair of the six SSL/TLS libraries. In the pair-wise comparison of Table 4.3, two

different return-value tuples that have the same error codes for libraries A and B are

not counted twice for the (A, B) pair (i.e., we regard the output tuples ⟨0, 1, 2, 2, 2, 2⟩

and ⟨0, 1, 3, 3, 3, 3⟩ as one pairwise discrepancy with respect to the first two libraries).

We observe that even in cases of very similar code bases (e.g., OpenSSL and LibreSSL

which are forks of the same code base), Nezha successfully reports multiple unique

discrepancies.

Table 4.3: Number of unique pairwise discrepancies between different SSL libraries.
Note that the input generation is still guided using all of the tested SSL/TLS libraries.

LibreSSL BoringSSL wolfSSL mbedTLS GnuTLS
OpenSSL 10 1 8 33 25
LibreSSL - 11 8 19 19

BoringSSL - - 8 33 25
wolfSSL - - - 6 8

mbedTLS - - - - 31

The results presented in Table 4.2 are new reports and not reproductions of ex-

isting ones. They include multiple confirmed, previously unknown semantic error.

Moreover, Nezha was more efficient at reporting discrepancies than all guided or
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unguided frameworks we compared it against (see Sections 4.2.4.3 & 4.2.4.4 for fur-

ther details on this analysis). We present some examples of semantic bugs that have

already been identified and patched by the respective software development teams in

Section 4.2.4.6.

In addition to finding semantic bugs, Nezha was equally successful in uncover-

ing previously unknown memory corruption vulnerabilities and crashes in the tested

applications. In particular, five of them were crashes due to invalid memory accesses

(four cases in wolfSSL and one in GnuTLS), one was a memory leak in GnuTLS and

two were use-after-free bugs in ClamAV.

4.2.4.3 Comparison with State-of-the-art Domain-specific Frameworks

One may argue that being domain-independent, Nezha may not be as efficient as

successful domain-specific frameworks. To address this concern, we compared Nezha

against Frankencerts [22], a popular black-box unguided differential testing framework

for SSL/TLS certificate validation, as well as Mucerts [37], which builds on top of

Frankencerts performing Markov Chain Monte Carlo (MCMC) sampling to diversify

certificates using coverage information. Frankencerts generates mutated certificates

by randomly combining X.509 certificate fields that are decomposed from a corpus of

seed certificates. Despite its unguided nature, Frankencerts successfully uncovered a

multitude of bugs in various SSL/TLS libraries. Mucerts adapt many of Frankencerts

core components but also stochastically optimize the certificate generation process

based on the coverage each input achieves in a single application (OpenSSL). Once

the certificates have been generated from this single program, they are used as inputs

to differentially test all SSL/TLS libraries.

To make a fair comparison between Nezha, Frankencerts, and Mucerts, we ensure

that all tools are given the same sets of input seeds. Furthermore, since Frankencerts

is a black-box tool, we restrict Nezha to only use its black-box output δ-diversity
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guidance, across all experiments.

Since the input generation is stochastic in nature due to the random mutations, we

perform our experiments with multiple runs to obtain statistically sound results. In

particular, for each of the input groups of certificates we created (100 groups of 1000

certificates each), we generate 100, 000 certificate chains using Frankencerts, resulting

in a total of 10 million Frankencerts-generated chains. Likewise, passing as input each

of the above 100 corpuses, we run Nezha for 100, 000 generations (resulting in 10

million Nezha-executed inputs). Mucerts also start from the same sets of inputs and

execute in mode 2, which according to [37] yields the most discrepancies with highest

precision. We use the return value tuples of the respective programs to identify unique

discrepancies (i.e., unique tuples of return values seen during testing).
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Figure 4.3: Probability of finding at least n unique discrepancies starting from the
same seed corpus of 1000 certificates and running 100, 000 iterations. The results are
averages of 100 runs each starting with a different seed corpus.

We present the relative number and distribution of discrepancies found across

Frankencerts, Mucerts and Nezha in Figures 4.3 and 4.4. Overall, Nezha re-

ported 521 unique discrepancies, compared to 10 and 19 distinct discrepancies for
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Frankencerts and Mucerts respectively. Nezha reports 52 times and 27 times more

discrepancies than Frankencerts and Mucerts respectively, starting from the same sets

of initial seeds and running for the same number of iterations, achieving a respective

coverage increase of 15.22% and 33.48%.

510 154  73

NEZHA (Black-box)

Frankencerts
Mucerts

Distributions of Discrepancies Found

Figure 4.4: Unique discrepancies observed by Frankencerts, Mucerts and Nezha
(black-box). The results are averages of 100 runs each starting with a different seed
corpus of 1000 certificates.

We observe that, while both Frankencerts and Mucerts reported a much smaller

number of discrepancies than Nezha, they found 3 and 15 discrepancies respectively

that were missed by Nezha. We posit that this is due to the differences in their

respective mutation engines. Frankencerts and Mucerts start from a corpus of certifi-

cates, break all the certificates in the corpus into the appropriate fields (extensions,

dates, issuer , etc.), then randomly sample and mutate those fields to merge them back

together in new chains, however respecting the semantics of each field (for instance,

Frankencerts might mutate and merge the extensions of two or three certificates to

form the extensions field of a new chain but will not substitute a date field with an

extension field). On the contrary, Nezha performs its mutations sequentially, with-

out mixing together different components of the certificates in the seed corpus, as it
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does not have any knowledge of the input format.

It is noteworthy that, despite the fact that Nezha’s mutation operators are

domain-independent, Nezha’s guidance mechanism allows it to favor inputs that

are mostly syntactically correct. Compared to Frankencerts or Mucerts that mu-

tate certificates at the granularity of X.509 certificate fields, without violating the

core structure of a certificate, Nezha still yields more bugs. Finally, when running

Nezha’s mutation engine without any guidance, on the same inputs, we observe that

no discrepancies were found. Therefore, Nezha’s efficacy in finding discrepancies can

only be attributed to its black-box δ-diversity-based guidance.

4.2.4.4 Comparison with State-of-the art Coverage-guided

Domain-independent Fuzzers

None of the state-of-the-art domain-agnostic fuzzers like AFL natively support dif-

ferential testing. However, they can be adapted for differential testing by using them

to generate inputs with a single test application and then invoking the full set of

tested applications with the generated inputs. To differentially test our suite of six

SSL/TLS libraries, we first generate certificates using a coverage-guided fuzzer on

OpenSSL, and then pass these certificates to the rest of the SSL libraries, similar to

how differential testing is performed by Mucerts. The discrepancies reported across

all tested SSL libraries, if we run AFL (v. 2.35b)3 and libFuzzer on a standalone

program (OpenSSL) are reported in Figure 4.5. We notice that Nezha yields 6 times

and 3.5 times more differences per tested input, on average, than AFL and libFuzzer

respectively.

This demonstrates that driving input generation with a single application is ill-

suited for differential testing. In the absence of a widely-adopted domain-agnostic

differential testing framework, we modified libFuzzer’s guidance engine to support

3Since version 2.33b, AFL implements the explore schedule as presented in AFLFast [20], thus
we omit comparison with the latter.
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Figure 4.5: Probability of finding at least n unique discrepancies after 100, 000 exe-
cutions, starting from a corpus of 1000 certificates. The results are averages of 100
runs each starting from a different seed corpus of 1000 certificates.

differential testing using global code coverage. Apart from its guidance mechanisms,

this modified libFuzzer4 is identical to Nezha in terms of all other aspects of the

engine (mutations, corpus minimization , etc.). Even so, as shown in Figure 4.5,

Nezha still yields 30% more discrepancies per tested input. Furthermore, Nezha

also achieves 1.3% more code coverage.

4.2.4.5 Engine Evaluation

To compare the performance of Nezha’s δ-diversity engines, we run Nezha on the

six SSL/TLS libraries used in our previous experiments, enabling a single guidance

engine at a time. Before evaluating Nezha’s δ-diversity guidance, we ensured that

the discrepancies reported are a result of Nezha’s guidance and not attributed to

Nezha’s mutations. Indeed, when we use Nezha without any δ-diversity guidance,

no discrepancies were found across the SSL/TLS libraries.

4Corresponding git commit is 1f0a7ed0f324a2fb43f5ad2250fba68377076622

60



0 50 100 150 200 250

Number of unique discrepancies

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

Global coverage
(modified libFuzzer)
Path δ-diversity (coarse)
Path δ-diversity (fine)
Output δ-diversity

Figure 4.6: Probability of finding at least n unique discrepancies for each of Nezha’s
δ-diversity engines after 100, 000 executions. The results are averages of 100 runs
each starting from a different seed corpus of 1000 certificates.

Figures 4.6 and 4.7 show the relative performances of different δ-diversity engines

in terms of the number of unique discrepancies they discovered. Figure 4.6 shows

the probability of finding at least n unique discrepancies across the six tested SS-

L/TLS libraries, starting from a corpus of 1000 certificates and performing 100, 000

generations. For this experimental setting, we notice that Nezha reports at least

57 discrepancies with more than 90% probability regardless of the engine used. Fur-

thermore, all δ-diversity engines report more discrepancies than global coverage. Fig-

ure 4.7 shows the rate at which each engine finds discrepancies during execution. We

observe that both δ-diversity guidance engines report differences at higher rates than

global coverage using the same initial set of inputs.

Overall throughout this experiment, Nezha’s output δ-diversity yielded 521 dis-

crepancies, while path δ-diversity yielded 491 discrepancies, resulting in 30% and

22.75% more discrepancies than using global code coverage to drive the input gen-

eration (global coverage resulted in 400 unique discrepancies). With respect to the
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Figure 4.7: Unique discrepancies observed for each of Nezha’s δ-diversity engines
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coverage of the CFG that is achieved, output δ-diversity and path δ-diversity guid-

ance achieves 1.38% and 1.21% higher coverage then global coverage guidance (graphs

representing the coverage and population increase at each generation are presented

in Section 4.2.4.5).

Distributions of Discrepancies Found

Output δ-diversity

Path δ-diversity

Global Coverage

48

3484

26

143

Figure 4.8: Distribution of bugs found by Nezha’s δ-diversity engines versus Nezha
using global-coverage-based guidance.
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The distribution of the discrepancies reported by the different engines is presented

in Figure 4.8. We notice that 348 discrepancies have been found by all three guidance

engines, 121 discrepancies are reported using δ-diversity and 48 discrepancies are

reported by our custom libFuzzer global code coverage engine. This result is a clear

indication that δ-diversity performs differently than global code coverage with respect

to input generation, generating a broader set of discrepancies for a given time budget,

while exploring similar portions of the application CFG (1.21% difference in coverage

for the same setup).

