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ABSTRACT

Elastic Block Ciphers

Debra Lee Cook

Standard block ciphers are designed around one or a small number of block sizes. From

both a practical and a theoretical perspective, the question of how to efficiently support a

range of block sizes is of interest. In applications, the length of the data to be encrypted

is often not a multiple of the supported block size. This results in the use of plaintext-

padding schemes that impose computational and space overheads. Furthermore, a variable-

length block cipher ideally provides a variable-length pseudorandom permutation and strong

pseudorandom permutation, which are theoretical counterparts of practical block ciphers

and correspond to ideal properties for a block cipher.

The focus of my research is the design and analysis of a method for creating variable-

length block ciphers from existing fixed-length block ciphers. As the heart of the method,

I introduce the concept of an elastic block cipher, which refers to stretching the supported

block size of a block cipher to any length up to twice the original block size while incurring a

computational workload that is proportional to the block size. I create a structure, referred

to as the elastic network, that uses the round function from any existing block cipher in

a manner that allows the properties of the round function to be maintained and results

in the security of the elastic version of a block cipher being directly related to that of

the original version. By forming a reduction between the elastic and original versions, I

prove that the elastic version of a cipher is secure against round-key recovery attacks if the

original cipher is secure against such attacks. I illustrate the method by creating elastic

versions of four existing block ciphers. In addition, the elastic network provides a new

primitive structure for use in symmetric-key cipher design. It allows for the creation of

variable-length pseudorandom permutations and strong pseudorandom permutations in the

range of b to 2b bits from round functions that are independently chosen pseudorandom

permutations on b bits.
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Chapter 1 1

Chapter 1

Introduction

1.1 Overview

The focus of my research is the design and analysis of a method for creating variable-length

block ciphers, which I refer to as elastic block ciphers. Standard block ciphers are designed

around one or a small number of block sizes, with most supporting 128-bit blocks. From

both a practical and a theoretical perspective, the question of how to efficiently support a

range of block sizes is of interest. In applications, the length of the data to be encrypted

is often not a multiple of the supported block size. This results in the use of plaintext-

padding schemes [Lab93] that impose computational and space overheads by appending

bits to the data until it is an integral number of blocks. When the data being encrypted

is relatively small, the padding becomes a significant portion of the encrypted data. For

example, encrypting a database at the field or row level to allow for efficient querying can

easily result in a substantial amount of padding. When encrypting network traffic, padding

can easily cause the packet to exceed the maximum transmission unit, resulting in packet

fragmentation. When the plaintext is a length between one and two blocks, an elastic block

cipher allows all of the bits to be encrypted as a single block, avoiding the need to use a

mode of encryption and creating a stronger binding across the ciphertext bits compared to

the ciphertext produced by a mode of encryption, such as CBC. In addition, a variable-
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length block cipher ideally provides a variable-length pseudorandom permutation (PRP)

and strong PRP (SPRP), which are theoretical counterparts to practical block ciphers.

Previous proposals for converting existing block ciphers into variable-length ones fo-

cused on treating a block cipher as a black box and combining it with other operations

[BR99, PRS04]. While such an approach allows for a formal proof of security of the variable-

length block cipher under certain assumptions about the original block cipher, the resulting

constructions require multiple applications of the original block cipher, making them com-

putationally inefficient compared to padding. These methods may be valuable in providing

modes of encryption that preserve the length of the data but they do not address how to de-

sign block ciphers to support variable-length blocks. There have also been ad-hoc attempts

to design a variable-length block cipher from scratch [Ree92, Sch98].

My work provides a solution to the problems of how to create variable-length block

ciphers for practical use and how to create variable-length PRPs and SPRPs in theory. I

accomplish this by taking a new approach to designing variable-length block ciphers that

avoids the shortcomings of designing a cipher from scratch while offering an improvement

over the proposals that treat a cipher as a black box. The approach creates a variable-

length block cipher from any existing block cipher in a manner that allows the computational

workload for encrypting data to be proportional to the block size. Furthermore, the security

of the variable-length version against key recovery attacks is directly related to the security

of original cipher against such attacks. My research is also of value in that it produced a

cryptographic primitive, specifically a structure that I call the elastic network. The creation

of new primitives is valuable as existing algorithms may succumb to attacks either as result

of new analysis or increased computing resources, and in offering mechanisms that allow for

improved utilization of resources and that provide capabilities for new applications. The

elastic network may be of future use in the design of hash functions and modes of encryption,

in addition to its use in block ciphers. In relation to cryptographic building blocks, I discuss

the concept of a generic key schedule for block ciphers, which can provide implementation

benefits by eliminating the need to support a key schedule for each block cipher.
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1.2 Contributions

My main contributions are:

• Introducing the concept of an elastic block cipher, which refers to stretching the sup-

ported block size of a block cipher to any length up to twice the original block size

while incurring a computational workload that is proportional to the block size. I

call the resulting variable-length cipher the elastic version of the original cipher. My

method for constructing elastic block ciphers is novel in how it builds upon existing

block ciphers. I created a structure, the elastic network, that uses the round function

from any existing block cipher and allows bits beyond the supported block size to be

combined with bits in the supported block size that form the input to the round func-

tion. This allows the properties of the round function to be maintained and results

in the security of the elastic version of a block cipher being directly related to that of

the original version. The approach used to create elastic block ciphers falls between

that of a black box approach and an ad-hoc design approach. The round function is

treated as a black box with operations added between rounds.

• Proving that variable-length PRPs and SPRPs can be created from fixed-length PRPs

by using the elastic network. Specifically, I prove that three-round elastic network is

a variable-length PRP, the inverse of a four-round elastic network is a variable-length

PRP and a five-round elastic network is a variable-length SPRP when the round

functions are independently chosen PRPs. I also show that these are the minimum

number of rounds required. This allows for the creation of variable-length (in the range

of b to 2b bits) PRPs and SPRPs from b-bit PRPs. By combining the elastic network

with an existing construction for 2b, 3b, ...mb-bit SPRPs, where m is an integer, I can

create 2b to 2mb-bit PRPs and SPRPs from b-bit PRPs. By combining the elastic

network with a Feistel network, b to 2b-bit PRPs and SPRPs can be created from

b
2 -bit pseudorandom funtions (PRF).

• Defining the security of the elastic version of a block cipher in terms of the original

block cipher. By forming a reduction between the elastic and original versions of a

cipher, any attack on the elastic version that recovers round-key bits can be converted
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into a polynomial time and memory related attack that recovers the round-key bits for

the original cipher. All practical attacks attempt to recover round-key bits (e.g., linear

[Mat93], differential [BS93], higher order differential [Knu95] and related key [Bih93]

attacks). The significance of this result is that it proves the elastic version of a cipher

is secure against known practical attacks if the original cipher has been proven secure

against such attacks. This eliminates the need to analyze the elastic version against

every attack, instead allowing the results of such analysis on the original cipher to be

reused. My approach is the first such reduction for a variable-length block cipher that

shows how to directly use a practical attack on the variable-length version of a cipher

to attack the original cipher.

• Showing how to convert a linear attack on the elastic version of a block cipher to a

linear attack on the original fixed-length version of the block cipher in polynomial time

and memory. I also extend the result to show that any attack consisting of algebraic

equations (as opposed to only linear equations) on an elastic version of a block cipher

can be converted in polynomial time and memory to a set of equations with which to

attack the original version of the block cipher.

• Illustrating the method for constructing elastic block ciphers by applying it to four

existing block ciphers that were finalists in standards competitions: AES [NIS01b],

Camellia [AIK+00], MISTY1 [Mat00b] and RC6 [RRSY98]. I implemented elastic

versions of these ciphers in software. In order to quantify the potential space savings

achieved with an elastic block cipher, I calculated the amount of padding eliminated

when encrypting a database corresponding to customer information for an online

bookstore using an elastic block cipher.

• Showing how the probability of a differential attack on an elastic version of a block

cipher can be bounded using the probabilities for differential characteristics from the

original cipher’s round function. I apply the method to elastic versions of AES and

MISTY1 to bound the probability a differential characteristic occurs in the elastic

versions.

• Proposing a generic key schedule for block ciphers. I discuss the benefits of having
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a key schedule that is independent of any block cipher and that outputs pseudoran-

dom bits. I demonstrate that this is feasible using an existing algorithm as the key

schedule, thus showing that the concept of a generic key schedule is practical and

possible without devising a new algorithm. Having a single key schedule allows for a

common implementation to be used with multiple block ciphers. The generation of

pseudorandom expanded-key bits eliminates certain types of attacks on ciphers and

assists in preventing attacks that attempt to recover round-key bits. This is due to the

elimination of well-defined relationships (lack of randomness) between expanded-key

bits found in most existing block ciphers’ key schedules.

• Illustrating how the elastic network can be used to create new modes of encryption.

I propose two new modes as examples and provide a preliminary analysis of their

benefits and weaknesses.

1.3 Organization

The remainder of my dissertation is organized as follows: In Chapter 2, I provide an overview

of block cipher design criteria and describe previous approaches to designing variable-length

block ciphers. The first part of my research covers the design and general analysis of the

elastic network and the elastic block cipher algorithm, and theoretical aspects of my work.

These results are presented in Chapters 3 to 5. The second part of my research consists

of instantiations and applications of elastic block ciphers and the elastic network. These

components of my work are described in Chapters 6 to 10.

In Chapter 3, I define the method for constructing elastic block ciphers. I first describe

the elastic network and explain why I could not use an existing structure, specifically an

unbalanced Feistel network. Then I present the algorithm for converting fixed-length block

ciphers to elastic block ciphers. In Chapter 4, I show that the elastic network can be used

to create variable-length PRPs and SPRPs under a minimum number of rounds when the

round functions are independently chosen PRPs. I describe how the elastic network can be

combined with an existing construction for 2b, 3b, ...mb-bit SPRPs to create variable-length

PRPs and SPRPs on 2b to 2mb bits from b-bit PRPs, and how the elastic network can be
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combined with a Feistel network to create variable-length PRPs and SPRPs on b to 2b bits

from b
2 -bit PRFs. In Chapter 5, I analyze the security of elastic block ciphers in general.

I show that any attack that recovers the round-key bits of the elastic version of a cipher

implies such an attack exists on the original, fixed-length version of the cipher by creating a

reduction from the elastic version to the original version. Therefore, if the original version

is immune to such attacks, the elastic version is also immune to such attacks. In order

to provide a specific example of cryptanalysis of elastic block ciphers that is independent

of the reduction method, I consider linear cryptanalysis. I show how any set of linear

equations for an elastic block cipher can be converted in polynomial and memory time to a

set of equations for the original cipher. I extend the result to any attack involving algebraic

equations.

In Chapter 6, I describe elastic versions of AES, Camellia, MISTY1 and RC6 that I

created to demonstrate the feasibility of elastic block ciphers. For each cipher, I compare

the performance of the elastic version to the original version with padding and I apply

statistical tests to measure the randomness of the output. In Chapter 7, I discuss differential

cryptanalysis of elastic block ciphers. I define states, in terms of the differential input to

a round, that an elastic block cipher can achieve. By using the differential bounds for the

round function from the original version of a block cipher and the possible sequence of

states, I bound the probability that a differential characteristic can occur for the elastic

block cipher. This method is illustrated with the elastic versions of AES and MISTY1. In

Chapter 8, I discuss the options for key schedules of elastic block ciphers and introduce the

concept of a generic key schedule. I define requirements for a generic key schedule in order

to provide an improvement over existing key schedules. I show that an existing algorithm,

the RC4 stream cipher [Riv96], satisfies these requirements.

In the next two chapters I discuss two uses of elastic block ciphers. First, in Chapter 9,

I describe how the use of an elastic block cipher can be beneficial to database encryption

by reducing the size of the ciphertext. I use a database representing customer records of an

online bookstore as an example. Second, in Chapter 10, I illustrate how support for variable

block sizes allows for new modes of encryption by proposing two new modes of encryption.

In Chapter 11, I provide a summary of my results and describe some open problems
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related to elastic block ciphers and the elastic network. The appendices contain descriptions

of the block ciphers AES, Camellia, MISTY1 and RC6, the results for the performance and

statistical analysis of their elastic versions, and a description of RC4.
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Chapter 2

Background

2.1 Overview

This chapter provides background information on the general design criteria for block ci-

phers and on previous proposals for variable-length block ciphers. I describe the typical

structures used in block ciphers and I review the criteria used for selecting standard block

ciphers in the AES and NESSIE competitions. I describe a previous proposal by Bellare

and Rogaway for creating variable-length block ciphers that uses any existing block cipher

as a black box, and a modification by Patel, et al., to their proposal. I also briefly discuss

modes of encryption, which are covered in more detail in Chapter 10, and review ciphertext

stealing, which is a modification to modes of encryption that eliminates padding.

2.2 Block Cipher Definition and Structures

A block cipher is a type of symmetric-key cipher. A block cipher operating on b-bit inputs

is a family of permutations on b bits with the key given to the block cipher used to select

the permutation. Using the following notation:

• Let k be a q-bit key.