One notable result from this experiment is that output δ-diversity, despite being

black-box, achieves equally good coverage with Nezha’s gray-box engines and even

reports more unique discrepancies. This is a very promising result as it denotes that

the internal state of an application can, in some cases, be adequately approximated

based on its outputs alone assuming that there is enough diversity in the return

values.
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Figure 4.9: Probability of finding at least n unique discrepancies across OpenSSL,
LibreSSL, and BoringSSL with Nezha running under output δ-diversity, for varying
numbers of error codes, after 100, 000 executions (average of 100 runs, starting from
a different seed corpus of 1000 certificates in each run).
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However, we expect that output δ-diversity will perform worse for applications for

which the granularity of the outputs is very coarse. For instance, the discrepancies

that will be found in an application that provides debug messages or fine-grained error

codes are expected to be more than those found in applications with less expressive

outputs, (e.g., a web application firewall that only returns ACCEPT or REJECT

based on its input). To verify this assumption, we perform an experiment with only

three SSL libraries, i.e., OpenSSL, LibreSSL and BoringSSL, in which all libraries are

only returning a subset of their supported error codes, namely at most 32, 64, 128 and

256 error codes. Our results are presented in Figure 4.9. We notice that a limit of

32 error codes results in significantly fewer discrepancies than a more expressive set

of error values. Finally, we should note that when we decreased this limit further, to

only allow 16 possible error codes across all three libraries, Nezha did not find any

discrepancies.

Coverage and population size for Nezha’s different guidance engines:

In Figures 4.10 and 4.11, we present the coverage and population increases for the

different engines of Nezha for the experimental setup of Section 4.2.4.5.

We notice that δ-diversity engines converge as the generation numbers increase,

however, in early stages of the testing process, the Path Cardinality and Path Diver-

sity metrics show the greatest increase. We notice that out baseline metric, global

edge coverage, shows marginally worse performance to this respect. A similar be-

havior can be seen in Figure 4.11, which shows the population size increase per

generation, averaged across our 100 input sets, each consisting of 1000 certificates.

As described in previous Sections, an individual is added to the population only if its

respective fitness function sees an increase in diversity with respect to previous runs.

This result, combined with the results of Figure 4.6 demonstrates that code coverage

is not as good metric for differential testing as δ-diversity, since, not only does it not

yield better results in terms of exploring new regions of the application, but it also
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shows the worst rate in discovering new discrepancies, and the lower performance in

expected number of discrepancies found.
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4.2.4.6 Case Studies of Logic Errors

ClamAV errors: Discrepancies in the file format validation logic across programs

can have dire security implications. Here we highlight two critical bugs, where Cla-

mAV fails to parse specially crafted ELF and XZ files and thus does not scan them,

despite the fact that the programs that commonly execute/extract these types of

files process them correctly. These bugs allow an attacker to launch evasion attacks

against ClamAV by injecting malware into specially crafted files.

ClamAV Mishandling of Malformed ELF Header: Nezha uncovered a discrep-

ancy in the way ClamAV and binutils handle the EI_CLASS field in the ELF header

of Unix executables. This opens up the possibility of a critical evasion attack whereby

a Unix malware with a corrupted ELF header can evade the detection of ClamAV,

while retaining its capability to execute in the host OS. According to the ELF spec-

ifications, the e_ident member of the ELF ElfXX_Ehdr struct provides a means of

encoding data for different processors and classes of machines and is the member of

the ELF header that also contains the ELF magic bytes. EI_CLASS denotes whether

a particular object file is 32-bit (0x1), 64-bit (0x2), or invalid (0x0). Values greater

than 0x2 are illegal and, if checked properly, should result in an abortion of execu-

tion. When an ELF binary has the EI_CLASS field of the ELF identification indexes

(e_ident) configured with an illegal value, ClamAV returns a CL_EFORMAT error when

parsing the file and regards the file as an invalid ELF file. If ClamAV cannot infer

the file format of the file in such situations, it skips the scanning of the file and flags

the file as clean.

Despite ClamAV not properly parsing files with such malformed ELF headers,

there is no corresponding check for this field when the executable file is invoked

directly on the system. In particular, when the binary is executed with the execve

invocation, the binary to be executed is passed to load_elf_binary,5 in which only

5located in binffmt_elf.c
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the first 4 magic bytes of the e_ident struct are checked. For this and subsequent

checks to be performed, however, the portion of the binary that is expected to contain

the ELF ehdr pointer, is first typecasted and copied to a struct inside the routine.

Thus, if the segment and section headers, as well as other critical portions are not

corrupted, they continue to hold the proper entries for symbol resolving to succeed.

Thus, if the file is an executable (has an e_type of ET_EXEC or ET_DYN), all the

segments of the file will be properly mapped to memory and execution will proceed.

1 static int cli_elf_fileheader(...) {

2 ...

3 switch(file_hdr ->hdr64.e_ident[4]) {

4 case 1:

5 ...

6 case 2:

7 ...

8 default:

9 ...

10 return CL_EFORMAT;

Listing 4.1: ClamAV code that parses the e_ident field.

1 static int load_elf_binary(struct linux_binprm *bprm) {

2 ...

3 retval = -ENOEXEC;

4 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)

5 goto out;

6 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)

7 goto out;

8 if (!elf_check_arch(&loc->elf_ex))

9 goto out;

10 ...

Listing 4.2: Error checks for ELF loading in the Linux kernel (the e_ident field

is not checked).

The mutational module of Nezha produces binaries that result in a parsing

error in ClamAV, and yet can be successfully executed when invoked directly or
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parsed through our binutils driver. To verify the exploitability of this bug, we also

download a public Unix malware sample, corrupt the ELF header with a malformed

EI_CLASS, and demonstrate that the malware can still be executed by the system,

and yet does not get flagged by ClamAV as malicious.

ClamAV Mishandling of XZ Dictionary Size Field: According to the XZ specifi-

cations [179], the LZMA2 decompression algorithm in an archive can use a dictionary

size ranging from 4kB to 4GB. The dictionary size varies from file to file and is stored

in the XZ header of a file. ClamAV differs from XZ Utils when parsing this dictionary

size field.

1 extern lzma_ret lzma_lz_decoder_init(...) {

2 ...

3 // Allocate and initialize the dictionary.

4 if (next->coder->dict.size != lz_options.dict_size) {

5 lzma_free(next->coder->dict.buf, allocator);

6 next->coder->dict.buf

7 = lzma_alloc(lz_options.dict_size , allocator);

8 ...

9

10 lzma_alloc(size_t size, const lzma_allocator *allocator) {

11 ...

12 if (allocator != NULL && allocator ->alloc != NULL)

13 ptr = allocator ->alloc(allocator ->opaque, 1, size);

14 else

15 ptr = malloc(size);

16 ...

Listing 4.3: XZ Utils parses the dictionary size correctly.

As shown in Listing 4.3, XZ Utils strictly conforms to the specifications and allo-

cates a buffer based on the permitted dictionary sizes. On the other hand, ClamAV

includes an additional check on the dictionary size that deviates from the specifica-

tions. It fails to parse archives with a dictionary size greater than 182MB (line 15

in Listing 4.4). As a result of this bug, when parsing such an archive containing a

malware, ClamAV does not consider the file as an archive, and thus skips scanning
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the compressed malware.

1 SRes LzmaDec_Allocate(.., const Byte *props, ...) {

2 ...

3 dicBufSize = propNew.dicSize;

4 if (p->dic == 0 || dicBufSize != p->dicBufSize){

5 ...

6 // Invoke __xz_wrap_alloc()

7 p->dic = (Byte *)alloc->Alloc(alloc, dicBufSize);

8 if (p->dic == 0) {

9 ...

10 return SZ_ERROR_MEM;

11 ...

12

13 void *__xz_wrap_alloc(void *unused, size_t size) {

14 // Fails if size > (182*1024*1024)

15 if(!size || size > CLI_MAX_ALLOCATION)

16 return NULL;

17 ...

Listing 4.4: ClamAV’s additional erroneous check on dictionary size.

X.509 certificate validation discrepancies

LibreSSL - Incorrect parsing of time field types: The RFC standards for X.509 certifi-

cates restrict the Time fields to only two forms, namely the ASN.1 representations of

UTCTime (YYMMDDHHMMSSZ) and GeneralizedTime (YYYYMMDDHHMMSSZ) [78] which are

13 and 15 characters wide respectively. Time fields are also encoded with an ASN.1

tag that specifies their format. Despite the standards, in practice, we observe that

11- and 17-character time fields are used in the wild, by searching within the SSL

observatory [176]. Indeed, some SSL libraries like OpenSSL and BoringSSL are more

permissive while parsing such time fields.

LibreSSL, on the other hand, tries to comply strictly with the standards when

parsing the validity time fields in a certificate. However, while doing so, LibreSSL

introduces a bug. Unlike the other libraries, LibreSSL ignores the ASN.1 time format

tag, and infers the time format type based on the length of the field (Lines 10 and
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16 in Listing 4.5). In particular, the time fields in a certificate can be crafted to trick

LibreSSL to erroneously parse the time fields using an incorrect type. For instance,

when the time field of ASN.1 GeneralizedTime type is crafted to have the same

length as the UTCTime (i.e., 13), LibreSSL treats the GeneralizedTime as UTCTime.

1 int asn1_time_parse(..., size_t len, ..., int mode) {

2 ...

3 int type = 0;

4 /* Constrain to valid lengths. */

5 if (len != UTCTIME_LENGTH && len != GENTIME_LENGTH)

6 return (-1);

7 ...

8 switch (len) {

9 case GENTIME_LENGTH:

10 // mode is "ignored" -- configured to 0 here

11 if (mode == V_ASN1_UTCTIME)

12 return (-1);

13 ...

14 type = V_ASN1_GENERALIZEDTIME;

15 case UTCTIME_LENGTH:

16 if (type == 0) {

17 if (mode == V_ASN1_GENERALIZEDTIME)

18 return (-1);

19 type = V_ASN1_UTCTIME;

20 }

21 ...

Listing 4.5: LibreSSL time field parsing bug.

As a result of this confusion, LibreSSL may erroneously treat a valid certificate

as not yet valid, when in fact it is valid; or, it may erroneously accept an expired

certificate. For example, while other libraries may interpret a GeneralizedTime time

in history, 201201010101Z as Jan 1 01:01:00 2012 GMT, LibreSSL will incorrectly

interpret this time as a UTCTime time in future, i.e., as Dec 1 01:01:01 2020 GMT.

Note that finding time fields of non-standard lengths in the wild suggests that CAs

do not actively enforce these standards length requirement. Furthermore, we also
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found certificates with GeneralizedTime times that are of the length 13 in the SSL

observatory dataset.

GnuTLS - Incorrect validation of activation time: As shown in Listing 4.6, GnuTLS

lacks a check for cases where the year is set to 0. As a result, while other SSL libraries

reject a malformed certificate causing t to be 0, GnuTLS erroneously accepts it.