• Let P be a b-bit string denoting a plaintext.

• Let C be a b-bit string denoting a ciphertext.
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Definition 1. A block cipher, G, is defined as:

• An encryption function: E = {Ek} is a family of 2q permutations on b bits indexed

by k.

• A decryption function: D = {Dk} is a family of 2q permutations on b bits indexed by

k such that Dk is the inverse of Ek.

Given a plaintext, P , and key, k, if C = Ek(P ) then P = Dk(C).

In practice, a block cipher will take as input a secret key, k, and apply a function, F ,

called a key schedule, to k that expands k into an expanded key, ek, i.e., ek = F (k). In

practice, k is usually 128, 192 or 256 bits and ek is often more than 100 bytes. As discussed

in Chapter 8, the key schedules of existing block ciphers used in practice are designed to be

computationally efficient at the cost of a lack of randomness in the expanded-key bits.

Practical block ciphers can be categorized as substitution - permutation networks (SPN).

A SPN is a general term encompassing any algorithm constructed entirely from a series of

substitutions and permutations performed on the data. The terms diffusion and confusion

are commonly used to indicate the basic properties required of a block cipher. Diffusion

refers to bits influencing each other. Ideal diffusion is achieved when every bit impacts

every other bit in a manner such that changing one bit of plaintext will change each bit

of ciphertext with 50% probability. Confusion refers to the property that it should not

be possible to determine anything about the key (and thus the plaintext) when given the

ciphertext; in other words, any relationship between the key and ciphertext should be

indiscernable. The concepts of SPNs, diffusion and confusion in block ciphers were initiated

by Shannon in 1949 [Sha49]. While there is no standard formula for creating block ciphers,

the practice has been to use a series of rounds, with a round consisting of one or more

substitutions and/or permutations applied to the data. Typically, a subset of the expanded-

key bits are used in each round. Using rounds eliminates the need to devise one function

that provides sufficient diffusion and confusion on a single application, instead allowing

less complex and less computationally intense functions to be applied multiple times. This

reduces both the difficulty of analyzing the cipher and implementing the cipher. In the

competitions mentioned in Section 2.3, most finalists have taken one of two forms: either a
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series of rounds that process all bits per round, as done in AES and Serpent [ABK98], or a

Feistel network (shown in Figure 2.1) that consists of a series of rounds, but with only some

of the bits, typically half, processed in each round. One reason a Feistel network is useful

is because its inverse is the network run in reverse, thus the round function is the same for

both encryption and decryption and does not need to be invertible. Block ciphers using

Feistel networks include DES [NIS99a], MISTY1, and Camellia. Other examples include

MARS [Cop99], that uses a three-level Feistel network, and Twofish [SKW+98], that is not

a true Feistel network because it applies a one-bit rotation to part of the data between

rounds.

Figure 2.1: Balanced Feistel Network

Block ciphers are designed to minimize the impact (in terms of resources) of encryption

when processing data. Thus, simple operations such as logical operations, shifts, rotations

and table lookups are common; whereas, expensive arithmetic operations are avoided unless

they can be implemented as a table lookup. Substitution boxes (S-boxes), where specific bit

sequences are replaced via a table lookup, are designed to minimize differential and linear
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relationships. Another common step is whitening, the process of XORing the entire data

block with expanded-key bits. Whitening is typically performed at the beginning or end of

each round. It contributes to confusion by limiting an attacker’s ability to know the exact

bit values entering or exiting a round. Whitening is not beneficial in preventing differential

cryptanalysis because it will cancel out when computing the XOR of two data blocks.

2.3 Design and Selection of Standard Block Ciphers

The design criteria of block ciphers typically take into consideration factors related to per-

mitting widespread implementation in addition to security; however, the basic question of

what block size applications require is never mentioned. Instead, block sizes are dictated to

the applications. While a minimum block size, currently 128 bits, is needed for security to

prevent exhaustive searches over all plaintexts when given ciphertexts, the lack of support

for variable-length blocks above this minimum is more likely due to a general lack of pro-

posals than security and performance issues. It should also be noted that as the block size

increases, the probability of a collision (identical ciphertext blocks) decreases when encrypt-

ing streaming data with a mode of encryption, such as CBC mode. The two most well-known

recent competitions for block ciphers with the goal of producing standards were the US Na-

tional Institute of Standards and Technology (NIST) Advanced Encryption Standard (AES)

and the European Union’s New European Schemes for Signatures, Integrity and Encryption

(NESSIE) competitions. NIST selected Rijndael in 2001 [NIS01b], henceforth referred to as

AES. NESSIE recommended multiple ciphers in February, 2003. For block ciphers, MISTY1

(64-bit blocks), Camellia (128-bit blocks), AES (128-bit blocks) and SHACAL-2 (256-bit

blocks) were selected. A description of each is available in NESSIE’s report [NES03]. The

Information-Technology Security Center (ISEC) in Japan held Cryptec from 2000 to 2003

[Inf03]. Cryptec was a public call for various cryptographic functions, including block and

stream ciphers, with the intent of recommending algorithms for use by Japan’s government.

The 128-bit block ciphers deemed ”practically” secure from Cryptec’s 2001 call for pro-

posals and presented in Cryptec’s 2003 results are AES, Camellia, CIPHERUNICORN-A

[TKMN00], Hierocrypt-3 [OSK+01] and SC2000 [SYY+01]. Compared to AES and NESSIE,
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Cryptec’s call for proposals did not state formal goals and evaluation criteria for the sub-

missions (only saying the ciphers would be evaluated against a list of known attacks), and

posted only high-level results. Therefore, I focus on NIST’s and NESSIE’s criteria in my

discussion on traditional block cipher design. Besides security, the AES and NESSIE se-

lection criteria for block ciphers focused on performance and applicability for general use.

Neither required variable block sizes. NESSIE’s call for submission placed simplicity above

flexibility in key and block size, stating ”Simplicity and clarity of design are important

considerations. Variable parameter sizes are less important.” [NES03]

The AES selection criteria consisted of three general areas [NIS99b]. Most important

was security based on resistance to cryptanalysis, the soundness of the mathematical basis

and the randomness of the ciphertext. Second, the amount of system resources required

and monetary costs were considered. The system resources required for both software and

hardware implementations were taken into account. The third area referred to as algorithm

and implementation characteristics covered the ability to utilize the block cipher for other

cryptographic purposes including using it as a hash function, a random bit generator and

a stream cipher (i.e., such as via CTR mode [NIS01c]). General algorithm characteristics

included in this area were encryption and decryption using the same algorithm, ability to

implement the algorithm in both software and hardware, and simplicity of implementations.

Simplicity is important in reducing implementation errors and impacts costs, such as power

consumption, number of hardware gates and execution time. Some submissions included

the ability to handle keys and block sizes other than the 128-bit requirement. However,

with one exception, the variations from 128-bit keys and blocks only manifested themselves

in submissions allowing keys greater than 128 bits and supporting 256-bit blocks.

The NESSIE selection criteria were divided into four areas: security, market require-

ments, performance and flexibility [NES00]. Security was loosely defined as resistance to

cryptanalysis. Market requirements covered the feasibility of implementing the algorithm

both from a technical perspective (cost-efficient implementations) and business perspective

(free of licensing restrictions). Performance and flexibility covered the range of environ-

ments in which the algorithm could efficiently be implemented. Software considerations

included 8-bit processors (as found in inexpensive smart cards), 32-bit and 64-bit proces-
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sors. For hardware, both field-programmable gate arrays (FPGAs) and application-specific

integrated circuits (ASICs) were considered. Finally, the flexibility of the algorithm for use

in multiple applications and to satisfy multiple purposes was considered. NESSIE had three

categories of block ciphers. ”High security” required keys of at least 256 bits and a block

length of 128 bits. ”Normal security” required keys of at least 128 bits and a block length

of 128 bits. ”Normal legacy” required keys of at least 128 bits and a block length of 64 bits.

In all categories there was a requirement that the minimal attack workload was at least on

the order of 280 triple DES encryptions.

2.4 Variable-Length Block Ciphers

Block ciphers are, ideally, pseudorandom permutations (PRPs), which are a subset of pseu-

dorandom functions (PRFs). There has been little previous work on variable-length PRFs.

The focus has been on variable-length inputs with fixed-length outputs as applicable to

MACs and hash functions [AB99, BCK96, Ber99, BR00] and on multiples of the original

block length [HR03a, HR03b, LR88, NR99] (although the same goal is accomplished by

modes of encryption, for which there are numerous examples used in practice, e.g., CBC,

OFB, CFB, CTR ...). There has also been work on using PRPs to create PRFs [HWKS98].

While there have been proposals for variable-length block ciphers in the past, such as the

Hasty Pudding Cipher (HPC) [Sch98] and CMEA [WSK97], my intent is not to design an

ad-hoc new cipher, but to systematically build upon existing block ciphers. While designing

a cipher from scratch allows the designer to incorporate new features, such as support for

a range of block sizes, it also requires analyzing the cipher against all known attacks. HPC

was deemed to be insecure in the first round of the AES competition [NIS00]. CMEA was

used for encryption of cellular signaling messages. Aside from flaws in CMEA’s design, its

application to short blocks of data and implementations with no chaining mode contributed

to the insecurity of products using it [WSK97]. Ciphertext stealing, described in Section

2.5, is another way to avoid padding, but it does not provide computational savings.

The first proposal (and one of only two proposals using existing block ciphers without

modification) for a variable-length block cipher that converts any block cipher into one that
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accepts variable block lengths is by Bellare and Rogaway [BR99]. Their method is shown in

Figure 2.2: Bellare and Rogaway’s Variable-Length Block Cipher

Figure 2.2. Unlike my construction, Bellare and Rogaway do not modify the original block

cipher, but instead add operations around it. They treat the original cipher as a black

box and analyze the construction independently of the specific block cipher. The security

of their variable-length block cipher is defined in terms of the original cipher. Given a

(mb + y)-bit segment of plaintext and a b-bit block cipher, for 0 < y < b and m > 1, b− y

bits of padding are added before the last (rightmost) b-bit block to produce m + 1 b-bit

blocks. The data is then encrypted in CBC mode. The last block output from the CBC

mode is encrypted again and the resulting b-bit output, α, is used as input to the block

cipher in CTR mode. CTR mode is run until (m− 1)b + y bits are output. These bits are

XORed with the leftmost (m − 1)b + y bits of input, to produce u ⊕ v. The ciphertext is

the concatentation of α and and u⊕ v. Encrypting one plus a fractional block, b + y bits,

involves four applications of the block cipher (two applications in CBC mode, one more
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application to obtain α and one application in CTR mode) plus additional operations, thus

requiring more than four times the work of the original block cipher to encrypt one plus

a fractional block regardless of the number of extra bits actually encrypted (e.g., even if

the data is one bit longer than the original block length). Therefore, while their approach

preserves the length of the data, it requires at least twice the work of padding to encrypt

one plus a fractional block. The other proposal by Patel, et al., shown in Figure 2.3 is a

Figure 2.3: Variable-Length Block Cipher from Patel, et.al.

modification of Bellare and Rogaway’s method [PRS04]. The CBC portion is replaced by

a hash function, potentially reducing the amount of computation in this component of the

algorithm. Now block sizes between one and two times the original block length require one

application of a hash function and two applications of the cipher instead of four applications

of the cipher. This modified version also treats the original block cipher as a black box

with operations added around it and is computationally less efficient than padding. As I

describe in Chapter 3, elastic block ciphers are created by adding steps between rounds to
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allow the cipher to adapt to the block size. The number of rounds varies with the block

size such that the workload gradually expands to twice that of the original block cipher as

the block length expands. Only the round function of the original block cipher is treated

as a black box when creating its elastic version instead of the entire cipher being used as a

black box. This is the major methodological difference between my work and the proposals

by Bellare and Rogaway, and Patel, et al.

A related construction, and one that I will later use in combination with the elastic net-

work, is the CBC-Mask-CBC (CMC) mode of encryption by Halevi and Rogaway [HR03b].

The CMC mode allows for the creation of 2b, 3b, ...mb-bit SPRPs from b-bit PRPs, for some

integer m > 2. The CMC mode is computationally inefficient, but allows for the creation

of 2b to 2mb-bit PRPs and SPRPs when used as the round function in the elastic network.

Refer to Chapter 4.8 for a description of CMC mode.

2.5 Modes of Encryption

In addition to the security of the block cipher, the actual manner in which it is applied

(the mode of encryption) to data must be considered. Encrypting data one block at a time

(ECB mode) permits several attacks. Plaintext patterns can easily be recognized since

identical plaintext blocks will produce identical ciphertext blocks. Ciphertext blocks can

be inserted, removed or replaced if no form of authentication is performed. Therefore,

modes such as CBC have been created to prevent such attacks. The recommendations by

NIST have remained CBC, OFB, CFB and CTR for the past three years [NIS01c]. Chapter

10 contains descriptions of these modes. More recently CCM, which uses CBC to create

a message authentication code (MAC) followed by CTR mode to encrypt the MAC and

plaintext, has also been recommended by NIST [NIS04]. However, weaknesses still exist.

For example, CBC, which is the only mode recommended that does not involve using the

block cipher as a stream cipher, is subject to block-wise adaptive attacks [JMV02] and

splicing attacks. These attacks are described in Chapter 10. While splicing of ciphertext

blocks encrypted in CBC mode will garble one plaintext block with probability close to 1,

this can go unnoticed, especially when the data altered is part of an image as opposed to
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text. A MAC combined with CBC mode will indicate the data has been altered, but not

what portion has been altered. CTR, OFB and CFB are modes that utilize a block cipher

to output a key stream. Using a key stream is not suitable for all applications due to the

inability to reuse a key (a desirable feature when encrypting multiple files at separate times)

and, in scenarios where data is transmitted between two entities, when synchronization of

the key stream between the sending and receiving entities may be an issue.

I note that existing modes of encryption can be used to encrypt data without expanding

the length of the plaintext by using what is called ciphertext stealing. This method does

not provide any computational savings over padding; instead, it adds minor computational

overhead. Ciphertext stealing pads the last plaintext block using some of the ciphertext from

the previous block, and does not output the ciphertext bits used for the padding in order

to maintain the length of the plaintext. Ciphertext stealing generally works as follows: For

a block size of b bits, when encrypting nb + y bits, for an integer n ≥ 1 and integer y where

0 < y < b, the mode of encryption proceeds as normal through the last full block. b−y bits

of the last full ciphertext block are prepended to the remaining y bits of plaintext to form

the (n + 1)st block. The ciphertext consists of the output from the mode of encryption on

the first n−1 blocks, the y bits from the nth block of output that were not prepended to the

remaining y bits of plaintext and the entire b bits of output from the (n+1)st block. When

decrypting, the last block is decrypted before the next to last block, and bits from the last

plaintext block appended to the next to last (the partial) ciphertext block. This requires

switching the order of the last two blocks when decrypting and computing the length of the

last block to determine how many bits from the plaintext must be appended to the next

to last ciphertext block. Minor tweaks to these steps are needed depending on the exact

encryption mode used. For example, in CBC mode, the point at which the b− y bits from

the nth ciphertext block are prepended to the remaining y bits to form the input to the last

application of the block cipher is after the XOR of plaintext and ciphertext bits. The need

to switch the order of the last two blocks when decrypting is a disadvantage of ciphertext

stealing because changing the block order impacts the performance of high-speed hardware

encryptors. Ciphertext stealing works with any block cipher without requiring modification

to the block cipher, the only impact is to how a mode of encryption is applied to the last
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one plus fractional block of data.

2.6 Summary

A tradition of using fixed-length block ciphers and the fact that fixed-length block ciphers

are easier to design and implement than variable-length ones has contributed to lack of pro-

posals for variable-length block ciphers. Furthermore, although the standards competitions

for block ciphers have not explicitly requested submissions only support specific block sizes,

they have not required that submissions support variable-length blocks. The few previous

proposals for variable-length block ciphers fall into two categories, designing a cipher from

scratch or treating an existing cipher as a black box and using it as a component around

which to construct a variable-length block cipher. In the first category, there are currently

no variable-length block ciphers that are proven to be secure in practice. In the second

category, Bellare and Rogaway succeeded in creating a variable-length block cipher whose

security is defined in terms of the original cipher. However, both their creation and a modi-

fied version of it are computationally inefficient compared to padding. Ciphertext stealing is

another option that produces ciphertext that is the same length as the original, unpadded,

plaintext. While it works with any block cipher and does not require any alteration of the

block cipher itself, it does require minor alterations to modes of encryption and offers no

computational savings compared to padding.
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Chapter 3

Elastic Block Cipher Construction

3.1 Overview

In this chapter, I describe my algorithm for creating elastic block ciphers and the underlying

structure, the elastic network, that serves as the basis for the algorithm. The algorithm

converts the encryption and decryption functions of existing block ciphers to accept blocks

of size b to 2b bits, where b is the block size of the original block cipher. My method uses

a new network structure, the elastic network, into which the round function of the original

block cipher is inserted. This allows the properties of the original block cipher’s round

function to be reused. The elastic network creates a permutation on b+y bits from a round

function that processes b bits, where 0 ≤ y ≤ b. I neither modify the round function of the

block cipher nor decrease the number of rounds applied to each bit; instead, the method

allows bits beyond the supported block size to be combined with bits in the supported block

size.

First, I describe the elastic network and explain why I could not use an existing struc-

ture, specifically, an unbalanced Feistel network [SK96]. Second, I describe the steps for

converting any fixed-length block cipher to a variable-length block cipher. Four instantia-

tions of elastic block ciphers are described in Chapter 6.
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3.2 Elastic Network

Before introducing the elastic network, I define the following terms concerning diffusion that

are used in the descriptions of the elastic network and the elastic block cipher construction.

Definition 2. Bit Influence: Let x1 be the ith bit of input to a b-bit block cipher. Let x2

be the jth bit of output from round q of the block cipher. x1 influences x2 if changing x1

while holding all other b− 1 input bits to the block cipher constant causes x2 to change with

probability > 0.

Definition 3. Rate of Diffusion: Let x be one bit of input to a b-bit block cipher. The rate

at which x influences all bit positions is measured in terms of the number of rounds and

number of bit positions impacted.

Definition 4. Complete Diffusion: If every input bit to a b-bit block cipher influences the

value in all b bits after q rounds, then the block cipher is said to have complete diffusion in

q rounds.

Complete diffusion does not imply security and is not the same as diffusion in an ideal

block cipher where changing a single bit of input will cause each individual bit of output to

change with 50% probability. In complete diffusion, the probability each individual bit of

output changes must only be > 0% and may be 100%.

Definition 5. Active Bit: A bit (position) input to a block cipher is called active in round

j if the bit is input to the round function in round j.

Definition 6. Cycle: A cycle in a fixed-length, b-bit block cipher is the sequence of steps

in which all b bits have been processed by the round function.

For example, in AES, the round function is a cycle. In a balanced Feistel network, a se-

quence of two applications of the round function, which processes b
2 bits in each application,

is a cycle. In RC6, the sequence of four applications of the round function is a cycle.

Definition 7. Round Function for an Elastic Block Cipher: A round function in the elastic

version of a fixed-length, b-bit block cipher is a cycle of the b-bit block cipher.
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Figure 3.1: Two-Round Elastic Network

The purpose for creating the elastic network is to have a structure that enables existing

fixed-length block ciphers to be converted to variable-length block ciphers by adding steps

between rounds of the block cipher. While I did not want to use an existing block cipher

as a black box in order to gain computational efficiency compared to padding data to an

integral number of blocks, I did want to use the round function of the block cipher in order

to leverage its properties. Therefore, one of my goals was to create a structure in which

operations can be inserted between rounds of a block cipher that are independent of the

round function of the block cipher. The properties I require of the structure are:

• It provides a permutation on b + y bits for any 0 ≤ y ≤ b where b is the block size of

the fixed-length block cipher.

• It is a single, generic, construction that can be used with any block cipher.

• The round function of any existing b-bit block cipher becomes a component of the
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structure without any modifcation required to the round function.

• The number of rounds is not set by the structure, but rather the round function can

be applied as many times as needed by a specific cipher.

• The rate of diffusion for b+ y bits is defined in terms of the rate of diffusion for b bits

in the fixed-length block cipher.

• The operations involved in the structure allow for efficient implementations in terms

of time and memory requirements.

The elastic network satisfies these properties. A two-round version of the network is

shown in Figure 3.1. It works by inserting the unmodified round function (cycle) of the

original, b-bit block cipher into the network. To create a permutation on b + y bits, b bits

are input to the round function, as would normally occur in the original block cipher, and

y bits (let Y denote these bits) are omitted from the round function. After the round

function is applied, but before its output is given as input to the next application of the

round function, y of the b bits output from the round function (let X denote these y bits)

are XORed with Y , allowing Y to become part of the b bits input to the next application

of the round function. X becomes the y bits omitted from the next application of the

round function. If the original cipher is a Feistel network, a cycle of the Feistel network is

used as the round function. This allows all b bits to be processed by the round function

of the original cipher before the swap of X and Y occurs. Similarly, if the original cipher

is designed such that only a portion of the b bits is processed by the round function in

each round, the round function is defined to be the cycle in which all portions of the b bits

have been processed. RC6 is an example of a block cipher that is not a Feistel network

and whose round function impacts only a subset of its input. Any number of rounds of the

elastic network can be applied. The operations added around the round function are simple,

involving only the XOR of bits and swapping of bit segments. Finally, the rate of diffusion

is defined in terms of the rate of diffusion of the original cipher. Complete diffusion refers

to the point at which every bit of the input to the block cipher has influenced every other

bit. The elastic network requires at most one more round than the original block cipher to

obtain complete diffusion.
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Claim 3.1. If complete diffusion occurs after q rounds (cycles) in the original, fixed-length

version of a block cipher, it occurs after at most q + 1 rounds in the elastic version of the

block cipher.

Proof. A round in the elastic version of the block cipher uses a cycle from the original

version of the cipher followed by the swapping of bits. By the end of the first round, the y

bits left out of the round function have not impacted any other bits. The rate of diffusion

for the b bits input to the first round function is the same as in the original cipher. The

inputs to the second through the last application of the round function are influenced by

all b + y bits because of the XOR in the swap step after each round. Thus beginning at

the second round, all b + y bits influence the input to the round function and complete

diffusion will occur within q rounds as in the original version. The b bits output from the

(q + 1)st round function have been influenced by all b + y bits; therefore, after the swap of

bits that follows the (q + 1)st round, all b + y bits have influenced the leftmost b bits and

the rightmost y bits resulting from the swap step. Therefore, complete diffusion occurs by

the end of the (q + 1)st round in the elastic version.

3.3 Comparison of the Elastic Network to an Unbalanced

Feistel Network

The elastic network is similar to an unbalanced Feistel network. One question that arises

is why an unbalanced Feistel network cannot be used instead of the elastic network? An

unbalanced Feistel provides the benefit of being its own inverse, with the round keys used

in reverse so the round function does not have to be invertible; whereas this is not true of

the elastic network. I compare the elastic network to an unbalanced Feistel network and

explain why an unbalanced Feistel network does not possess all the properties required to

create a variable-length block cipher from any existing block cipher.

While the two networks may appear similar, it is not feasible to use an unbalanced Feistel

network to create elastic block ciphers. Figure 3.2 shows the structure of an unbalanced

Feistel network compared to the elastic network. In a (balanced) Feistel network, the block

is split into two components of equal length; whereas, in an unbalanced Feistel network
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Figure 3.2: Unbalanced Feistel Network Compared to Elastic Network

the components do not have the same length and the lengths of the round function’s input

differs from the length of its output. The elastic network also involves splitting the block

into two components, applying the round function to one component then XORing and

swapping bits between the components to form the input to the next round. However, the

elastic network differs from an unbalanced Feistel network in several ways.

1. The round function of the elastic network must be invertible; whereas, the round

function of the unbalanced Feistel network does not need to be invertible. This is

because the structures differ in what bits form the input to the round function. When

the original block cipher is a Feistel network, an elastic version is created without

requiring the original cipher’s round function be invertible by using a complete cycle

of the Feistel network as the round function.

2. In an unbalanced Feistel network the input to round i is XORed with the output of

round i + 1 to form the input to round i + 2. In the elastic network, bits from the
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outputs of rounds i and i + 1 are XORed when forming the input to round i + 2.

3. The round function maps b bits to b bits in the elastic network and maps b bits to y

bits in the unbalanced Feistel network. This alone does not prevent an unbalanced

Feistel network from being used with the round function of an existing block cipher

that maps b bits to b bits because y bits can be chosen from the output of the round

function when y ≤ b.

4. y ≤ b in the elastic network. Whereas, an unbalanced Feistel network places no

restriction on the length of y in relation to b.

5. The most important difference is that the unbalanced Feistel network provides poor

diffusion to the extent that, for r rounds and a (b+y)-bit block, b−y(r−1) bits of input

appear in the output. Therefore, when encrypting data, part of the plaintext appears

in the ciphertext when y(r − 1) < b. In contrast, the elastic network guarantees

complete diffusion in at most one more round than the original cipher. Even when

r is large enough to prevent input bits from appearing in the output for all y, where

0 < y ≤ b, an unbalanced Feistel network provides no guarantee on the rate of

diffusion. Instead, the rate of diffusion depends on the specific round function. This

is due to the second and third items.