1 static unsigned int check_time_status(gnutls_x509_crt_t crt, time_t now) {

2 int status = 0;

3 time_t t = gnutls_x509_crt_get_activation_time(crt);

4 if (t == (time_t) - 1 || now < t) {

5 status |= GNUTLS_CERT_NOT_ACTIVATED;

6 status |= GNUTLS_CERT_INVALID;

7 return status;

8 ...

Listing 4.6: GnuTLS activation time parsing error.

BoringSSL - Incorrect representation of KeyUsage: According to the RFC stan-

dards, the KeyUsage extension defines the purpose of the certificate key and it uses

a bitstring to represent the various uses of the key. A valid Certificate Authority

(CA) certificate must have this extension present with the keyCertSign bit set.

BoringSSL and LibreSSL differ in the way they parse the ASN.1 bitstring, which

is used for storing the KeyUsage extension in the X.509 certificates. Each bitstring

is encoded with a “padding” byte that indicates the number of least significant unused

bits in the bit representation of the structure. This byte should never be more than 7.

But if the byte is set to a value greater than 7, BoringSSL fails to parse the bitstring

and throws an error in Listing 4.7, whereas LibreSSL masks that byte with 0x07 and

continues to parse the bitstring as-is as shown in Listing 4.8.

This subtle discrepancy results in two different interpretations of the same bit-

string used in the extension. BoringSSL fails to parse the bitstring and results in

an empty KeyUsage extension. LibreSSL, by masking the padding byte, successfully

parses the extension. We also find that these libraries exhibit this discrepancy during
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the parsing of a Certificate Signing Request (CSR). This can have critical security

implications. Consider the scenario where a CA using BoringSSL parses such a CSR

presented by an attacker and does not interpret the extension correctly. The CA

misinterprets the key usages and does not detect certain blacklisted ones. In this

situation, the CA might copy the malformed extension to the issued certificate. Sub-

sequently, when the issued certificate is parsed by a client using LibreSSL, it will be

parsed with a valid keyUsage extension and thus the attacker can use the certificate

for purposes that were not intended by the CA.

1 ASN1_BIT_STRING *c2i_ASN1_BIT_STRING(..., char **pp) {

2 ...

3 p = *pp;

4 padding = *(p++);

5 // returns an error if invalid padding byte

6 if (padding > 7) {

7 OPENSSL_PUT_ERROR(ASN1, ASN1_R_INVALID_BIT_STRING_BITS_LEFT);

8 goto err;

9 }

10 ret->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07);

11 ret->flags |= (ASN1_STRING_FLAG_BITS_LEFT | i);

12 ...

Listing 4.7: BoringSSL code for validating bitstrings.

1 ASN1_BIT_STRING *c2i_ASN1_BIT_STRING(..., char **pp) {

2 ...

3 p = *pp;

4 i = *(p++);

5 // masks the padding byte, instead of with a check

6 ret->flags&= ~(ASN1_STRING_FLAG_BITS_LEFT| 0x07);

7 ret->flags|=(ASN1_STRING_FLAG_BITS_LEFT | (i&0x07));

8 ...

Listing 4.8: LibreSSL code for validating bitstrings.

PDF viewer discrepancies: As mentioned in Section 4.2.4.2, Nezha uncovered

7 unique discrepancies in the tested three PDF browsers (Evince, Xpdf and MuPDF)
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over a total of 10 million generations. Examples of the found discrepancies include

PDF files that could be opened in one viewer but not another and PDFs rendered

with different contents across viewers. One interesting discrepancy includes a PDF

that Evince treats as encrypted (thus opening it with a password prompt) but Xpdf

recognizes as unencrypted (MuPDF and Xpdf abort with errors trying to render the

file).

4.2.4.7 Memory Corruption Bugs

In addition to finding semantic bugs, by leveraging Clang’s sanitization passes,

Nezha was equally successful in uncovering memory corruption vulnerabilities and

crashes. In particular, during our experiments Nezha uncovered a total of 8 memory

errors, 5 of which were memory corruption bugs.

ClamAV use-after-free: Nezha disclosed a use-after-free heap bug in ClamAV,

which is invoked when parsing a malformed XZ archive. Before scanning a XZ archive,

ClamAV first copies it in memory into a single memory buffer. To do so, it allocates

and deallocates memory dynamically. However, every time this buffer is freed, its

address is not subsequently set to NULL. This coding error consequently leads to a

use-after-free bug in the cases where multiple blocks are present in the XZ archive.

Despite the fact that the buffer is not set to NULL when freed, the ClamAV library

only allocates new memory for the buffer if its address is not NULL. Thus, failure to set

the buffer address to NULL in an earlier free operation makes the library erroneously

skip the allocation overall. An attacker can exploit this vulnerability by sending

a malformed XZ archive that will crash ClamAV when ClamAV attempts to scan

the archive. In order for the crash to occur, the following conditions need to hold:

i) the archive must have at least two blocks, of which the number of filters in two

consecutive blocks need to be different and ii) the first block in the archive needs to

have at least one filter.
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wolfSSL memory errors: Nezha uncovered four memory corruption bugs in wolf-

SSL, all of which were marked as critical by the wolfSSL developers and patched

within six days after we reported the bugs. Two of the bugs were caused by missing

checks for malformed PEM certificate headers inside the PemToDer function, which

converts a X.509 certificate from PEM to DER format. The missing checks resulted

in out-of-bounds memory reads. The third bug was caused by a missing check for

the return value of a PemToDer call, inside the wolfSSL_CertManagerVerifyBuffer

routine, causing a segmentation fault. In this case, the structure holding the DER-

converted certificate is corrupted. Finally the fourth bug, also occurring inside

Pem2Der, resulted in an out-of-bounds read, due to a missing check on the size of the

PEM certificate to be converted. This can be triggered by an intermediate certificate

in a chain that has the correct PEM header but an empty body: the missing check

will cause Pem2Der to not return any error, which in turn results in an out-of-bounds

memory access during the subsequent steps of the verification process.

GnuTLS null pointer dereference: Nezha found a missing check inside the

gnutls_oid_to_ecc_curve routine of GnuTLS, where dereferenced pointers were

not checked to be not NULL. This bug resulted in a segmentation fault while parsing

an appropriately crafted certificate.

4.3 Discussion

In this Chapter, we presented differential diversity (δ-diversity), a novel metric to be

used for selective, context-aware guidance, and also presented and evaluated Nezha,

the first, to the best of our knowledge, generic differential fuzzer targeting both crash-

inducing and semantic bugs. We demonstrated how traditional coverage-based testing

tools can be augmented to support context-aware analyses, utilizing compile-assisted

instrumentation under δ-diversity guidance. Although being context-aware with re-
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spect to what portions of the code are executed, the compile-time instrumentation

utilized by Nezha is still agnostic to the potential similarities in the binaries of the

tested applications. This is because Nezha’s engine will give a high score to inputs

that explore new functions across the tested applications, despite the fact that these

functions might be identical. Future work could address this limitation by ignoring,

during the scoring of different inputs across binaries, functions that identified to be

identical or of similar functionality across binaries [6, 188, 41, 187]. Thus, an input

will be deemed interesting only if it explores paths that have semantic diversity across

the tested binaries, and not simply path diversity. To this end, Nezha’s engine could

build upon existing work on detection of binary similarities [59, 170, 188, 41, 187,

57, 109, 56] so as to obtain a similarity score for the functions and CFG parts of the

applications that are differentially tested, utilizing context-aware diversity metrics

that build upon the aforementioned semantic differences.
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Chapter 5

Evolutionary Testing for

Complexity Vulnerabilities

In the previous Chapter, we demonstrated how adopting context-aware guidance

may extend the scope of existing toolchains so that the latter may target broader

classes of errors. To this end, we described Nezha, which augmented state-of-the-art

evolutionary fuzzing engines to target semantic bugs, additionally to crash-inducing

vulnerabilities. To further demonstrate the agility of context-aware guidance, in this

Chapter, we will retrofit the same state-of-the-art fuzzer architecture, however to

now target algorithmic complexity vulnerabilities instead of logic bugs. To this end,

we will present and evaluate SlowFuzz, the first, to the best of our knowledge,

generic evolutionary fuzzer targeting complexity vulnerabilities. Although Nezha

and SlowFuzz are presented and evaluated, for the sake of clarity, separately, they

share the same context-agnostic components, and can serve as different facets of a

single, adaptive fuzzer, capable of targeting different types of errors based on the

analyst’s preferences.
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5.1 Background

Algorithmic complexity vulnerabilities occur when the worst-case time/space com-

plexity of an application is significantly higher than the respective average case for

particular user-controlled inputs. When such conditions are met, an attacker can

launch Denial-of-Service attacks against a vulnerable application by providing inputs

that trigger this worst-case behavior, or force the system to a state where resources

are under-utilized.

Such attacks have repeatedly been encountered in the wild, causing serious effects

on production systems, taking down entire websites [166], disabling/bypassing Web

Application Firewalls (WAF) [46], or keeping thousands of CPUs busy by merely per-

forming hash-table insertions [138, 196]. Crosby et al. [45] were the first to present

complexity attacks abusing collisions in hash table implementations and, since then,

several lines of work have explored a variety attacks related to complexity vulnera-

bilities: Cai et al. [30] leveraged complexity vulnerabilities in the Linux kernel name

lookup hash tables to exploit race conditions in the kernel access(2)/open(2) sys-

tem calls, whereas Sun et al. [171] explored complexity vulnerabilities in the name

lookup algorithm of the Linux kernel to achieve an exploitable covert timing channel.

Smith et al. [163] exploited the syntax of the Snort IDS to perform a complexity

attack resulting in slowdowns during packet inspection, whereas Shenoy et al. [158,

157] presented an algorithmic complexity attack against the popular Aho-Corasick

string searching algorithm.1

Unfortunately, detection of algorithmic complexity vulnerabilities in a domain-

independent way in practice is a hard, multi-faceted problem. It is often infeasible to

completely abandon algorithms or data structures with high worst-case complexities

without severely restricting the functionality or backwards-compatibility of an appli-

1And also proposed hardware and software-based defenses to mitigate the worst-case perfor-
mance of their attacks.
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cation. Moreover, manual time complexity analysis of real-world applications is hard

to scale, whereas asymptotic complexity analysis ignores the constant factors that can

significantly affect the application execution time despite not impacting the overall

complexity class. All these factors significantly harden the detection of algorithmic

complexity vulnerabilities.

Even when real-world applications use well-understood algorithms, time com-

plexity analysis is still non-trivial for the following reasons. First, the time/space

complexity analysis changes significantly even with minor implementation variations

(for instance, the choice of the pivot in the quicksort algorithm drastically affects

its worst-case runtime behavior [42]). Reasoning about the effects of such changes

requires significant manual effort. Second, most real-world applications often have

multiple inter-connected components that interact in complex ways. This intercon-

nection further complicates the estimation of the overall complexity, even when the

time complexity of the individual components is well understood.