It is the last item that prevents an unbalanced Feistel network from being used to convert

existing block ciphers to variable-length block ciphers. Obviously, when y(r − 1) < b, such

a cipher is insecure. Even if the number of rounds is set so y(r − 1) ≥ b, an unbalanced

Fiestel network is not suitable for creating a variable-length block cipher by inserting the

round function of an existing block cipher into the network. In order to (attempt) to use an

unbalanced Feistel network with a round function of an existing block cipher that takes a

b-bit input to create a variable-length block cipher, the block will be divided into b-bit and

y-bit portions where y ≤ b and y bits will be selected from the round function’s output to

use in the XOR. However, this can result in poor diffusion. The round functions of block

ciphers used in practice do not provide complete diffusion in a single round (which is one

reason for multiple rounds). I consider what happens in an unbalanced Feistel network

when y < b and if all input bits to the round function do not impact all output bits. If one
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of the b bits, let q be the position of this bit, input to the round function does not impact

the bit positions that are involved in the XOR with the y bits and the bit in position q

only influences bits in the rightmost y bits of the output, then the bit in position q going

into round i will have no influence in the (i + 1)st round. In fact, the round function in

an unbalanced Feistel network must be defined very carefully; otherwise, it is possible for

certain bits to have no impact on the other bits over several rounds. It is precisely this

reason why an unbalanced Feistel network cannot be used to generically create variable-

length block ciphers from existing ciphers by using an unmodified round function in the

same manner as the elastic block cipher algorithm. I require a network structure that

allows ”plugging in” the round function from any existing block cipher and viewing the

round function as a black box while at the same time providing the same level of security as

the original cipher (in that the elastic block cipher is immune to any practical attack that

recovers key or round-key bits to which the original cipher is immune). Using an unbalanced

Feistel network to create variable-length block ciphers would require analyzing the round

function to determine how many rounds are needed for sufficient diffusion and to prevent

each type of attack, Therefore, an unbalanced Feistel network does not provide a generic

structure for creating variable-length block ciphers from existing block ciphers by inserting

the block cipher’s round function into the network.

3.4 Elastic Block Cipher Algorithm

The method for converting a fixed-length block cipher into an elastic block cipher involves

inserting the block cipher’s round function (cycle) into the elastic network. Also, I add (or

expand from the original cipher) whitening steps, and I add a key-dependent permutation

before the first round and after the last round. The general structure of the method is

shown in Figure 3.3. The following notation and terms will be used in the description and

analysis of the elastic block cipher:

Notation:

• G denotes any existing block cipher with a fixed-length block size that is structured

as a sequence of rounds. By default, any block cipher that is not structured as a
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sequence of rounds is viewed as having a single round.

• r denotes the number of rounds (cycles) in G.

• b denotes the block length of the input to G in bits.

• y is an integer in the range [0, b].

• G′ denotes the modified G with a (b+ y)-bit input for any valid value of y. G′ will be

referred to as the elastic version of G.

• r′ denotes the number of rounds in G′.

• The round function of G′ will refer to one entire cycle of G, as defined in Section 3.2.

Figure 3.3: Elastic Block Cipher Structure

The process of converting a fixed-length block cipher into an elastic block cipher involves

inserting the round function (cycle) of the block cipher into the elastic network, adding

initial and final key-dependent permutations, adding or expanding initial and end of round
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whitening, and determining the number of rounds required. Given a block cipher G with a

b-bit block size, the following modifications are made to G to convert it to its elastic version,

G′, that can process b + y bits, for 0 ≤ y ≤ b.

1. Set the number of rounds, r′, such that each of the b+ y bits is input to and active in

the same number of rounds (cycles) in G′ as each of the b bits is in G. r′ = r + d ry
b e.

2. Apply initial and end of round whitening (XORing with expanded-key bits) to all b+y

bits. If G includes these whitening steps, the steps are modified to include all b + y

bits. If G does not have these whitening step, the steps are added when creating

G′. In either case, additional bits of expanded-key material are required beyond the

amount needed for G.

3. Prior to the first round and after the last round, apply a key-dependent mixing step

that permutes or mixes the bits in a manner that any individual bit is not guaranteed

to be in the rightmost y bits with a probability of 1. The leftmost b bits that are

output from the initial mixing step are the input to the first round function. The

initial mixing step is between the initial whitening and first round function. The final

mixing step is after the last round function and prior to the final whitening.

4. Alternate which y bits are left out of the round function by XORing the y bits left

out of the previous round function with y bits from the round function’s output, then

swap the result with the y bits left out of the previous round. This step is performed

after the end of round whitening. Specifically:

(a) Let Y denote the y bits that were left out of the round function.

(b) Let X denote some subset of y bits from the round function’s output of b bits.

A different set of X bits (in terms of position) is selected in each round. How to

select X is discussed in Section 3.5.

(c) Set Y ← X ⊕ Y .

(d) Swap X and Y to form the input to the next round.
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This step will be referred to as “swapping” or the “swap step,” and may be added to

the last round if it is required that all rounds be identical. However, having the swap

step after the last round does not provide additional security.

The result, G′, is a permutation on b + y bits. Its inverse, the decryption function, consists

of the network applied in reverse and the round function replaced by its inverse.

3.5 Explanation of Algorithm

The method is designed for G′ to be equivalent to G, with the possible addition of whitening

and the key-dependent mixing steps, when the data is an integral number of b-bit blocks,

while accommodating a range of b to 2b-bit blocks. The construction allows the round

function of G to be reused and thus builds upon the round function’s properties, including

its differential and linear bounds. The following is an explanation of why specific steps are

included in the construction.

Step 1: Each bit position of the input is required to be active in the same number of

rounds in G′ as the number of rounds in which each bit is active in G. This requirement

allows the computational workload to increase proportionately to the block size while avoid-

ing a reduced round attack on G from being applied to G′. As y increases, the number of

rounds increases gradually from r + 1 when 0 < ry
b ≤ 1 to 2r when r − 1 < ry

b ≤ r.

Step 2: Whitening is a useful heuristic against attacks that relate the output of a round

to the input of the next round. The whitening steps assist in letting rounds work in isolation

from each other in that the input to a round is unknown even when given the output of the

previous round. In differential cryptanalysis, whitening does not impact the probability of a

differential characteristic holding across the rounds of a block cipher because the whitening

cancels with itself when computing the XOR of two inputs or outputs of a round. Linear

cryptanalysis is an example of an attack whitening helps to prevent. In linear cryptanalysis,

linear relationships amongst the plaintext, ciphertext and key bits are now based on the

input of the ith round being the output of the (i − 1)st round ⊕ whitening as opposed to

being equal to the output of the (i− 1)st round.
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Step 3: A key-dependent permutation or mixing of bits prior to the first round when

encrypting or decrypting eliminates a one round differential that occurs with a probability

of 1. This allows the first round to contribute to preventing a differential attack. The

mixing step will need to take less time than a single round; otherwise, an additional round

can be added instead to decrease the probability of a specific differential occurring. A

trivial mixing that prevents the attacker from knowing with probability 1 which y bits

are excluded from the first round is a key-dependent rotation. The implementations of

elastic block ciphers described later contain a key-dependent permutation that performed

the following operations: If the data block was 8(x1)+x2 bits where x1 and x2 are integers

and 0 ≤ x2 < 8, the x1 leftmost bytes are rotated to left n1 bytes where n1 is determined

from an expanded-key byte. The remaining x2 bits (in the case where b+y is not an integral

number of bytes) are then swapped with bits from the (n2)th byte of the leftmost 8(x1)

bits where n2 is determined by an expanded-key byte. The key-dependent mixing steps

are assumed to be designed in a sensible manner. For example, the inverse of the round

function would not be used.

Step 4: X ⊕ Y is performed instead of merely swapping X and Y in order to increase

the rate of diffusion. If G does not have complete diffusion in one round, then at the end

of the first round there is some subset S of bits output from the round that have not been

impacted by some of the bits in X. While the bits in Y may impact S in the second round,

swapping X and Y would result in the bits in X having no impact in the second round;

whereas, swapping X with X ⊕ Y will allow the bits in X to impact the second round.

Per Claim 3.1, complete diffusion in the elastic version of a block cipher takes at most one

more round (cycle) than in the original version. As shown in Chapter 5.2 when proving

that there is a direct relationship between the security of G′ and the security of G, the

relationship is independent of the bit positions involved in the swap step. In practice when

implementing elastic block ciphers, I chose to vary the bit positions selected for X to ensure

that all bit positions are involved in both the b-bit and y-bit components, as opposed to

always selecting the same y positions for use in X. Varying the positions also increases

the diffusion amongst the bits, as a bit in position q1 that is swapped out at the end of

round i then is swapped into position q2 at the end of round i + 1, where q1 and q2 are in
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the leftmost b bits, influences the input to the (i + 1)st round function in the qth
1 bit due

to the XOR and will influence the input to the (i + 2)nd round function in the qth
2 bit. If

all input bits to the round are utilized in the same manner, the bit positions chosen for

X can be rotated across the rounds. For example, in AES all bytes are processed by the

same functions within the round. In that case, X is formed from consecutive bits starting

at position a1 + a2 ∗ i(mod b) in round i for some constants a1 and a2. When G is such

that the round function only processes a subset of the b bits in each round, the swap step

is inserted at the point at which all b bits have been processed by the round function (i.e.,

after a cycle). For example, when G is a Feistel network the swap step and whitening are

added after a complete cycle so a bit participates in the actions applied to each half of the

b-bit block once prior to potentially being swapped out regardless of its position. The bit

positions chosen to be swapped out after each round are a known part of the algorithm and

are not determined by the key, plaintext or ciphertext.

Key Schedule: The options for a key schedule include modifying the key schedule of G to

produce additional bytes, increasing the original key length and running the key schedule

multiple times, or using an existing efficient stream cipher that is considered secure in

practice (this also permits the key schedule to independent of the choice of G). At a

minimum, I assume in theory that any expanded-key bits which are external to the round

function are independent of expanded-key bits used within the round function and are

created independently of the (b + y)-bit data block input to the cipher. In all of my

implementations of elastic block ciphers, the RC4 stream cipher with the first 512 bytes

of output discarded is used as the key schedule. Having one standard key schedule that

can output as many expanded-key bits as needed is beneficial because it means only one

implementation of a key schedule is necessary regardless of the block cipher and it avoids

the need to analyze one key schedule per block cipher for flaws. A stream cipher was chosen

to significantly increase the randomness of the expanded-key bits over those produced by

existing key schedules. This does incur a performance penalty over existing key schedules,

but eliminates certain attacks which arose because of the structure of existing key schedules.

I discuss key schedules in more detail in Chapter 8.
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Decryption: The inverse of the round function, if it is not its own inverse, must be used

for decryption. As explained in Section 3.3, the elastic network is similar to an unbalanced

Fiestel network, which does not require the round function be invertible. However, an

unbalanced Feistel network could not be used in place of the elastic network. I remind the

reader that the swap step is added after a complete cycle when the original cipher is a Feistel

network, thus the inverse of the ”round” function in the elastic version is merely running

the cycle in reverse, as is normally done in any block cipher which is a Feistel network.

3.6 Summary

The elastic network allows for the creation of variable-length block ciphers from existing

block ciphers by inserting the round function (cycle) from any existing block cipher into

the network. When creating variable-length block ciphers using the elastic network, per

round whitening and an intial and final key-dependent permutation are added to improve

the security of the resulting cipher, which is referred to as an elastic block cipher.

The elastic version of a b-bit block cipher can process all block sizes in the range of b to

2b bits. The number of rounds in the elastic version of a block cipher is determined by the

number of rounds in the original cipher and the block size. This results in the computational

workload being proportional to the block size. Four examples of elastic block ciphers are

described in Chapter 6. As explained in Chapter 5, the security of the elastic version of a

cipher against practical, round-key recovery attacks, is directly related to that the security

of the original cipher against such attacks.

The elastic network is similar to an unbalanced Feistel network, which could not be used

as a generic network for creating the variable-length block ciphers due to its inability to

guarantee a sufficient rate of diffusion. Aside from its use for creating variable-length block

ciphers for use in practice, the elastic network provides a means for producing variable-

length PRPs and SPRPs, as proven in Chapter 4.
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Chapter 4

Creation of Variable-Length PRPs

and SPRPs

4.1 Overview

Pseudorandom permutations (PRP) and strong pseudorandom permutations (SPRP) are

theoretical counterparts to practical block ciphers. Ideally, a block cipher should be a

SPRP. It is of interest to determine if the elastic network can create variable-length PRPs

and SPRPs from fixed-length permutations, similar to the method for constructing practical

elastic block ciphers using the round functions of existing fixed-length block ciphers.

I prove that the elastic network can be used to construct variable-length PRPs and

SPRPs from fixed-sized PRPs. I first prove that a three-round elastic network and the

inverse of a four-round elastic network are variable-length PRPs when their round functions

are independently chosen random permutations. These results allow me to then derive the

same result when the round functions are PRPs and to prove that a five-round elastic

network is a variable-length SPRP when the round functions are independently chosen

PRPs. I show that these are the minimum number of rounds required. It may be possible

to relax the requirement that the round functions must independently chosen PRPs in a

manner similar to what was done by Noar and Reingold when using Feistel networks to

create PRPs and SPRPs from pseudorandom functions (PRF) [NR99]. While I have not

determined to what extent the independence of the round functions can be relaxed, I do
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prove that at least two of the round functions must differ, except with negligible probability.