Most existing detection mechanisms for algorithmic complexity vulnerabilities use

domain- and implementation-specific heuristics or rules, e.g., especially focusing on

backtracking during the matching process [198, 15, 124, 91]. However, such rules tend

to be brittle and are hard to scale to a large number of diverse domains, since their

creation and maintenance requires significant manual effort and expertise. Moreover,

keeping such rules up-to-date with newer software versions is onerous, as even minor

changes to the implementation might require significant changes in the rules.

In this Chapter, we will demonstrate how to augment existing fuzzing infrastruc-

tures to target algorithmic complexity errors. To do so, we will construct a guidance

engine that favors inputs that cause large variations in resource utilization in the

tested application, measured through the number of executed instructions or CPU

usage. We assume that our tool has gray-box access to the application binary, i.e.,

it can instrument the binary in order to harvest different fine-grained resource usage
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information from multiple runs of the binary, with different inputs. Note that our

goal is not to estimate the asymptotic complexities of the underlying algorithms or

data structures of the application. Instead, we measure the resource usage variation

in some pre-defined metric like the total edges accessed during a run, and try to

maximize that metric. Even though, in most cases, the inputs causing worst-case

behaviors under such metrics will be the ones demonstrating the actual worst-case

asymptotic behaviors, but this may not always be true due to the constant factors

ignored in the asymptotic time complexity, the small input sizes, etc.

In our threat model, we assume an attacker can provide arbitrary specially-crafted

inputs to the vulnerable software to trigger worst-case behaviors. Such a model is con-

sistent with production-level systems as most non-trivial real-world software like Web

applications and regular expression matchers need to deal with inputs from untrusted

sources. For a subset of our experiments involving regular expression matching, we

assume that attackers can control regular expressions provided to the matchers. This

is a valid assumption for a large set of applications that provide search functionality

through custom regular expressions from untrusted users.

5.2 A Motivating Example

In order to understand how feedback-driven fuzzers can provide context-aware guid-

ance to focus on complexity vulnerabilities, let us consider quicksort, one of the

simplest yet most widely used sorting algorithms. It is well-known [42] that quicksort

has an average time complexity of O(n logn) but a worst-case complexity of O(n2)

where n is the size of the input. However, finding an actual input that demonstrates

the worst-case behavior in a particular quicksort implementation depends on low-

level details like the pivot selection mechanism. If an adversary knows the actual

pivot selection scheme used by the implementation, she can use domain-specific rules
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to find an input that will trigger the worst-case behavior (e.g., the quadratic time

complexity) [115].

1 function quicksort(array):
2 /* initialize three arrays to hold
3 elements smaller, equal and greater
4 than the pivot */
5 smaller, equal, greater = [], [], []
6 if len(array) <= 1:
7 return
8 pivot = array[0]
9 for x in array:

10 if x > pivot:
11 greater.append(x)
12 else if x == pivot:
13 equal.append(x)
14 else if x < pivot:
15 smaller.append(x)
16 quicksort(greater)
17 quicksort(smaller)
18 array = concat(smaller, equal, greater)

Quicksort Inputs

8 5 3 7 9

1 5 3 7 9

1 5 6 7 9

…

Number of 
executed 

lines

37

52

67

Figure 5.1: Pseudocode for quicksort with a simple pivot selection mechanism and
overview of SlowFuzz’s evolutionary search process for finding inputs that demon-
strate worst-case quadratic time complexity. The shaded boxes indicate mutated
inputs.

However, in our setting, SlowFuzz does not know any domain-specific rules.

It also does not understand the semantics of pivot selection or which part of the

code implements the pivot selection logic, even though it has access to the quicksort

implementation. We would still like SlowFuzz to generate inputs that trigger the
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corresponding worst-case behavior and identify the algorithmic complexity vulnera-

bility.

This brings us to the following question: how can SlowFuzz automatically

generate inputs that would trigger worst-case performance in a tested binary in a

domain-independent manner? The search space of all inputs is too large to search

exhaustively. Our key intuition is that evolutionary search techniques can be used to

iteratively find inputs that are closer to triggering the worst-case behavior, if they are

properly augmented Adopting an evolutionary testing approach, SlowFuzz begins

with a corpus of seed inputs, applies mutations to each of the inputs in the corpus,

and ranks each of the inputs based on their resource usage patterns. SlowFuzz

keeps the highest ranked inputs for further mutations in upcoming generations.

To further illustrate this point, let us consider the pseudocode of Figure 5.1,

depicting a quicksort example with a simple pivot selection scheme—the first element

of the array being selected as the pivot. In this case, the worst-case behavior can

be elicited by an already sorted array. Let us also assume that SlowFuzz’s initial

corpus consists of some arrays of numbers and that none of them are completely

sorted. Executing this quicksort implementation with the seed arrays will result in

a different number of statements/instructions executed based on how close each of

these arrays are to being sorted. SlowFuzz will assign a score to each of these inputs

based on the number of statements executed by the quicksort implementation for each

of the inputs. The inputs resulting in the highest number of executed statements will

be selected for further mutation to create the next generation of inputs. Therefore,

each upcoming generation will have inputs that are closer to being completely sorted

than the inputs of the previous generations.

For example, let us assume the initial corpus for SlowFuzz consists of a single

array I = [8, 5, 3, 7, 9]. At each step, SlowFuzz picks at random an input from the

corpus, mutates it, and passes the mutated input to the above quicksort implementa-
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tion while recording the number of executed statements. As shown in Figure 5.1, the

input [8, 5, 3, 7, 9] results in the execution of 37 lines of code (LOC). Let us assume

that this input is mutated into [1, 5, 3, 7, 9] that causes the execution of 52 LOC which

is higher than the original input and therefore [1, 5, 3, 7, 9] is selected for further

mutation. Eventually, SlowFuzz will find a completely sorted array (e.g., [1, 5, 6,

7, 9] as shown in Figure 5.1) that will demonstrate the worst-case quadratic behavior.

We provide a more thorough analysis of SlowFuzz’s performance on various sorting

implementations in Section 5.3.3.2.

5.3 SlowFuzz

5.3.1 Methodology

The key observation for our methodology is that evolutionary search techniques to-

gether with dynamic analysis present a promising approach for finding inputs that

demonstrate worst-case complexity of a test application in a domain-independent way.

However, to enable SlowFuzz to efficiently find such inputs, we need to carefully

design effective guidance mechanisms and mutation schemes to drive SlowFuzz’s

input generation process. We design a new evolutionary algorithm with customized

guidance mechanisms and mutation schemes that are tailored for finding inputs caus-

ing worst-case behavior.

Algorithm 4 shows the core evolutionary engine of SlowFuzz. Initially, Slow-

Fuzz randomly selects an input to execute from a given seed corpus (line 4), which

is mutated (line 5) and passed as input to the test application (line 6). During an

execution, profiling info such as the different types of resource usage of the applica-

tion are recorded (lines 6-8). An input is scored based on its resource usage and is

added to the mutation corpus if the input is deemed as a slow unit (lines 9-12).

In the following Sections, we describe the core components of SlowFuzz’s engine,
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Algorithm 4 SlowFuzz: Report all slow units for application A after n generations,
starting from a corpus I

1: procedure DiffTest(I, A, n, GlobalState)
2: units = ∅ ;reported slowunits
3: while generation ≤ n and I ̸= ∅ do
4: input = RandomChoice(I)
5: mut_input = Mutate(input)
6: app_insn, app_outputs = Run(A,mut_input)
7: gen_insn ∪ = {app_insn}
8: gen_usage ∪ = {app_usage}
9: if SlowUnit(gen_insn, gen_usage,

GlobalState) then
10: I ← I ∪mut_input
11: units ∪ = mut_input
12: end if
13: generation = generation+ 1
14: end while
15: return units
16: end procedure

particularly the fitness function used to determine whether an input is a slow unit or

not, and the offset and type of mutations performed on each of the individual inputs

in the corpus.

5.3.1.1 Fitness Functions

As shown in Algorithm 4, SlowFuzz determines, after each execution, whether the

executed unit should be considered for further mutations (lines 9-12). SlowFuzz

ranks the current inputs based on the scores assigned to them by a fitness function and

keeps the fittest ones for further mutation. Popular coverage-based fitness functions

which are often used by evolutionary fuzzers to detect crashes, are not well suited for

our purpose as they do not consider loop iterations which are crucial for detecting

worst-case time complexity.

SlowFuzz’s input generation is guided by a fitness function based on resource

usage. Such a fitness function is generic and can take into consideration different

kinds of resource usage like CPU usage, energy, memory, etc. In order to measure
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the CPU usage in a fine-grained way, SlowFuzz’s fitness function keeps track of

the total count of all instructions executed during a run of a test program. The

intuition is that the test program becomes slower as the number of executed instruc-

tions increases. Therefore, the fitness function selects the inputs that result in the

highest number of executed instructions as the slowest units. For efficiency, we mon-

itor execution at the basic-block level instead of instructions while counting the total

number of executed instructions for a program. We found that this method is more

effective at guiding input generation than directly using the time taken by the test

program to run. The runtime of a program shows large variations, depending on the

application’s concurrency characteristics or other programs that are executing in the

same CPU, and therefore is not a reliable indicator for small increases in CPU usage.

Similarly to the fitness functions of Nezha, context-aware guidance can be extended

to multiple programs using the appropriate δ-diversity metrics. In Section 5.3.1.2, we

will examine how we can achieve context-aware prioritization in different components

of the fuzzer engine, such as in the modules responsible for the mutation operations.

5.3.1.2 Mutation Strategies

Traditionally, feedback-driven mutational fuzzers support a series of different muta-

tion operations, and randomly select the mutation to perform at each stage of the

input generation. SlowFuzz builds on top of libFuzzer, however implements a series

of novel mutation strategies that favor locality, to more effectively trigger potential

complexity vulnerabilities. Essentially, instead of blindly (i.e., in a context-agnostic

manner) selecting the mutation to be performed at each step, SlowFuzz introduces

several context-aware mutation strategies, based on partitions of both the inputs as

well as of the different mutation operators. These strategies decide which mutation

operations to apply and which byte offsets in an input to modify, to generate a new

mutated input (Algorithm 4, line 5).
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Regardless of the strategy in place, SlowFuzz supports the following mutation

operations: (i) add/remove a new/existing byte from the input; ii) randomly modify

a bit/byte in the input; iii) randomly change the order of a subset of the input bytes;

iv) randomly change bytes whose values are within the range of ASCII codes for digits

(i.e., 0x30-0x39); v) perform a crossover operation in a given buffer mixing different

parts of the input; and vi) mutate bytes solely using characters or strings from a user-

provided dictionary. In the following Section, we describe the strategies supported by

SlowFuzz. Section 5.3.3.6 presents a performance comparison of these strategies.