Specifically, I show that a three-round elastic network and the inverse of a four-round elastic

network in which the round functions are identical are not PRPs. These results indicate

some independence is required of the round functions.

By using the elastic network with b-bit PRPs as round functions, the resulting variable-

length PRPs and SPRPs work on input sizes of b+y bits, where 0 ≤ y ≤ b. I can extend the

range of the input size by using the CBC-Mask-CBC (CMC) mode of encryption [HR03b].

When the original block cipher is a PRP, the CMC mode creates a multiple-block SPRP,

specifically it produces a mb-bit SPRP from a b-bit PRP for an integer m ≥ 2. By using

a PRP in CMC mode for each of the round functions in the elastic network, I am able to

create variable-length SPRPs on mb + y bits with 0 ≤ y ≤ mb from PRPs on b bits. I also

point out that the elastic network can be used to create variable-length PRPs and SPRPs

b + y bits from b
2 -bit PRFs. This is accomplished by using three-round Feistel networks as

the round functions in the elastic network. When the round functions of a Feistel network

are independently chosen PRFs, a three-round Feistel network is a PRP [LR88]. Thus,

Feistel networks can provide the PRPs to use as the round functions in the elastic network.

4.2 PRP and SPRP Definitions

I remind the reader of the meaning of a PRP and a SPRP. While I am discussing permuta-

tions (as opposed to practical block ciphers), I will continue to use the terms ”plaintext” and

”ciphertext” to refer to the inputs and outputs of the permutation. Querying a permutation

is viewed as giving it a plaintext and receiving the ciphertext. Querying the inverse of a

permutation is viewed as giving the permutation a ciphertext and receiving the plaintext.

I use the following terms in the definitions of a PRP and a SPRP:

• Random permutation: A permutation on b bits that is chosen randomly from all

permutations on b bits.

• Let P be a permutations on b bits. P−1 denotes its inverse. P (x) is the output of P

when given input x.
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• Chosen plaintext query: An adversary chooses an input, pi, to a permutation, P , and

receives the output, ci = P (pi).

• Chosen ciphertext query: An adversary chooses an input, ci, to the inverse of a

permutation, P−1, and receives the output, pi = P−1(ci).

• Chosen plaintext - chosen ciphertext queries: An adversary makes a series of queries

to a permutation, P , and its inverse, P −1 and receives the outputs.

• Adaptive queries: When making chosen plaintext, chosen ciphertext or chosen plain-

text - chosen ciphertext queries to a permutation (and/or its inverse), the queries are

said to be adaptive if the adversary making the queries receives the output of the ith

query before forming the (i + 1)st query and can use the previous i queries and their

outputs when forming the (i + 1)st query.

• Transcript: a sequence of input/output pairs corresponding to a permutation.

Any type of plaintext and/or ciphertext query is a subset of adaptive chosen plaintext -

chosen ciphertext queries.

I now state a property of random permutations regarding the probability of a specific

transcript occurring as the result of queries to the permutation. Let P1 be a random

permutation on b bits and P1−1 be its inverse. Let {(p1, c1), (p2, c2) ... (pn, cn)} be n

pairs of queries to P1 and the resulting output such that ci = P1(pi) for i = 1 to n

and n is polynomially related to b. The sequence of n pairs is a transcript of P1. When

querying a permutation, queries will not be made for which the answers are already known.

Specifically, given j−1 pairs, {(p1, c1), (p2, c2) ... (pj−1, cj−1)}, if the jth query is a plaintext

query, then pj 6= pi for i < j and if the jth query is a ciphertext query, then cj 6= ci

for i < j. For any transcript of n such queries to P1, the probability of the transcript

occurring is PrRP =
∏n−1

i=0
1

2n−i . The transcript may have been produced using adaptive

chosen plaintext, adaptive chosen ciphertext or adaptive chosen plaintext - chosen ciphertext

queries.

Definition 8. Pseudorandom Permutation (PRP): A permutation, P on b bits is a PRP

if it cannot be distinguished from a random permutation on b bits by using polynomially
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many, n, adaptive chosen plaintext or adaptive chosen ciphertext queries (but not both

types of queries). Given a transcript, TP , of n such queries from P , the probability TP

occurs is
∏n−1

i=0
1

2n−i + e for negligible e.

Definition 9. Strong Pseudorandom Permutation (SPRP): A permutation, P on b bits is

a SPRP if it cannot be distinguished from a random permutation on b bits by using polyno-

mially many, n, adaptive chosen plaintext - chosen ciphertext queries. Given a transcript,

TP , of n such queries from P , the probability TP occurs is
∏n−1

i=0
1

2n−i + e for negligible e.

Another way of explaining the concepts of a PRP and a SPRP is to consider the proba-

bility with which an adversary can correctly determine whether or not a black box contains

a specific permutation or a random permutation on b bits while using only polynomial (in

b) many resources. Let P be a permutation on b bits. Given a black box that contains

either P (or its inverse) or a random permutation, an adversary makes polynomially many

adaptive queries to the black box and receives the outputs of the permutation within the

box. If the probability the adversary correctly determines (using polynomial time and mem-

ory) the contents of the box is 1
2 + e for negligible e ≥ 0, then P is a PRP. In terms of

block ciphers, this corresponds to the adversary being able to make either adaptive chosen

plaintext queries or adaptive chosen ciphertext queries, but not both, to a black box which

contains either the cipher or a random permutation.

A permutation, P , on b bits is a SPRP if it is not possible to distinguish P from a

random permutation on b bits in polynomial (in b) time and memory when queries to both

the permutation and its inverse are permitted. Given a black box that contains either P

or a random permutation, the adversary can make polynomially many queries to the black

box where the query indicates whether the permutation or its inverse is to be applied to the

b-bit input. The probability the adversary correctly determines (using polynomial time and

memory) the contents of the box is 1
2 +e for negligible e ≥ 0. In terms of block ciphers, this

corresponds to the adversary being able to make both adaptive chosen plaintext - chosen

ciphertext queries to a black box which contains either the cipher or a random permutation.

Luby and Rackoff proved that when using round functions which are independently

chosen PRFs, three rounds are required in a balanced Feistel network to protect against

adaptive chosen plaintext attacks and four rounds are required to protect against adaptive
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chosen plaintext - chosen ciphertext attacks [LR88]. Naor and Reingold provided slightly

modified constructions which achieve the same resistance to such attacks. The first round

of the three-round version is replaced with a permutation, and the first and last rounds of

the four-round version are replaced with pair-wise independent permutations [NR99]. An

unbalanced Feistel network does not provide a variable-length PRP and SPRP using only

three and four rounds, respectively. This is because in a three-round unbalanced Feistel

network processing block sizes of b + y bits, where 0 ≤ y ≤ b, input bits appear in the

output when 0 < 2y < b, as mentioned in Chapter 3.3. This also prevents a four-round

unbalanced Feistel network supporting (b + y)-bit block sizes, where 0 ≤ y ≤ b, from being

a variable-length SPRP.

4.3 Elastic Network: PRP from RPs

4.3.1 Overview

As my first step, I prove two properties that are used as building blocks for later proofs.

Specifically, these properties are that a three-round elastic network and the inverse of a

four-round elastic network are variable-length PRPs when their round functions are in-

dependently chosen random permutations. The proofs provided here can be used with

pseudorandom permutations as the round functions instead of random permutations (RP)

by taking into account that the probability a given output produced by a round function

will vary from the output of a random permutation by some negligble amount. In order

to avoid incorporating the negligible difference between a PRP and RP at this point, I

prove the case in which the round functions are random permutations is a PRP. By using

this result, I can then prove a the same networks are PRPs when the round functions are

independently chosen PRPs.

Figure 4.1 shows three-round and four-round elastic networks. I will refer to the com-

ponents of the network as they are labelled in Figure 4.1. The figure shows the direction of

the elastic network used for encryption (three rounds) and for decryption (four rounds). I

will refer to these as the encryption direction and the decryption direction.

Before stating the theorems and proofs, I provide a sketch of the proof to assist the
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Figure 4.1: Three and Four-Round Elastic Networks

reader in understanding the proof. I show that any change to the plaintext input to a

three-round elastic network, G′, in which the round functions are independently chosen

random permutations changes both the leftmost b bits and the rightmost y bits of the

output in such a manner that neither portion of the output can be predicted with non-

negligible probability when using polynomially many queries. The difference between the

resulting probabilities and the corresponding probabilities from a random permutation on

b + y bits is negligible. I show that, for large b, the leftmost b bits of the output occur with

probability 2−b ± e1 and the rightmost y bits occur with probability 2−y ± e2 for negligible

e1, e2.

I then prove formally that if a three-round elastic network, G′, with round functions

that are independently chosen random permutations on b bits can be distinguished from a

random permutation on b+ y bits using polynomially many queries to G′, then at least one

of the round functions can be distinguished from a random permutation on b bits, which

is a contradiction to the fact that I defined G′ to use random permutations as the round
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functions. Therefore, I conclude that G′ is a PRP. I use a black box, BG′ , that contains

either G′ or a random permutation on b + y bits. Suppose a distinguisher, D3, exists that

can determine whether or not BG′ contains G′ using polynomially many adaptive queries to

the box. I show that D3 can be used to create a distinguisher for at least one of the round

functions of G′ to distinguish the round function from a random permutation on b bits,

which is a contradiction to my definition of G′ as having random permutations as the round

functions. When I say a distinguisher for G′ exists, I mean that the distinguisher, using

polynomially many adaptive queries in one direction can predict or eliminate a possibility

about an additional input/output pair value of the given permutation with greater certainty

than that of a random guess. In contrast, with a random permutation, anything beyond

the input/output pairs from the queries is known with the same probability as a random

guess. I repeat the process for the inversse of a four-round elastic network.

4.3.2 Notation

I refer to the components of the network as they are labelled in Figure 4.1. I use the

following notation:

• b > 0 is an integer.

• y is an integer such that 0 ≤ y ≤ b.

• X⊕Y where X is a b-bit string and Y is a y-bit string, means the bits of Y are XORed

with y specific bits of X and the other b−y bits of X are treated as if they are XORed

with 0’s. If the resulting string is stored in a variable containing only y bits instead of

b bits, the result consists only of the y bits in the positions that involved both X and

Y instead of X and the b− y 0’s. For example, consider XORing a 2-bit string with

a 4-bit string such that the XOR involves the leftmost 2 bits of the 4-bit string. Let

z1 and a2 be 4-bit strings. Let w1 and w2 be 2-bit strings. If z1 = 0110 and w1 =

11, a2 = z1⊕ w1 = 1010. w2 = z1⊕ w1 = 10.

• n > 0 is an integer that generically represents the number of polynomially many (in

terms of the length of the input) queries made to a function.
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• |X| is the length, in bits, of X.

I define the following variables and functions as shown in Figure 4.1.

• RFi is the ith round function, for i = 1, 2, 3, 4. Any restrictions placed on a RFi will

be specified as needed. Each round function is a permutation on b-bits.

• ai is the b-bit input to the ith round function for i = 1, 2, 3, 4.

• zi is the b-bit output of the ith round function for i = 1, 2, 3, 4.

• wi is the y bits left out of the ith round function for i = 1, 2, 3, 4. For any particular

elastic network, w2 is formed from a fixed set of y-bit positions from z1, w3 is formed

from a fixed set of y-bit positions of z2, and w4 is formed from a fixed set of y-bit

positions of z3 (i.e., the positions of the bits taken from z1 to form w1 do not vary

amongst the inputs to a specific three-round elastic network). Likewise, when forming

w2, w3 and w4.

• When referring to a specific value for an ai, zi or wi, a subscript will be used. For

example, a1j .

4.3.3 G′ Probabilities

I first show that any change to the input of a three-round elastic network, G′, in which the

round functions (RF1, RF2, RF3) are independently chosen random permutations changes

both the leftmost b bits and the rightmost y bits of the output in a manner that neither can

be predicted with non-negligible probability when using polynomially many inputs. The

encryption direction is described first.

When making a series of distinct queries to G′ in the encryption direction, I consider

how the input and outputs of each round in the j th query compares to those of any previous

query. Let (a1i, w1i), (a1j , w1j) be two inputs where i < j and all inputs and outputs of the

previous j − 1 queries are known. Unless otherwise stated, when two b-bit values are said

not to be equal, it means, given one of the values, the other can be any one of the remaining

2b − 1 values. With j such values in which no two are equal, the j th value can take on any

one of the remaining 2b − j + 1 values. I define xval to be the number of times the specific
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value val has occurred in the previous j − 1 queries. For example, xw2i
is the number of

times the value of w2i has occurred in the previous j− 1 queries. When randomly selecting

b-bit values from all 2b-bit values without replacement, the probability of a specific value

occurring on the jth selection is 1
2b−j+1

. For a fixed subset of y of the b bits, the probability

a specific y-bit value, val, occurs in the j th selection is 2b−y−xval

2b−j+1
. The inputs to G′ must

fall into one of the following three cases. For each case, I indicate whether or not the input

and output of each round can be equal across two inputs to G′.