Random Mutations: Random mutations are the simplest mutation strategy sup-

ported by SlowFuzz. Under this mutation strategy, one of the aforementioned

mutations is selected at random and is applied on an input, as long as it does not

violate other constraints for the given testing session, such as exceeding the maximum

input length specified by the auditor. This strategy is similar to the ones used by

popular evolutionary fuzzers like AFL [206] and libFuzzer [105] for finding crashes or

memory safety issues.

Mutation Priority: Under this strategy, the mutation operation is selected with ϵ

probability based on its success at producing slow units during previous executions.

The mutation operation is picked at random with (1− ϵ) probability. In contrast, the

mutation offset is still selected at random just like the strategy described above.

In particular, during testing, we count all the cases in which a mutation operation

resulted in an increase in the observed instruction count and the number of times that

operation has been selected. Based on these values, we assign a score to each mutation

operation denoting the probability of the mutation to be successful at increasing the

instruction count. For example, a score of 0 denotes that the mutation operation has

never resulted in an increase in the number of executed instructions, whereas a score

of 1 denotes that the mutation always resulted in an increase.

We pick the highest-scoring mutation among all mutation operations with a prob-
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ability ϵ. The tunable parameter ϵ determines how often a mutation operation will be

selected at random versus based on its score. Essentially, different values of ϵ provide

different trade-offs between exploration and exploitation. In SlowFuzz, we set the

default value of ϵ to 0.5.

Offset Priority: This strategy selects the mutation operation to be applied randomly

at each step, but the offset to be mutated is selected based on prior history of success

at increasing the number of executed instructions. The mutation offset is selected

based on the results of previous executions with a probability ϵ and at random with

a probability (1 − ϵ). In the first case, we select the offset that showed the most

promise based on previous executions (each offset is given a score ranging from 0 to

1 denoting the percentage of times in which the mutation of that offset led to an

increase in the number of instructions).

Hybrid: In this last mode of operation we apply a combination of both mutation

and offset priority as described above. For each offset, we maintain an array of

probabilities of success for each of the mutation operations that are being performed.

Instead of maintaining a coarse-grained success probability for each mutation in the

mutation priority strategy, we maintain fine-grained success probabilities for each

offset/mutation operation pairs. We compute the score of each offset by computing

the average of success probabilities of all mutation operations at that offset. During

each mutation, with a probability of ϵ, we pick the offset and operation with the

highest scores. The mutation offset and operation are also picked randomly with a

probability of (1− ϵ).

5.3.2 Implementation

The SlowFuzz prototype is built atop of libFuzzer [105], a popular evolutionary

fuzzer for finding crash and memory safety bugs. We outline the implementation

details of different components of SlowFuzz below. Overall, our modifications to
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Figure 5.2: SlowFuzz Architecture.

libFuzzer consist of 550 lines of C++ code. We used Clang v4.0 for compiling our

modifications along with the rest of libFuzzer code.

Figure 5.2 shows SlowFuzz’s high-level architecture. Similar to the popular evo-

lutionary fuzzers like AFL [206] and libFuzzer [105], SlowFuzz executes in the same

address space as the application being tested. We instrument the test application

so that SlowFuzz can have access to different resource usage metrics (e.g, number

of instructions executed) needed for its analysis. The instrumented test application

subsequently is executed under the control of SlowFuzz’s analysis engine. Slow-

Fuzz maintains an active corpus of inputs to be passed into the tested applications

and refines the corpus during execution based on SlowFuzz’s fitness function. For

each generation, an input is selected, mutated, then passed into the main routine of

the application for its execution.

Instrumentation: Similar to libFuzzer, SlowFuzz’s instrumentation is based on

Clang’s SanitizerCoverage [152] passes. Particularly, SanitizerCoverage allows track-

ing of each executed function, basic block, and edge in the Control Flow Graph

(CFG). It also allows us to register callbacks for each of these events. SlowFuzz

makes use of SanitizerCoverage’s eight bit counter capability that maps each Control

Flow Graph (CFG) edge into an eight bit counter representing the number of times

that edge was accessed during an execution. We use the counter to keep track of the
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following ranges: 1, 2, 3, 4-7, 8-15, 16-31, 32-127, 128+. This provides a balance

between accuracy of the counts and the overhead incurred for maintaining them.

This information is then passed into SlowFuzz’s fitness function, which determines

whether an input is slow enough to keep for the next generation of mutations.

Mutations: LibFuzzer provides API support for custom input mutations. However,

in order to implement the mutation strategies proposed we had to modify libFuzzer

internals. Particularly, we augment the functions used in libFuzzer’s Mutator class to

return information on the mutation operation, offset, and the range of affected bytes

for each new input generated by LibFuzzer. This information is used to compute the

scores necessary for supporting mutation piority, offset priority, and hybrid

5.3.3 Evaluation

In this Section, we evaluate SlowFuzz on the following objectives: a) Is SlowFuzz

capable of generating inputs that match the theoretical worst-case complexity for

a given algorithm’s implementation? b) Is SlowFuzz capable of efficiently finding

inputs that cause performance slowdowns in real-world applications? c) How do the

different mutation and guidance engines of SlowFuzz affect its performance? d)

How does SlowFuzz compare with code-coverage-guided search at finding inputs

demonstrating worst-case application behavior?

We describe the detailed results of our evaluation in the following Sections. All

our experiments were performed on a machine with 23GB of RAM, equipped with

an Intel(R) Xeon(R) CPU X5550 @ 2.67GHz and running 64-bit Debian 8 (jessie),

compiled with GCC version 4.9.2, with a kernel version 4.5.0. All binaries were

compiled using the Clang-4.0 compiler toolchain. All instruction counts and execution

times are measured using the Linux perf profiler v3.16, averaging over 10 repetitions

for each perf execution.
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5.3.3.1 Overview

In order to adequately address the questions outlined in the previous Section, we

execute SlowFuzz on applications of different algorithmic profiles and evaluate its

ability of generating inputs that demonstrate worst case behavior.

First, we examine if SlowFuzz generates inputs that demonstrate the theoretical

worst-case behavior of well-known algorithms. We apply SlowFuzz on sorting al-

gorithms with well-known complexities. The results are presented in Section 5.3.3.2.

Subsequently, we apply SlowFuzz on different applications and algorithms that have

been known to be vulnerable to complexity attacks: the PCRE regular expression

library, the default hash table implementation of PHP, and the bzip2 binary. In all

cases, we demonstrate that SlowFuzz is able to trigger complexity vulnerabilities.

Table 5.1 shows a summary of our findings.

Table 5.1: Result Summary for Applications Tested With SlowFuzz.

Tested Application Fuzzing Outcome
Insertion sort [42] 41.59x slowdown
Quicksort (Fig 5.1) 5.12x slowdown
Apple quicksort 3.34x slowdown
OpenBSD quicksort 3.30x slowdown
NetBSD quicksort 8.7% slowdown
GNU quicksort 26.36% slowdown
PCRE (fixed input) 78 exponential &

765 superlinear regexes
PCRE (fixed regex) 8% - 25% slowdown
PHP hashtable 20 collisions in 64 keys
bzip2 decompression ~300x slowdown

As shown in Table 5.1, SlowFuzz is successful at inducing significant slowdown

on all tested applications. Moreover, when applied to the PCRE library, it man-

aged to generate regular expressions that exhibit exponential and super-linear (worse

than quadratic) matching automatically, without any knowledge of the structure of

a regular expression. Likewise, it successfully generated inputs that induce a high

number of collisions when inserted into a PHP hash table, without any notion of
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hash functions. In the following Sections, we provide details on each of the above

test settings.

5.3.3.2 Sorting

Simple quicksort and insertion sort: Our first evaluation of SlowFuzz’s con-

sistency with theoretical results is performed on common sorting algorithms with

well-known worst-performing inputs. To this end, we initially apply SlowFuzz on

an implementation of the insertion sort algorithm [42], as well as on an implemen-

tation of quicksort [42] in which the first sub-array element is always selected as the

pivot. Both of the above implementations demonstrate quadratic complexity when

the input passed to them is sorted. We run SlowFuzz for 1 million generations on

the above implementations, sorting a file with a size of 64 bytes, and examine the

slowdown SlowFuzz introduced over the fastest unit seen during testing. To do

so, we count the total instructions executed by each program for each of the inputs,

subtracting all instructions not relevant to the quicksort functionality (e.g., loader

code). Our results are presented in Figure 5.3.

Figure 5.3 represents an average of 100 runs. In each run, SlowFuzz started

execution with a single random 64 byte seed, and executed for 1 million generations.

We notice that SlowFuzz achieves 41.59x and 5.12x slowdowns for insertion sort and

quicksort respectively. In order to examine how this behavior compares to random

testing, we randomly generated 1 million inputs of 64 bytes each and measured the

instructions required for insertion sort and quicksort, respectively. Figure 5.3 depicts

the maximum slowdown achieved through random testing across all runs. We notice

that in both cases SlowFuzz outperforms the brute-force worst-input estimation.

Finally, we observe that the gap between brute-force search and SlowFuzz is much

higher for quicksort than insertion, which is consistent with the fact that average case

complexity of insertion sort is O(n2), compared to quicksort’s O(n logn). Therefore,
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Figure 5.3: Best slowdown achieved by SlowFuzz at each generation (normalized
over the slowdown of the best-performing input) versus best random testing outcome,
on our insertion sort and quicksort drivers, for an input size of 64 bytes (average of
100 runs). The SlowFuzz achieves slowdowns of 84.97% and 83.74% compared to
the theoretical worst cases for insertion sort and quicksort respectively.

a random input is more likely to demonstrate worst-case behavior for insertion sort

but not for quicksort.

Real-world quicksort implementations: We also examined how SlowFuzz per-

forms when applied to real-world quicksort implementations. Particularly, we applied

it to the Apple [76], GNU [64], NetBSD [125], and OpenBSD [104] quicksort imple-

mentations. We notice that SlowFuzz’s performance on real world implementations

is consistent with the quicksort performance that we observed in the experiments

described above. In particular, the slowdowns generated by SlowFuzz were (in in-

creasing order) 8.7%, for theNetBSD implementation, 26.36% for the GNU quicksort

implementation, 3.30x for the OpenBSD implementation and 3.34x for the Apple

implementation. We notice that, despite the fact these implementations use efficient

pivot selection strategies, SlowFuzz still manages to trigger significant slowdowns.

On the contrary, repeating the same experiment using naive coverage-based fuzzing
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yields slowdowns that never surpass 5% for any of the libraries. This is an expected

result, as coverage-based fuzzers are geared towards maximizing coverage, and thus

do not favor inputs exercising the same edges repeatedly over inputs that discover

new edges.

Finally, we note that, similar to the experiment of Figure 5.3, the slowdowns for

Figure 5.4 are also measured in terms of executed instructions, normalized over the

instructions of the best performing input seen during testing.
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Figure 5.4: Best slowdown (with respect to the best-performing input) achieved by
SlowFuzz at each generation normalized over the best random testing outcome, on
real-world quicksort implementations, for an input size of 64 bytes (average of 100
runs).