Case 1: a1j 6= a1i and w1j = w1i

• z1j 6= z1i

• a2j 6= a2i

• z2j 6= z2i

• w2j = w2i with probability Pr1 =
2b−y−xw2i

2b−j+1
. Equality holds if the y bits selected

from the output of the first round function are identical in z1i and z1j .

Case 1a: w2j = w2i

– a3j 6= a3i

– z3j 6= z3i

– w3j = w3i with probability Pr2 =
2b−y−xw3i

2b−j+1
.

Case 1b: w2j 6= w2i

– If a3j = a3i, z2j must differ from z2i only in the y bits involved in the swap

step and the XOR with the w2 values results in these y bits being identical.

This requires a specific value for z2j . The probability is Pr3 = 1
2b−j+1

. Then

w3j 6= w3i and z3j = z3i.

– If a3j 6= a3i then z3j 6= z3i. w3j = w3i with probability Pr2.

Case 2: a1j = a1i and w1j 6= w1i

• z1j = z1i
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• w2j = w2i

• a2j 6= a2i

• z2j 6= z2i

• a3j 6= a3i

• z3j 6= z3i

• w3j = w3i with probability Pr2.

Case 3: a1j 6= a1i and w1j 6= w1i

• z1j 6= z1i

• w2j = w2i with probability Pr1.

• Case 3a: a2j = a2i

– For a2j = a2i to occur, z1i must differ from z1j only in the y bits involved in

the swap step and the XOR with the w1 values results in these y bits being

identical in z1i and z1j . This requires a specific value for z1j , which occurs with

probability Pr3.

– z2j = z2i

– w3j = w3i

– a3j 6= a3i

– z3j 6= z3i

Case 3b: a2j 6= a2i

– z2j 6= z2i

– For a3j = a3i to occur, z2j must differ from z2i only in the y bits involved in

the swap step and the XOR with the w2 values results in these y bits being

identical. This requires a specific value for z2j , thus the probability is Pr3. This

also means w2j 6= w2i, z3j = z3i and w3j 6= w3i.
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– If a3j 6= a3i then z3j 6= z3i. w3j = w3i with probability Pr2. a3j 6= a3i can

occur when w2j 6= w2i and when w2j = w2i.

If (z3j , w3j) is the jth output of a random permutation on b+y bits, the probability the

leftmost b bits equal the leftmost b bits of a previous output (z3i, w3i) is Pr(z3j = z3i) =

2y−xz3i

2b+y−j+1
where 1 ≤ i < j and xz3i

is the number of times the value z3i has appeared in the

first j − 1 queries to the random permutation. The probability the rightmost y bits of the

jth output equal those of a previous output is Pr(w3j = w3i) =
2b−xw3i

2b+y−j+1
where 1 ≤ i < j

and xw3i
is the number of times the value w3i has appeared in the first j−1 queries. When

using polynomially many queries (in terms of b + y) to the random permutation and b is

large enough to prevent an exhaustive search, the probability that two outputs have the

same leftmost b bits is negligible. The probability a specific value of w3 occurs on the

jth query is 2−y + e where e is the difference between 2−y and
2b−xw3i

2b+y−j+1
. Therefore, e is

negligible for large b.

Given the three classifications of inputs to G′, the two probabilities, Pr(z3j = z3i)

and Pr(w3j = w3i), for G′ differ from those of a random permutation on b + y bits by

a negligible amount. In G′, Pr(z3j = z3i) ≤
1

2b−j+1
. Therefore, on polynomially many

queries and large b, there is negligible chance of the leftmost b bits repeating. In G ′,

Pr(w3j = w3i) ≤
2b−y−xw3i

2b−j+1
. The probability a specific value occurs on the j th query is

2−y + e′ where e′ is the difference between 2−y and
2b−y−xw3i

2b−j+1
. Therefore, e′ is negligible for

large b.

I also point out that the probability of the input to either the second or third round

function of G′ being identical across two queries is negligible. In each case, either a2j 6= a2i

with probability 1 or a2j = a2i with probability 1
2b−j+1

. In each case, either a3j 6= a3i

with probability 1 or a3j = a3i with probability 1
2b−j+1

. In no case can both a2j = a2i

and a3j = a3i. Therefore, when making n queries to G′ in the encryption direction, the

inputs to the second round function can be considered to be n distinct values, except with

negligible probabilty. Likewise for the inputs to the third round function.
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4.3.4 A PRP from a Three-Round Elastic Network

I now prove that if a three-round elastic network, G′, in the encryption direction with round

functions that are independently chosen random permutations on b bits can be distinguished

from a random permutation on b + y bits, then at least one of the round functions can be

distinguished from a random permutation on b bits, which is a contradiction. Therefore, I

conclude that G′ is a PRP when only plaintext queries are allowed to G′.

Theorem 4.1. A three-round elastic network, G′ on b+y bits in which the round functions

are independently chosen random permutations on b bits is a pseudorandom permutation on

b + y bits, where 0 ≤ y ≤ b, in the encryption direction.

Before beginning the proof, I define the following notation and terms for use in the

proofs to both Theorem 4.1 and Theorem 4.2.

• BG′ is a black box that contains either G′ or a random permutation on b + y bits.

• (a1i, w1i) is an input to BG′ . |a1i| = b and |w1i| = y as defined previously.

• (z3i, w3i) is the output of BG′ corresponding to the input (a1i, w1i). |z3i| = b and

|w3i| = y as defined previously.

• D3 is a distinguisher for G′, meaning D3 can determine whether or not BG′ contains G′

with probability 1
2 + α for non-negligible α, 0 < α ≤ 1

2 when using only polynomially

(in b + y) many resources. Let D3 return a 1 if it thinks BG′ contains G′ and a 0

otherwise. D3 makes adaptive chosen plaintext or adaptive chosen ciphertext queries,

but not both.

• S1 = {(a1i, w1i)} and S2 = {(z3i, w3i)}, for i = 1 to n are the sets of n inputs

and outputs D3 uses to distinguish G′ from a random permutation. When D3 works

by making queries to BG′ in the encryption direction, S1 contains the inputs and

S2 contains the resulting outputs. When D3 works by making queries to BG′ in the

decryption direction, S2 contains the inputs and S1 contains the resulting outputs.

• BRFi is a black box that contains either the ith round function, RFi, of G′ or a random

permutation on b bits, for i = 1, 2, 3.
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• BRFi(X) is the output of BRFi when given input X.

• B−1
RFi(X) is the inverse of BRFi(X). i.e., the inverse of whatever permutation is in

BRFi is applied to X.

• DRFi is a distinguisher for RFi, meaning DRFi can determine whether or not BRFi

contains RFi with probability 1
2+α for non-negligible α, 0 < α ≤ 1

2 using polynomially

(in b + y) resources. DRFi uses either adaptive chosen plaintext or adaptive chosen

ciphertext queries, but not both.

• X ∈ {0, 1}m refers to selecting any m bit string as the value of X. X does not have

to be selected randomly, the m bits can be chosen by any method.

• X ← {0, 1}m refers to setting X to be a randomly chosen m bit string.

• ”plaintext query” refers to a query to G′ in the encryption direction and ”ciphertext

query” refers to a query to G′ in the decryption direction (a query to G′−1).

I note that the bit positions used in the swap steps in G′ are not secret and this infor-

mation can be used by any distinguisher. I define the following functions corresponding to

the swap steps for use by the distinguishers:

• Let Fi(X,Y ) be a function that takes a b-bit input, X, and a y-bit input, Y , and

returns the pair (Z,W ) where Z is a b-bit string and W is a y-bit string. Fi replaces

the y bits of X with the y bits of Y such that the bits in X which are replaced are

in the same positions as the bits from the output of the ith round function that are

involved in the swap step after the ith round of G′. Fi returns the updated X value in

Z and returns a bit string, W , that contains the y bits of X that were removed from

X XORed with the y bits inserted into X. Fi(X,Y ) computes the inverse of the ith

swap step in the elastic network.

• Let FY i(X) be a function that takes a b-bit input X and returns the y bits that are

in the same bit positions used to create wi from z(i− 1) in G′.

• Let Oi be an oracle that contains the ith round function, RFi of G′. Oi−1 will refer

to an oracle containing RFi−1.



CHAPTER 4. CREATION OF VARIABLE-LENGTH PRPS AND SPRPS 46

When I say a distinguisher, D3, exists for G′, I mean that the distinguisher, using

polynomially many adaptive queries in the encryption direction or decryption direction (but

not both directions) can predict or eliminate a possibility about an additional input/output

pair of the given permutation with greater certainty than that of a random guess. In

contrast, in a random permutation, nothing beyond the input/output pairs from the queries

is known better than a random guess. I also note that allowing polynomially many oracle

accesses to other random permutations that are not the permutation in question does not

help a distinguisher learn about the actual permutation in question due to the statistical

independence between any other random permutation and the permutation in question.

Polynomial many, n, queries are made to BG′ where BG′ contains a random permutation

or G′ in the encryption direction. S1 contains the inputs and S2 contains the outputs.

Proof. I now prove Theorem 4.1. If D3, a distinguisher for G′ in the encryption direction,

exists, D3 must fall into one of the following categories:

• Category I: D3 does not use the z3 portion of the output in its decision. The only

part of the output used is the w3 portion. This means that given the n input/output

pairs in S1 and S2, D3 never uses the z3 portion from any of the pairs in S2.

• Category II: D3 does not use the w3 portion of the output in its decision. The only

part of the output used is the z3 portion. This means that given the n input/output

pairs in S1 and S2, D3 never uses the w3 portion from any of the pairs in S2.

• Category III: D3 uses both the z3 and w3 portion of the outputs in its decision. This

means that given n input/output pairs in S1 and S2, D3 uses the z3 portion of the

output from at least one of of the pairs in S2 and uses the w3 portion from at least

one of the pairs in S2. Without using both portions, D3 fails to distinguish the elastic

network from a RP.

In each category, there are no restrictions on what portions of the inputs, {(a1i, w1i)}, are

used. For each of the categories, I will show that the existence of D3 implies a distinguisher

can be formed for either the second or third round function of G′, which contradicts the

round functions being independently chosen random permutations.
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Category I: If D3 falls into Category I, a distinguisher, DRF2, can be defined for the second

round function, RF2. Intuitively, D3 using only the w3 portion of the output of G′ when w3

is from the output of RF2 whose inputs cannot be predicted with non-negligible probability

implies D3 can distinguish RF2 from a random permutation. The inputs to RF2 are distinct

except with negligible probability. Therefore, the w3 values are distributed as if they are

taken from the outputs of distinct queries to RF2, except with negligible probability and

D3 cannot rely on being given w3 values that were generated from identical inputs to RF2.

Define DRF2 as follows:

Ask D3 what its first query (input) would be if it was querying BG′ . Populate S1 with

this first input, so (a11, w11) has been chosen and is in S1. S1 is known to DRF2.

for i = 1 to n {

Take (a1i, w1i) from S1 for use in subsequent steps.

Set z1i = O1(a1).

Set z2i = BRF2(z1i ⊕ w1i).

Set w3i = FY 3(z2i).

Give a1i, w1i, w3i to D3.

Add to S1 the next input D3 would use when trying to distinguish D3, having

seen the inputs and partial output of the first i queries. This is (a1i+1, w1i+1).

}

Let ans be the value D3 returns.

Return ans.

The values given to D3 are the input and rightmost y bits of the output of a three-

round elastic network with RF1 as the first round function and the contents of BRF2 as the

second round function. The third round function is irrelevant in this case because D3 is not

using the output of the third round function. The values given to D3 correspond to those

of S1 and the w3i values of S2 when D3 is allowed to make n adaptive chosen plaintext

queries to BG′ . D3 succeeds with non-negligible probability in determining whether or

not it was given the input and partial output of G′ implies DRF2 will succeed with non-

negligible probability in determining if the n (a2i, z2i) pairs correspond to the inputs and
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outputs of RF2. Therefore, DRF2 can distinguish the contents of BRF2 using the n queries

{O1(a1i)⊕ w1i}. BRF2, contradicting the assumption that the second round function is a

random permutation.

Category II: If D3 falls into Category II, a distinguisher, DRF3, can be defined for the

third round function, RF3. Intuitively, D3 using only the z3 portion of the output of G′

when z3 is from the output of RF3 whose inputs cannot be predicted with non-negligible

probability implies D3 can distinguish RF3 from a random permutation. The inputs to RF3

are distinct except with negligible probability. Therefore, the z3 values are distributed as

if they are the outputs of n distinct queries to RF3, except with negligible probability and

D3 cannot depend on being given z3 values that were generated from identical inputs to

RF3. Therefore, D3 using only the input to G′ and the z3 portion of the output implies

D3 can distinguish RF3 from a random permutation.