5.3.3.3 Regular Expressions

Regular expression implementations are known to be susceptible to complexity at-

tacks [196, 147, 129]. In particular, there are over 150 Regular expression Denial

of Service (ReDoS) vulnerabilities registered in the National Vulnerability Database

(NVD), which are the result of exponential (e.g., [48]) or super-linear (worse than
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quadratic) e.g., [47] complexity of regular expression matching by several existing

matchers [198].

Even performing domain-specific analyses of whether an application is susceptible

to ReDoS attacks is non-trivial. Several works are solely dedicated to the detection of

exploitation of such vulnerabilities. Recently, Rexploiter [198] presented algorithms

to detect whether a given regular expression may result in non-deterministic finite

automata (NFA) that require super-linear or exponential matching times for specially

crafted inputs. They have also presented domain-specific algorithms to generate

inputs capable of triggering such worst-case performance. The above denote the

hardness of SlowFuzz’s task, namely finding regular expressions that may result in

super-linear or exponential matching times without any domain knowledge.
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Figure 5.5: Probability of SlowFuzz finding at least n unique instances of regexes
that cause a slowdown, or exhibit super-linear and exponential matching times, after
1 million generations (inverse CDF over 100 runs).

For the regular expression setting we perform two separate experiments to check

whether SlowFuzz can produce i) regular expressions which exhibit super-linear

and exponential matching times, ii) inputs that cause slowdown during matching,
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given a fixed regular expression. To this end, we apply SlowFuzz on the PCRE

regular expression library [132] and provide it with a character set of the symbols

used in PCRE-compliant regular expressions (in the form of a dictionary). Notice

that we do not further guide SlowFuzz with respect to what mutations should be

done and SlowFuzz’s engine is completely agnostic of the structure of a valid regular

expression. In all cases, we start testing from an empty corpus without providing any

seeds of regular expressions to SlowFuzz.

Fixed string and mutated regular expressions: For the first part of our eval-

uation, we apply SlowFuzz on a binary that utilizes the PCRE library to perform

regular expression matching and we let SlowFuzz mutate the regular expression part

of the pcre2_match call used for the matching, using a dictionary of regular expres-

sion characters. The input to be matched against the regular expression is selected

from a random pool of characters and SlowFuzz executes for a total of 1 million gen-

erations, or until a time-out is hit. The regular expressions generated by SlowFuzz

are kept limited to 10 characters or less. Once a SlowFuzz session ends, we evaluate

the time complexity of the generated regular expressions utilizing Rexploiter [198],

which detects if the regular expression is super-linear, exponential, or none of the

two. We repeat the above process for a total of 100 fuzzing sessions.

Overall, SlowFuzz generates a total of 33343 regular expressions during the

above 100 sessions, out of which 27142 are rejected as invalid whereas 6201 are valid

regular expressions that caused a slowdown. Out of the valid regular expressions, 765

are superlinear and 78 are exponential. This experiment demonstrates that despite

being agnostic of the semantics of regex matching, SlowFuzz successfully generates

regexes requiring super-linear and exponential matching times. Six such examples

are presented in Table 5.2.

A detailed case study: The regexes presented in Table 5.2 are typical examples

of regular expressions that require non-linear matching running times. This happens
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Table 5.2: Sample regexes generated by SlowFuzz resulting in super-linear (greater
than quadratic) and exponential matching complexity.

Super-linear (greater than quadratic) Exponential
c*ca*b*a*b (b+)+c

a+b+b+b+a+ c*(b+b)+c
c*c+ccbc+ a(a|a*)+a

due to the existence of different paths in the respective NFAs, which reach the same

state through an identical sequence of labels. Such paths have a devastating effect

during backtracking [198]. To further elaborate on this property, let us consider the

NFA depicted in Figure 5.6, which corresponds to the regular expression (b+)+c of

Table 5.2.

q0 q1 q2

b

b

b

c

Figure 5.6: NFA for the regular expression (b+)+c suffering from exponential match-
ing complexity as found by SlowFuzz. q0 is the entry state, q2 the accept state, and
q1 the pivot state for the exponential backtracking.

We notice that, for the NFA shown in Figure 5.6, starting from state q1, it is

possible to reach q1 again, through two different paths, namely the paths (q1
b−→

q0, q0
b−→ q1) and (q1

b−→ q1, q1
b−→ q1). Moreover, we notice that the labels in the

transitions for both of the above paths are the same: ’bb’ is consumed in both cases.

Thus, as it is possible to reach q2 from q1 (via label c) as well as reach q1 from the

initial state q0, there will be an exponentially large number of paths to consider in

the case of backtracking. Similar issues arise with loops appearing in NFAs with

super-linear matching [198].

As mentioned above, on average, among the valid regular expressions generated

by SlowFuzz, approximately 12.33% of the regexes have super-linear matching com-
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plexity, whereas 2.29% on average have exponential matching complexity. The afore-

mentioned results are aggregates across all the 100 executions of the experiment. In

order to estimate the probability of SlowFuzz to generate a regex that exhibits a

slowdown,2 or super-linear and exponential matching times in a single session, we

calculate the respective inverse CDF which is shown in Figure 5.5. We notice that,

for all the regular expressions observed, SlowFuzz successfully generates inputs that

incur a slowdown during matching. In particular, with 90% probability, SlowFuzz

generates at least 2 regular expressions requiring super-linear matching time and at

least 31 regular expressions that cause a slowdown. SlowFuzz generates at least

one regex requiring exponential matching time with a probability of 45.45% .
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Figure 5.7: Best slowdown achieved by SlowFuzz-generated input strings (normal-
ized over the slowdown of the best-performing input), when matching against fixed
regular expressions used in WAFs (normalized against best performing input over an
average of 100 runs)

.

Fixed regular expression and mutated string: In the second part of our eval-

2Notice that due to SlowFuzz’s guidance engine, any regex produced must exhibit increased
instruction count as compared to all previous regexes.
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uation of SlowFuzz on regular expressions, we seek to examine if, for a given fixed

regular expression, SlowFuzz is able to generate inputs that can introduce a slow-

down during matching. We collect PCRE-compliant regular expressions from popular

Web Application Firewalls (WAF) [8], and utilized the PCRE library to match input

strings generated by SlowFuzz against each regular expression. For this experi-

ment, we apply SlowFuzz on a total of 25 regular expressions, and we record the

total instructions executed by the PCRE library when matching the regular expres-

sion against SlowFuzz’s generated units, at each generation. For our set of regular

expressions, SlowFuzz achieved monotonically increasing slowdowns, ranging from

8% to 25%. Figure 5.7 presents how the slowdown varies as fuzzing progresses, for

our regex samples.

5.3.3.4 Hash Tables

Hash tables are a core data structure in a wide variety of software. The performance of

hash table lookup and insertion operations significantly affects the overall application

performance. Complexity attacks against hash table implementations may induce

unwanted effects ranging from performance slowdowns to full-fledged DoS [138, 196,

147, 129, 48]. In order to evaluate if SlowFuzz can generate inputs that trigger

collisions without knowing any details about the underlying hash functions, we apply

it on the hash table implementation of PHP (v5.6.26), which is known to be vulnerable

to collision attacks.

PHP Hashtables: Hashtables are prevalent in PHP and they also serve as the

backbone for PHP’s array interface. PHP v5.x utilizes the DJBX33A hash function

for hashing using string keys, which can bee seen in Listing 5.1.

We notice that for two strings of the form ‘ab’ and ‘cd’ to collide, the following

property must hold [71]:

c = a+ n ∧ d = b− 33 ∗ n, n ∈ Z
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It is also easy to show that if two equal-length strings A and B collide, then strings

xAy, xBy where x and y are any prefix and suffix respectively, also collide. Using the

above property, one can construct a worst-case performing sequence of inputs [19],

forcing a worst-case insertion time of O(n2).

1 /*

2 * @arKey is the array key to be hashed

3 * @nKeyLenth is the length of arKey

4 */

5 static inline ulong

6 zend_inline_hash_func(const char *arKey, uint nKeyLength)

7 {

8 register ulong hash = 5381;

9

10 for (uint i = 0; i < nKeyLength; ++i) {

11 hash = ((hash << 5) + hash) + arKey[i];

12 }

13

14 return hash;

15 }

Listing 5.1: DJBX33A hash without loop unrolling.

Abusing the complexity characteristics of the BJBX33A hash, attackers performed

DoS attacks against PHP, Python and Ruby applications in 2011. As a response, PHP

added an option in its ini configuration to set a limit on the number of collisions

that are allowed to happen. However, in 2015, similar DoS attacks [2] were reported,

abusing PHP’s JSON parsing into hash tables. In this experiment we examine how

SlowFuzz performs when applied to this particular hash function implementation.

Our experimental setup is as follows: we ported the PHP hash table implemen-

tation so that the latter can be used in any C/C++ implementation, removing all

the interpreter-specific variables and macros, however leaving all the non interpreter-

related components intact. Subsequently, we created a hash table with a size of 64

entries, and utilized SlowFuzz to perform a maximum of 64 insertions to the hash
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Figure 5.8: Number of collisions found by SlowFuzz per generation, when applying
it on the PHP 5.6 hashtable impelemntation, for at most of 64 insertions with string
keys.

table, using strings as keys, starting from a corpus consisting of a single input that

causes 8 collisions. In particular, the keys for the hash table insertions were provided

by SlowFuzz at each generation and SlowFuzz evolved its corpus of strings using

a hybrid mutation strategy. Given a hash table of 64 entries and 64 insertions to the

hash table, the maximum number of collisions that can be performed is also 64. In

order to measure the number of collisions occurring in the hashtable at each genera-

tion, we created a PHP module (running in the context of PHP), and measured the

number of collisions induced by each input that SlowFuzz generates. We perform

our measurements after the respective elements are inserted into a real PHP array.

Our results are presented in Figure 5.8.

We notice that despite the complex conditions required to trigger a hash collision

and without knowing any details about the hash function, SlowFuzz’s evolutionary

engine reaches 31.25% of the theoretical worst-case after approximately 40 hours of

fuzzing, using a single CPU. SlowFuzz’s stateful, evolutionary guidance achieves
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monotonically increasing slowdowns, despite the complex constraints imposed by the

hash function. On the contrary, repeating the same experiment using coverage-based

fuzzing, yielded non-monotonically increasing collisions, and at no point an input

was generated causing more than 8 collisions. In particular, fuzzing using coverage

generated 58 inputs with a median of 5 collisions.

5.3.3.5 ZIP Utilities

Zip utilities that support various compression/decompression schemes are another

instance of applications that have been shown to suffer from Denial of Service attacks.