Define DRF3 as follows:

Ask D3 what its first query (input) would be if it was querying BG′ . Populate S1 with

this first input, so (a11, w11) has been chosen and is in S1. S1 is known to DRF3.

for i = 1 to n {

Take (a1i, w1i) from S1 for use in subsequent steps.

Set z1i = O1(a1i).

Set z2i = O2(z1i ⊕ w1i).

Set w2i = FY 2(z1i).

Set z3i = BRF3(z2i ⊕ w2i).

Give a1i, w1i, z3i to D3.

Add to S1 the next input D3 would use when trying to distinguish D3, having

seen the inputs and partial output of the first i queries. This is (a1i+1, w1i+1).

}

Let ans be the value D3 returns.

Return ans.

The values given to D3 are the input and leftmost b bits of the output of a three-round
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elastic network with RF1 as the first round function, RF2 as the second round function and

the contents of BRF3 as the third round function. The values given to D3 correspond to those

of S1 and the z3i values from S2 when D3 is allowed to make n adaptive chosen plaintext

queries to BG′ . D3 succeeds with non-negligible probability in determining it was given the

input and partial output of G′ implies DRF3 will succeed with non-negligible probability in

determining the contents of BRF3 by using n queries, {O2(O1(a1i)⊕w1i)⊕F2(O1(a1i))},

contradicting the assumption that the third round function is a random permutation.

Category III: If D3 falls into Category III, a second version of the DRF3 distinguisher I just

defined can be created for the third round function, RF3. I call this new version DRF3v2.

Intuitively, D3 using both the z3 and w3 portions of the output of G′ when z3 is from the

output of RF3 whose inputs cannot be predicted with non-negligible probability, where w3

is from the output of RF2 whose inputs cannot be predicted with non-negligble probability

and where w3 contributes to the formation of the input of RF3 (and thus contributes to the

input to the permutation that produces z3) implies D3 can distinguish RF3 from random.

D3 cannot depend on being given z3 and/or w3 values that were generated by holding the

inputs to RF2 and/or RF3 constant since this occurs with negligible probability. Therefore,

D3 can be viewed as using some relationship between partial information (i.e. w3) used in

forming the input to RF3 and the output (ı.e. z3) of RF3 to distinguish the third round

function from a random permutation.

DRF3v2 is DRF3 with the modification that w3i is given to D3 along with a1i, w1i and

z3i. Define DRFv2 as follows:

Ask D3 what its first query (input) would be if it was querying BG′ . Populate S1 with

this first input, so (a11, w11) has been chosen and is in S1. S1 is known to DRF3.

for i = 1 to n {

Take (a1i, w1i) from S1 for use in subsequent steps.

Set z1i = O1(a1).

Set z2i = O2(z1i ⊕ w1i).

Set w2i = FY 2(z1i).

Set z3i = BRF3(z2i ⊕ w2i).
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Set w3i = FY 3(z2i).

Give a1i, w1i, z3i, w3i to D3.

Add to S1 the next input D3 would use when trying to distinguish D3, having

seen the inputs and output of the first i queries. This is (a1i+1, w1i+1).

}

Let ans be the value D3 returns.

Return ans.

The values given to D3 are the inputs and outputs of a three-round elastic network with

RF1 as the first round function, RF2 as the second round function and the contents of

BRF3 as the third round function. The values given to D3 correspond to those of S1 and

S2 when D3 is allowed to make n adaptive chosen plaintext queries to BG′ . D3 succeeds

with non-negligible probability in determining it was given the input and output of G ′

implies DRF3v2 will succeed with non-negligible probability in determining the contents of

BRF3 by using n queries, {O2(O1(a1i)⊕w1i)⊕F2(O1(a1i))}, contradicting the assumption

that the third round function is a random permutation.

For each category, I have shown that D3 cannot exist. Therefore, a three-round elastic

network cannot be distinguished from a PRP by using polynomially many plaintext queries

when the round functions are independently chosen random permutations.

4.3.5 G′−1 Probabilities

An elastic network and its inverse are not indentical (unlike a Feistel network); therefore,

the inverse must be evaluated separately. As was done for the encryption direction, I show

how changing any part of the input to G′−1 changes the output of G′−1 unpredictably when

using polynomially many inputs. A four-round network is used. The notation is the same

as that used in the three-round case. Again the input is divided into three cases and each

case evaluated.

Case 1: z4j = z4i and w4j 6= w4i

• a4j = a4i
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• z3j 6= z3i

• w3j 6= w3i

• a3j 6= a3i

• z2j 6= z2i

• a2j 6= a2i

• w2j = w2i if a3i = w3i⊕a3j⊕w3j in the y bits that form w2i and w2j . This requires

y bits of a3j to be a specific value, which occurs with probability Pr1 =
2b−y−xa3yi

2b−j+1

where xa3yi
is the number of times the required value occurred in previous queries.

– Case 1b: w2j = w2i

∗ z1j = z1i if a2j = a2i in the b − y bits not involved in the swap step. If

this occurs, w1j 6= w1i. z1j = z1i with probability Pr2 =
2y−xa2bi

2b−j+1
. Then

a1j = a1i.

∗ If z1j 6= z1i, a1j 6= a1i. Then w1j = w1i if a2j = a2i in the y bits involved

in the swap step, which occurs with probability Pr3 =
2y−xa2yi

2b−j+1
.

– Case 1b: If w2j 6= w2i

∗ z1j 6= z1i

∗ a1j 6= a1i.

∗ w1j = w1i if a2j = w2j ⊕ a2i ⊕ w2i, which occurs with probability Pr4 =

2b−y−xa2yi

2b−j+1
where xa2yi

is the number of times the y-bit value w2j⊕a2i⊕w2i

occurred previously in the y bits of a2 involved in the swap.

Case 2: z4j 6= z4i and w4j = w4i

• a4j 6= a4i

• Case 2a: z3j = z3i

– This requires a4j = a4i in the b − y bits not involved in the swap step. This

occurs with probability Pr5 =
2y−xa4bi

2b−j+1
where xa4bi

is the number of times the
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required value for the b− y bits occurred in previous queries. Note: when y = b,

z3 = w4 and Pr5 = 1. y = b means xa4bi
= j − 1 because b− y = 0, thus every

previous query had a4j = a4i in the b− y bits.

– w3j 6= w3i

– a3j = a3i

– z2j 6= z2i

– a2j 6= a2i

– w2j 6= w2i

– z1j 6= z1i

– a1j 6= a1i

– w1j = w1i if a2j = w2j ⊕ a2i ⊕w2i, which occurs with probability Pr4.

• Case 2b: z3j 6= z3i

– This requires at least one of the b − y bits not involved in the swap step differ

between a4i and a4j . The probability of this occurring is 1− Pr5.

– a3j 6= a3i

– w3j = w3i if a4j = a4i in the y bits involved in the swap step. This occurs with

probability Pr6 =
2b−y−xa4yi

2b−j+1
where xa4yi

is the number of times the required

value occurred in previous queries.

∗ If z2j = z2i, then a2j = a2i and w2j 6= w2i. z2j = z2i if the b− y bits not

involved in the swap step are equal in a3j and a3i. z2j = z2i with probability

Pr7 =
2y−xa3bi

2b−j+1
where xa3bi

is number of times the (b − y)-bit portion of a3

occurred previously. z1j 6= z1i, a1j 6= a1i and w1j 6= w1i.

∗ If z2j 6= z2i then a2j 6= a2i.

· w2j = w2i if a3j = a3i in the y bits involved in the swap step. The

occurs with probability Pr8 =
2b−y−xa3yi

2b−j+1
where xa3yi

is the number of

times the value corresponding to the y bits of a3i involved in the swap

step previously occurred. z1j = z1i with probability Pr2 then a1j = a1i

and w1j 6= w1i. If z1j 6= z1i, then w1j = w1i with Pr4.
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· If w2j 6= w2i then z1j 6= z1i, a1ij 6= a1j . w1j = w1i with probability

Pr4.

– If w3j 6= w3i, which is the case with probability 1 − Pr6, then z2j 6= z2i and

a2j 6= a2i.

∗ w2j = w2i with probability Pr8. w1j = w1i with probability Pr3 and then

z1j 6= z1i and a1j 6= a1i. If w1j 6= w1i then z1j = z1i with probability Pr2

and a1j = a1i.

∗ If w2j 6= w2i then z1j 6= z1i and a1j 6= a1i. w1j = w1i with probability

Pr4.

Case 3: z4j 6= z4i and w4j 6= w4i

• a4j 6= a4i

• z3j 6= z3i

• a3j 6= a3i

• Case 3a: w3j = w3i

– w3j = w3i if a4j ⊕w4j = a4i ⊕w4i in the y bits involved in the swap step. This

occurs with probability Pr9 =
2b−y−xa4yi

2b−j+1
where xa4yi

is the number of times the

y bit value w4j ⊕ w4i ⊕ a4i occurred previously in a4 in the y bits involved in

the swap step.

∗ If z2j = z2i, then a2j = a2i and w2j 6= w2i. z2j = z2i with probability Pr7.

Then w2j 6= w2i, a2j = a2i, z1j 6= z1i, a1j 6= a1i and w1j 6= w1i.

∗ If z2j 6= z2i, then a2j 6= a2i. w2j = w2i with probability Pr8 If w2j = w2i

then z1j = z1i and a1j = a1i if a2j = a2i in the b − y bits not in the swap

which occurs with probability Pr2, in which case w1j 6= w1i. If z1j 6= z1i

then a1j 6= a1i. iw1j = w1i with probability Pr3. If w2j 6= w2i then

z1j 6= z1i and a1j 6= a1i, and w1j = w1i with probability Pr4.

• Case 3b: w3j 6= w3i
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– This occurs with probability 1− Pr6. w3j 6= w3i if the y-bit value a4j ⊕ w4j 6=

a4i ⊕ w4i.

– z2j 6= z2i

– a2j 6= a2i

– w2j = w2i with probability Pr10 =
2b−y−xa3yi

2b−j+1
where xa3yi

is the number of times

the y-bit value w3i ⊕ w3j ⊕ a3i occurred previously in the y bits of a3 involved

in the swap.

∗ z1j = z1i with probability Pr2, then a1j = a1i and w1j 6= w1i.

∗ If z1j 6= z1i then a1j 6= a1i. w1j = w1i with probability Pr3.

– If w2j 6= w2i

∗ z1j 6= z1i

∗ a1j 6= a1i

∗ w1j = w1i with probability Pr4.

Given the three classifications of inputs to G′−1 with four rounds, the two probabilities,

Pr(a1j = a1i) and Pr(w1j = w1i), for G′−1 differ from those of a random permutation

on b + y bits by a negligible amount. Let xval1 and xval2 refer generically to values of

the form xakyi
and xakbi

, where k = 2 or 3. In all cases, Pr(w1j = w1i) <
2b−y−xa2yi

2b−j+1
,

which is 2−y ± e for negligible e for large b. Pr(a1j = a1i) < 2b−y−xval2

2b−j+1
∗ 2y−xval3

2b−j+1
, which

is 1
2b−j+1

± e where e is negligible for large b. These values differ by a negligible amount

from the values corresponding to a random permutation stated at the end of Section 4.3.3.

Specifically, if (a1j , w1j) is the jth output of a random permutation on b + y bits, the

probability the leftmost b bits equal the leftmost b bits of a previous output (a1i, w1i) is

Pr(a1j = a1i) =
2y−xa1i

2b+y−j+1
where 1 ≤ i < j and xa1i

is the number of times the value a1i has

appeared in the first j−1 queries to the random permutation. The probability the rightmost

y bits of the jth output equal those of a previous output is Pr(w1j = w1i) =
2b−xw1i

2b+y−j+1
where

1 ≤ i < j and xw1i
is the number of times the value w1i has appeared in the first j − 1

queries. This is 2−y± e for negligible e for large b. I also point out that both z3j = z3i and

z2j = z2i cannot occur, and both z2j = z2i and z1j = z1i cannot occur.
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4.3.6 A PRP from a Four-Round Elastic Network

By a similar argument to that used for the encryption direction, the inverse of a four-round

elastic network, G′−1, whose round functions are independently chosen random permuta-

tions cannot be distinguished from a PRP by using polynomially many queries to a black

box containing G′−1 or a random permutation.

Theorem 4.2. The inverse of a four-round elastic network, (G′−1), on b+y bits in which the

round functions are independently chosen random permutations on b bits is a pseudorandom

permutation on b + y bits, where 0 ≤ y ≤ b.

Proof. The notation and terms are the same as used in the proof to Theorem 4.1 unless

otherwise stated. Now the black box, BG′ , will contain G′−1 or a random permutation on

b+ y bits. The categories for the distinguisher are the same as in the three-round case. For

two of the categories, three rounds are sufficient for G′−1 to be a PRP. I prove these cases

first. Then the proof for the third category, which requires four rounds, follows directly.