For instance, an algorithmic complexity vulnerability used in the sorting algorithms

in the bzip2 application3 allowed remote attackers to cause DoS via increased CPU

consumption, when they provided a file with many repeating inputs [128].

In order to evaluate how SlowFuzz performs when applied to the compres-

sion/decompression libraries, we apply it on bzip2 v1.0.6. In particular, we utilize

SlowFuzz to create compressed files of a maximum of 250 bytes, and we subse-

quently use the libbzip2 library to decompress them. Based on the slowdowns ob-

served during decompression, SlowFuzz evolves its input corpus, mutating each

input using its hybrid mode of operation. Our experimental results are presented in

Figure 5.9.

A detailed case study: Figure 5.9 depicts the time required by the bzip2 binary

to decompress each of the inputs generated by SlowFuzz. We notice that for the

first hour of fuzzing, the inputs generated by SlowFuzz do not exhibit significant

slowdown during their decompression by bzip2. In particular, each of the 250-byte

inputs of SlowFuzz’s corpus for the first hour of fuzzing is decompressed in ap-

proximately 0.0006 seconds. However, in upcoming generations, we observe that

SlowFuzz successfully achieves decompression times reaching 0.18s to 0.21s and an

3The vulnerability is found in BZip2CompressorOutputStream for Apache Commons Compress
before 1.4.1.
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Figure 5.9: Slowdowns observed while decompressing inputs generated by SlowFuzz
using the bzip2 binary. The maximum file size is set to 250 bytes.

overall slowdown in the range of 300x. Particularly, in the first 6 minutes after the

first hour, SlowFuzz achieves a decompression time of 0.10 sec. This first peak in

the decompression time is achieved because of SlowFuzz triggering the randomiza-

tion mechanism of bzip2, by setting the respective header byte to a non-zero value.

This mechanism, although deprecated, was put in place to protect against repetitive

blocks, and is still supported for legacy reasons. However, even greater slowdowns

are achieved when SlowFuzz mutates two bytes used in bzip2’s Move to Front

Transform (MTF) [27] and particularly in the run length encoding of the MTF re-

sult. Specifically, the mutation of these bytes affects the total number of invocations

of the BZ2_bzDecompress routine, which results in a total slowdown of 38.31x in

decompression time.

The respective code snippet in which the affected bytes are read is shown in

Listing 5.2: the GET_MTF_VAL macro reads the modified bytes in memory4. These

4Via the macros GET_BITS(BZ_X_MTF_3, zvec, zn) and GET_BIT(BZ_X_MTF_4, zj).
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bytes subsequently cause the routine BZ2_bzDecompress to be called 4845 times,

contrary to a single call before the mutation. We should note at this point, that the

total size of the input before and after the mutation remained unchanged.

Finally, in order to compare with a non complexity-targeting strategy, we repeated

the previous experiment using traditional coverage-based fuzzing. The fuzzer, when

guided only based on coverage, did not generate any input causing executions larger

than 0.0008 seconds, with the maximum slowdown achieved being 23.7%.

1 do {

2 /* Check that N doesn't get too big, so that

3 es doesn't go negative. The maximum value

4 that can be RUNA/RUNB encoded is equal

5 to the block size (post the initial RLE),

6 viz, 900k, so bounding N at 2 million

7 should guard against overflow without

8 rejecting any legitimate inputs. */

9 if (N >= 2*1024*1024) RETURN(BZ_DATA_ERROR);

10 if (nextSym == BZ_RUNA) es = es + (0+1) * N; else

11 if (nextSym == BZ_RUNB) es = es + (1+1) * N;

12 N = N * 2;

13 GET_MTF_VAL(BZ_X_MTF_3 , BZ_X_MTF_4 , nextSym);

14 }

15 while (nextSym == BZ_RUNA || nextSym == BZ_RUNB);

Listing 5.2: Excerpt from bzip2’s BZ2_decompress routine (decompress.c). A

two byte modification by SlowFuzz results in a 38.31x slowdown compared to the

previous input.

From the above experiment we observe that SlowFuzz’s guidance and mutations

engines are successful in pinpointing locations that trigger large slowdowns even in

very complex applications such as a state-of-the-art compression utility like bzip2.
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5.3.3.6 Engine Evaluation

Effect of SlowFuzz’s fitness function: In this section, we examine the effect of

using code-coverage-guided search versus SlowFuzz’s resource usage based fitness

function, particularly in the context of scanning an application for complexity vul-

nerabilities. To do so, we repeat one of the experiments of Section 5.3.3.2, applying

SlowFuzz on the OpenBSD quicksort implementation with an input size of 64 bytes,

for a total of 1 million generations, using hybrid mutations. Our results are presented

in Figure 5.10. We observe that SlowFuzz’s guidance mechanism yields significant

improvement over code-coverage-guided search. In particular, SlowFuzz achieves a

3.3x slowdown for OpenBSD, whereas the respective slowdown achieved using only

coverage-guided search is 23.41%. This is an expected result, since, as mentioned in

previous Sections, code coverage cannot encapsulate behaviors resulting in multiple

invocations of the same line of code (e.g., an infinite loop). Moreover, we notice that

the total instructions of each unit that is created by SlowFuzz at different gen-

erations is not monotonically increasing. This is an artifact of our implementation,

using SanitizerCoverage’s 8-bit counters, which provide a coarse-grained, imprecise

tracking of the real number of times each edge was invoked (Section 5.3.2). Thus, al-

though a unit might result in execution of fewer instructions, it will only be observed

by SlowFuzz’s guidance engine if the respective number of total CFG edges falls

into a separate bucket (8 possible ranges representing the total number of CFG edge

accesses). Future work can consider applying more precise instruction tracking (e.g.,

using hardware counters or utilities similar to perf) with static analyses passes, to

achieve more effective guidance.

Finally, when choosing SlowFuzz’s fitness function, we also considered the op-

tion of utilizing time-based tracking instead of performance counters. However, per-

forming time-based measurements in real-world systems is not trivial, especially at

instruction-level granularity and when multiple samples are required in order to min-
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imize measurement errors. In the context of fuzzing, multiple runs of the same input

will slow the fuzzer down significantly. To demonstrate this point, in Figure 5.10, we

also include an experiment in which the execution time of an input is used to guide

input generation. In particular, we utilized CPU clock time to measure the execution

time of a unit and discarded the unit if it was not slower than all previously seen

units. We notice that the corpus degrades due to system noise and does not achieve

any slowdown larger than 23%.5
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Figure 5.10: Comparison of the slowdown achieved by SlowFuzz under different
guidance mechanisms, when applied on the OpenBSD quicksort implementation of
Section 5.3.3.2, for an input size of 64 bytes, after 1 million generations (average of
100 runs).

Effect of mutation schemes: To highlight the different characteristics of each

of SlowFuzz’s mutation schemes described in Section 5.3.1, we repeat one of the

experiments of Section 5.3.3.2, applying SlowFuzz on the OpenBSD quicksort, each

time using a different mutation strategy. Our experimental setup is identical with

5Contrary to the slowdowns measured during fuzzing using a single run, the slowdowns presented
in Figure 5.10 are generated using the perf utility running ten iterations per input. Non-monotonic
increases denote corpus degradation due to bad input selection.
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that of Section 5.3.3.2: we sort inputs with a size of 64 bytes and fuzz for a total

of 1 million generations. For each mode of operation, we average on a total of 100

SlowFuzz sessions. Our results are presented in Figure 5.11.
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Figure 5.11: Comparison of the best slowdown achieved by SlowFuzz’s different mu-
tation schemes, at each generation, when applied on the OpenBSD quicksort imple-
mentation of Section 5.3.3.2, for an input size of 64 bytes, after 1 million generations
(average of 100 runs).

We notice that, for the above experiment, choosing a mutation at random, is

the worst performing option among all mutation options supported by SlowFuzz

(Section 5.3.1.2), however still achieving a slowdown of 2.33x over the best performing

input. Indeed, all of SlowFuzz’s scoring-based mutation engines (offset-priority,

mutation-priority and hybrid), are expected to perform at least as good as selecting

mutations at random, given enough generations, as they avoid getting stuck with

unproductive mutations. We also observe that offset priority is the fastest mode to

converge out of the other mutation schemes for this particular experiment, and results

in an overall slowdown of 3.27x.

For sorting, offsets that correspond to areas of the array that should not be mu-
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tated, are quickly penalized under the offset priority scheme, thus mutations are

mainly performed on the non-sorted portions of the array. Additionally, we observe

that mutation priority also outperforms the random scheme due to the fact that

certain mutations (e.g., crossover operations) may have devastating effects on the

sorting of the array. The mutation priority scheme picks up such patterns and avoids

such mutations. By contrast, these mutations continue to be used under the random

scheme. Finally, we observe that the hybrid mode eventually outperforms all other

strategies, achieving a 3.30x slowdown, however is the last mutation mode to start

reaching a plateau. We suspect that this results from the fact the hybrid mode does

not quickly penalize particular inputs or mutations as it needs more samples of each

mutation operation and offset pair before avoiding any particular offset or mutation

operation.

Instrumentation overhead: SlowFuzz’s runtime overhead, measured in execu-

tions per second, matches the overhead of native libFuzzer. The executions per second

achieved on different payloads are mostly dominated by the runtimes of the native

binary, as well as the respective I/O operations. Despite our choice to prototype

SlowFuzz using libFuzzer, the design and methodology presented in Section 5.3.1

can be applied to any evolutionary fuzzer and can also be implemented using Dynamic

Binary Instrumentation frameworks, such as Intel’s PIN [108], to allow for more de-

tailed runtime tracking of the application state. However, such frameworks are known

to incur slowdowns of more than 200%, even with minimal instrumentation [133]. For

instance, for our PHP hashtable experiments described in Section 5.3.3.4, an insertion

of 16 strings, resulting in 8 collisions, takes 0.02 seconds. Running the same insertion

under a PIN tool that only counts instructions, requires a total of ~2 seconds. By

contrast, hashtable fuzzing with SlowFuzz achieves up to 4000 execs/sec, unless a

significant slowdown is incurred due to a particular input.6

6Execution under SlowFuzz does not require repeated loading of the required libraries, but is
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5.4 Discussion

In this Chapter, we demonstrated that evolutionary search techniques commonly used

in fuzzing to find memory safety bugs can be adapted to find algorithmic complexity

vulnerabilities. Similar strategies should be applicable for finding other types of DOS

attacks like battery draining, filling up memory or hard disk, etc. Designing the

fitness functions and mutation schemes for detecting such bugs will be an interesting

future research problem. Besides evolutionary techniques, using other mechanisms

like Reinforcement Learning or Monte Carlo search can also be adapted for finding

inputs with worst-case resource usage.

The current prototype implementation of SlowFuzz uses the SanitizerCoverage

passes to keep track of the number of times a CFG edge is accessed. Such tracking is

limited by the total number of buckets allowed by SanitizerCoverage. This reduces

the accuracy of resource usage information as tracked by SlowFuzz since any edge

that is accessed more than 128 times is assigned to the same bucket regardless of the

actual number of accesses. Although, under its current implementation, the actual

edge count information is imprecise, this is not a fundamental design limitation of

SlowFuzz but an artifact of our prototype implementation. Alternative implemen-

tations can offer more precise tracking via custom callbacks for SanitizerCoverage,

by adopting hardware counters or by utilizing per-unit perf tracking.7 Moreover,

similar techniques can be used to target vulnerabilities regarding space or memory

complexity. However, in this case, it is necessary to perform fine-grained tracking

of operations such as heap allocations, file creations, etc. which we did not explore

in this work. Compiler-inserted monitors can be combined, towards this end, with

dynamic modules (e.g., runtime libraries), that can pinpoint the patterns in space

only dominated by the function being tested, which is only a fraction of the total execution of the
native binary (thus smaller than 0.02 seconds).

7The benefit, on the other hand, of the current implementation is that it can be incorporated into
libFuzzer’s main engine orthogonally, without requiring major changes to libFuzzer’s dependencies.

108



usage of the tested binary, and adjust input generation accordingly.

Although lines of work related with Worst-Case Execution Time (WCET) esti-

mation [180, 137, 136, 17, 16, 195] fall outside our analysis scope, the techniques

presented in this Chapter can orthogonally be combined with other frameworks tar-

geting performance bugs. For instance, recent work by Holland et al. [73] combines

static and dynamic analysis to perform analyst-driven exploration of Java programs

to detect complexity vulnerabilities. Contrary to SlowFuzz, this work requires a

human analyst to closely guide the exploration process, specifying which portions of

the binary should be analyzed statically and which dynamically as well as defining

the inputs to the binary. Integrating SlowFuzz into such a system would allow

for efficient human-assisted fuzzing, where an analyst can specify the contexts and

application components in which SlowFuzz would be most effective.

Integrating existing static analysis or hybrid techniques into SlowFuzz can fur-

ther improve its performance. Using static analysis to find potentially promising

offsets in an input for mutation will further reduce the search space and therefore

will make the search process more efficient. Along these lines, Lu et al. study a large

set of real-world performance bugs to construct a set of rules that they use to discover

new performance bugs via hand-built checkers integrated in the LLVM compiler in-

frastructure [86]. LDoctor [164] detects loop inefficiencies by implementing a hybrid

static-dynamic program analysis that leverages different loop-specific rules. Both the

above lines of work, contrary to SlowFuzz, require expert-level knowledge for cre-

ating the detection rules, and can be orthogonally be combined with it. Another

line of work that could be combined with the techniques presented in this Chapter

focuses on application profiling to detect performance bottlenecks: Ramanathanet al.

utilize flow profiling for the efficient detection of memory-related performance bugs

in Java programs [120], whereas Grechanik et al. utilize a genetic-algorithm-driven

profiler for detecting performance bottlenecks [156] in Web applications, and cluster
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execution traces to explore different combinations of the input parameter values.
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Chapter 6

Conclusion

6.1 Summary

In this dissertation we investigated the hypothesis that context-aware, adaptive anal-

yses can increase the accuracy, re-usability and scope of existing binary application

testing toolchains, as well as enable us to set the foundations for generally applicable

binary testing frameworks.

Towards this goal, we initially examined the first point of our hypothesis, i.e., how

context-aware analyses can allow for more accurate detection and reporting of errors,

and we presented a methodology under which current compilers can be extended to

prioritize errors based on their criticality, achieving more targeted static analyses. We

applied this methodology in the LLVM compiler toolchain, focusing on integer errors

as a use-case: applying information flow tracking, we augmented the compiler pipeline

to insert dynamic monitors to the compiled binary so as to report integer errors by

taking into account the context in which the errors appear in. Using the proposed

technique, the compiler no longer reports errors indiscriminately (agnostically to the

context they appear in), but instead appropriately prioritizes them based on their

likelihood to have undesired implications in the program execution.
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Subsequently, we examined how context-aware analyses that support state priori-

tization can provide adaptive testing, targeting broader classes of errors and enabling

the construction of modular infrastructure components that can be re-used across

different toolchains. To this end, we make several contributions, advancing the

state-of-the-art in compiler-assisted feedback-driven testing: Initially we introduce

differential diversity (δ-diversity) and present a methodology for achieving context-

aware guidance in feedback-driven toolchains. In the following, we demonstrate how

context-aware techniques can augment the different components (i.e., instrumenta-

tion, analysis & mutation engines) of modern evolutionary fuzzing frameworks, so

that the latter can target different types of bugs selectively. Particularly, we present

the first, to the best of our knowledge, prototypes of generic evolutionary fuzzers

targeting, additionally to crash-inducing bugs, logic errors and complexity vulnera-

bilities. We demonstrate that utilizing the proposed adaptive design paradigms, the

same fuzzer be can retrofitted to successfully target different types of errors, in dif-

ferent real-world applications, with completely different characteristics, depending on

the context of the analysis. Although, for our prototype implementations, we extend

a production-level fuzzer to target two new classes of errors, the techniques presented

are not limited to the presented error classes (i.e., complexity and logic bugs), but

instead can be applied to different feedback-driven toolchains, as well as different

classes of errors.

6.2 Discussion

We hope that this work presents a solid argument for binary application testing

frameworks to abandon traditional monolithic design primitives, and instead adopt

context-aware analyses that allow for agile, adaptive testing. Since context-aware

designs can be orthogonally applied to existing infrastructure, they can gradually be
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utilized in legacy frameworks, increasing the modularity and interoperability of the

respective toolchains. Augmenting the current software ecosystem to support adap-

tive analyses necessitates that the proper design abstractions are in place, separating

the context-specific and context-agnostic components of each testing framework. As

such, larger adoption of these designs will enable re-usability of context-agnostic mod-

ules, as well as broaden the use of context-specific modules to different applications

that may face similar constraints. For instance, the same problem of prioritization

that fuzzers face with respect to input generation, is encountered in symbolic execu-

tion engines with respect to constraint solving prioritization. Modules and algorithms

targeting state prioritization according to particular attributes can be developed, if

the appropriate abstractions are in place, for the general case, in a context-agnostic

manner, and shared across different testing frameworks. Such a task is no small feat;

however we hope that the techniques proposed in this work can lay the foundations

for more research in this direction. In the following Section we outline some fruitful

future venues for research, extending this line of work.

6.3 Future Directions

6.3.1 Semantic Abstractions

Designing and implementing generally applicable testing frameworks is a hard prob-

lem. An obstacle prohibiting the development of such generic toolchains is the lack

of appropriate abstractions, allowing to encapsulate the semantics of the applications

being tested. Despite the fact that this problem is, in general, intractable [39, 153,

26, 207, 51], there are several subproblems that can be attempted, using existing

knowledge. Unfortunately little progress has been made in the direction of modelling

the semantic properties of software and integrating these properties into the testing

ecosystem in an automated manner. As such, it is currently infeasible to construct,
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in the generic case, toolchains that allow for transfer of knowledge, not solely across

testing sessions, but, more importantly, across testing of different applications in dif-

ferent deployments. For instance, as discussed in our Introduction, a fuzzer that is

applied to a particular PDF viewer, does not “learn” properties that might be useful

in fuzzing, say, different PDF viewers, or completely different applications such as a

text editor. On the contrary, experienced human analysts manage to recognize com-

mon erroneous patterns when auditing previously unseen software, based on their

past experience.

Fortunately, the current status quo allows for research advances in this direction,

that is, towards such automated memoization of testing invariants/properties. For

example, one can apply state-of-the-art testing tools to open-source software, with

known vulnerabilities, and attempt to “learn” (e.g., utilizing neural networks), what

testing abstractions are successful in locating certain bug patterns, in an application-

agnostic manner, so as to apply this knowledge in new, previously unseen, applica-

tions. To make this example clearer, let us consider the popular case of combining

fuzzing and symbolic execution for testing, and how we can attempt to generalize

a framework combining the two techniques. A key observation is that, both fuzzers

and symbolic executors are completely agnostic to the format of real workloads, and

cannot make informed decisions during testing based on past executions or different

programs. Our goal thus, is to train our testing frameworks’ engines so that they

behave similarly to a human analyst. To do so, we need an understanding of the

following: i) what are the characteristics of different bug types from the perspec-

tive of the automated framework (i.e., an integer overflow will always affect/depend

upon particular types of instructions – can we detect this examining only the binary?

what about if we had support from the compiler or a hypervisor?) ii) what are the

expected inputs/state transitions for a particular application under normal workloads

and what components are shared across many applications (i.e., can we learn what a
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server application architecture looks like? can we distinguish what parts of an appli-

cation’s code are simple copies from an online repository?) iii) which, out of all the

available known testing methodologies, will be the ones that are predicted to be most

effective for the given application being tested (based on our models from points (i)

& (ii))?.

The quantity of today’s open-source software [63, 18, 68] allows for vast code ag-

gregation and clustering at scale. For instance, one may study what are the properties

of common bugs by examining past CVEs and by profiling the respective applications

with real workloads, training a model which will be, with the appropriate abstrac-

tions, application-agnostic, and will encapsulate the properties of given bug types.

Such training can allow for reasoning about what are the most likely successful steps

the testing framework can take in order to trigger different bugs. There exists related

work addressing some of the points mentioned above, in isolation. Future work may

focus on developing abstractions connecting the information of the aforementioned

sub-categories into a unified, automated, framework.

6.3.2 “Old” is the New “New”

Computer Science is a fairly new field, compared to, say, Mathematics or Physics.

However, in its brief history, it has seen tremendous advances and nowadays impacts

every aspect of human life. An interesting phenomenon throughout the few decades

that form the history of computing1 is that a plethora of techniques are constantly

being “reinvented”, with minor or major alterations, and re-applied in “new” settings.

Such reinventions are often very impactful, since the status quo from the era under

which a technique was formed may have changed so drastically, that the availability

of additional toolchains, analyses and resources may dramatically improve the results

of the performed analyses.

1A phenomenon not limited to this particular field.
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As such, drawing from the current line of work, it will be fruitful to revisit tech-

niques proposed in the past and augment them accordingly with novel concepts. For

instance, one may apply the differential testing methodologies presented in Chapter

4 to techniques presented in different domains such as this of system administration

and fault detection and recovery [13, 142].

More importantly, however, we should reflect on the history of software, to plan

for its future: one may consider, for instance, the implications of deploying en masse,

in the first decades of the software boom, of unsafe code, and the disproportionate

development of testing infrastructure and how that impacted the current status quo.

This knowledge can help us, as a community, to plan ahead, when deploying at scale

new technologies, such as neural networks or smart contracts, so that we don’t rush

to develop testing solutions post-mortem, but rather provide guarantees by design,

at the very creation of each new technology.
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