The inputs are of the form (z3, w3) when using three rounds and (z4, w4) when using four

rounds. The outputs are of the form (a1, w1). D3 and D4 will denote the distinguishers

when three and four rounds are under consideration, respectively. When the number of

rounds is not specified, Dr will be used to denote either D3 or D4. If a distinguisher exists

for G′−1 it must fall into one of the following three categories:

• Category I: Dr does not use the a1 portion of the output in its decision. The only

part of the output used is the w1 portion. This means that given the n input/output

pairs in S2 and S1, Dr never uses the a1 portion from any of the pairs in S1.

• Category II: Dr does not use the w1 portion of the output in its decision. The only

part of the output used is the a1 portion. This means that given the n input/output

pairs in S2 and S1, Dr never uses the w1 portion from any of the pairs in S1.

• Category III: Dr uses both the a1 and w1 portion of the outputs in its decision. This

means that given n input/output pairs in S2 and S1, Dr uses the a1 portion of the

output from at least one of them and uses the w1 portion from at least one of them.

Without using both portions, Dr fails to distinguish the elastic network from a RP.
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In each category, there are no restrictions on what portions of the inputs, {(z3i, w3i)} or

{(z4i, w4i)}, are used.

When Dr is restricted to Category II or III, only three rounds are needed for G−1 to

be a PRP. These two categories will be addressed before category I. Similar to what was

done with the encryption direction, Dr can be used to create a distinguisher for one of

the round functions. Since the round functions are random permutations, this results in a

contradiction; therefore, Dr cannot exist.

Category II: If D3 falls into Category II, a distinguisher, DRF1, can be defined for the

inverse of the first round function of G′ (the last round of G′−1). Intuitively, D3 using only

the a1 portion of the output of G′−1 when a1 is from the output of RF1−1 whose inputs

cannot be predicted with non-negligible probability implies D3 can distinguish RF1−1 from

a random permutation. The inputs to RF1−1 are distinct except with negligible probability.

Therefore, the a1 values are distributed as if they are the outputs of n distinct queries to

RF1−1, except with negligible probability. Therefore, D3 using only the input to G′−1 and

the a1 portion of the output implies D3 can distinguish RF1−1 from a random permutation.

Define DRF1 as follows:

Ask D3 what its first query (input) would be if it was querying BG′ . Populate S2 with

this first input, so (z31, w31) has been chosen and is in S2. S2 is known to DRF1.

for i = 1 to n {

Take (z3i, w3i) from S2 for use in subsequent steps.

Set a3i = O3−1(z3i).

Set (z2i, w2i) = F2(a3i, w3i).

Set a2i = O2−1(z2i).

Set (z1i, w1i) = F1(a2i, w2i).

Set a1i = B−1
RF1(z1i).

Give a1i, z3i, w3i to D3.

Add to S2 the next input D3 would use when trying to distinguish D3, having

seen the inputs and output of the first i queries. This is (z3i+1, w3i+1).

}
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Let ans be the value D3 returns.

DRF3v2 returns ans.

The values given to D3 are the inputs and outputs of the inverse of a three-round elastic

network with RF3 as the third round function, RF2 as the second round function and the

contents of BRF1 as the first round function. These values correspond to the contents of S2

and the a1i values of S1 when D3 is allowed to make n adaptive chosen plaintext queries to

BG′ . D3 succeeds with non-negligible probability in determining it was given the input and

output of G′ implies DRF1 will succeed with non-negligible probability in determining the

contents of BRF1, contradicting the assumption that the first round function is a random

permutation.

Category III: If D3 falls into Category III, a distinguisher, DRF3, can be defined for the

inverse of the first round function, RF1−1. Intuitively, D3 can be viewed as using some

relationship between partial information (i.e. w1) used in forming the input to RF1−1

and the output (ı.e. a1) of RF1−1 to distinguish the first round function from a random

permutation.

Define DRF1v2 to be DRF1 with the addition that the w1i values are also given to D3.

Ask D3 what its first query (input) would be if it was querying BG′ in the decryption

direction. Populate S2 with this first input, so (z31, w31) has been chosen and is in S2. S2

is known to DRF1v2.

for i = 1 to n {

Take (z3i, w3i) from S2 for use in subsequent steps.

Set a3i = O3−1(z3i).

Set (z2i, w2i) = F2(a3i, w3i).

Set a2i = O2−1(z2i).

Set (z1i, w1i) = F1(a2i, w2i).

Set a1i = B−1
RF1(z1i).

Give a1i, w1i, z3i, w3i to D3.

Add to S2 the next input D3 would use when trying to distinguish
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D3, having seen the inputs and output of the first i queries.

This is (z3i+1, w3i+1).

}

Let ans be the value D3 returns.

Return ans.

The values given to D3 are the inputs and outputs of the inverse of a three-round elastic

network with RF3 as the third round function, RF2 as the second round function and the

contents of BRF1 as the first round function. These values correspond to those of S1 and S2

when D3 is allowed to make n adaptive chosen plaintext queries to BG′ . D3 succeeds with

non-negligible probability in determining it was given the input and output of G ′ implies

DRF1v2 will succeed with non-negligible probability in determining the contents of BRF1,

contradicting the assumption that the first round function is a random permutation.

Category I: The result for this category follows directly from the results for Categories II

and III. If D4 only uses the w1 portion of the outputs, since w1 = w2 ⊕ a2, this implies

D4 is using a combination of a2 and w2 on which to base its decision. This implies D4 is a

distinguisher for the first three rounds of the network in the decryption direction that falls

into Category III because the leftmost b-bit portion (a2) and rightmost y-bit portion (w2)

of the three round output is used.

Assume D4 exists for the four-round network. D4 is used to define a distinguisher, D3,

for the three rounds consisting of RF4−4 to RF2−2, taking inputs (z4i, w4i) and producing

outputs (a2i, w2i). In this case, BG′ is a black box containing either G−1 with four-rounds

or a random permutation on b + y bits. Let B3 be a black box containing either the three-

round elastic network formed from rounds RF4−4 to RF2−2 or a random permutation on

b + y bits.

Define D3 as follows:

Ask D4 what its first query (input) would be if it was querying BG′ in the decryption

direction. Populate S2 with this first input, so (z41, w41) has been chosen and is in S2. S2

is known to D3.
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for i = 1 to n {

Take (z4i, w4i) from S2 for use in subsequent steps.

Give (z4i, w4i) to B3 and get back (a2i, w2i).

Set w1i = a2i ⊕ w2i.

Give w1i, z4i, w4i to D4.

Add to S2 the next input D4 would use when trying to distinguish BG′ , having

seen the inputs and output of the first i queries. This is (z4i+1, w4i+1).

}

Let ans be the value D4 returns.

D3 returns ans.

The values given to D4 are the inputs and rightmost y bits of the outputs of the inverse of

a four-round elastic network. These y bits are formed from both the b-bit and y-bit portions

of the output of three rounds. Therefore, by the assumption D4 exists, D3 will succeed with

non-negligible probability in determining that the (a2i, w2i) values were formed from the

first three rounds of decryption. This contradicts the previous result from Category III.

For each of the three categories, I have shown Dr cannot exist. Therefore, the inverse of

a four-round elastic network is a PRP when the round functions are independently chosen

random permutations.

4.4 Elastic Networks: Counter-Examples

I provide a lower bound on the minimum number of rounds needed in an elastic network

to create PRPs and SPRPs by providing examples of when fewer rounds are not PRPs and

SPRPs. I also show that a certain level of independence is required between the round

functions by considering cases when all of the round functions are identical. First, I show

that at least three rounds are needed for an elastic network to be a PRP by proving that a

two-round elastic network is not a PRP regardless of the round functions. Second, I show

that a three-round elastic network is not a PRP when the round functions are identical.

Third, I show that the inverse of a three-round elastic network is not a PRP regardless of
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the round functions. Fourth, I show that the inverse of a four-round elastic network is not

a PRP when the round functions are identical. Fifth, I show that three and four-round

elastic networks are not SPRPs, regardless of the round functions. When proving an elastic

network is not a PRP or SPRP under specific conditions on the number of rounds and/or

round functions, it is sufficient to provide an example for one block size. All of the counter-

examples use a 2b-bit block size (y = b). Each example will not hold with probability 1

when y < b.

Figure 4.2: Elastic Block Cipher Structure: Two-Round Attack

Claim 4.1. An elastic network with exactly two rounds is not a PRP.

Proof. This claim holds regardless of the properties of the round functions. Consider the

case where y = b. Given two 2b-bit plaintexts of the form B||Y 1 and B||Y 2, let the

ciphertexts be denoted by C1||Z1 and C2||Z2, respectively. As shown in Figure 4.2, Z1 =

Z2 with probability 1. If the two-round construction was a PRP on b + y bits, then for

large b, this equality would occur with probability 2−b ± e for negligible e instead of with

probability 1.

Claim 4.2. A three-round elastic network is not a PRP when the round functions are

identical.
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Figure 4.3: Three-Round Elastic Network with Identical Round Functions

Proof. Consider the case shown in Figure 4.3 when y = b. Let 0 denote a string of y

zeroes. Encrypt B||0 and let C1||Z1 denote the resulting ciphertext. Z1 = f1(f1(B)).

C1 = f1(f1(f1(B)) ⊕ f1(B)). Then encrypt B||Z1 and let C2||Z2 denote the ciphertext.

Z2 = C1 with probability 1. If this three-round network was a PRP on b + y bits, then for

large b, this equality would occur with probability 2−b ± e for negligible e instead of with

probability 1.

Claim 4.3. The inverse of a three-round elastic network is not a PRP.

Proof. This is illustrated in Figure 4.4. The inputs to the round functions are defined in

the directions of the arrows in the figure and correspond to the direction of decryption.

This claim holds regardless of the properties of the round functions and is due to the fact

that, when y = b, the input to the inverse of the second round function is known because

it is the rightmost y bits. In contrast, in the encryption direction, the XOR after the first

round prevents the input to the second round function from being chosen. Let 0 denote

a string of b zeroes. When y = b, create four 2b-bit ciphertexts of the form C1||0, C2||0,

C1||Z and C2||Z where C1 6= C2 and Z 6= 0. Let the plaintexts be denoted by B1||Y 1,
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Figure 4.4: Three-Round Elastic Network: Chosen Ciphertext Attack

B2||Y 2, B3||Y 3 and B4||Y 4. Then Y 1 = f2−1(0)⊕ f3−1(C1), Y 2 = f2−1(0) ⊕ f3−1(C2),

Y 3 = f2−1(Z)⊕Z⊕f3−1(C1) and Y 4 = f2−1(Z)⊕Z⊕f3−1(C2). As a result, Y 1⊕Y 2 =

Y 3 ⊕ Y 4 with probability 1. If the three-round network was a PRP on 2b bits in the

decryption direction, then for large b, this equality would occur with probability 2−b ± e

for negligible e instead of with probability 1. When y < b, the attack does not hold with

probability 1 because the input to the second round of decryption contains b − y bits of

f4−4(Ci). These b− y bits would have to be equal for f4−4(C1) and f4−4(C2).

Claim 4.4. The inverse of a four-round elastic network in which the round functions are

identical is not a PRP.

Proof. Consider the case shown in Figure 4.5 when y = b. Let 0 denote a string of b

zeroes. Decrypt 0||0 and let B1||Y 1 denote the resulting plaintext. B1 = f1−1(0). Y 1 =

f1−1(f1−1(0)) = f1−1(B1). Decrypt 0||B1 and let B2||Y 2 denote the resulting plaintext.

Y 2 = f1−1(B1) ⊕ f1−1(0) = Y 1⊕ B1 with probability 1. If the inverse of this four-round

network was a PRP on b+y bits, then for large b, this equality would occur with probability

2−b ± e for negligible e instead of with probability 1.
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Figure 4.5: Four-Round Elastic Network with Identical Round Functions

Neither a three-round nor a four-round elastic network is a SPRP. In both cases, this

can be shown with an adaptive chosen plaintext - chosen ciphertext attack in which two

chosen plaintexts are encrypted then two chosen plaintexts formed from the two resulting

ciphertexts are decrypted.

Claim 4.5. A three-round elastic network is not a SPRP when b = y.

Proof. This claim holds regardless of the properties of the round functions. I note that

this claim also follows from Claim 4.6. The following sequence of two encryptions and two

decryptions can be used to distinguish the three-round elastic network from a SPRP when

b = y. Each plaintext and ciphertext is of length 2b, ı.e. |B| = |Bi| = |Y i| = |Ci| = |Zi| = b

∀i.

Encrypt two plaintexts of the form B||Y 1 and B||Y 2. The b-bit portion is constant and

the Y i′s may be any b bits such that Y 1 6= Y 2. Let C1||Z1 and C2||Z2 be the resulting

ciphertexts. This is depicted in Figure 4.6.

From the two resulting ciphertexts, form and decrypt the two ciphertexts C1||(Z1⊕Z2)

and C2||(Z1 ⊕ Z2). Let B3||Y 3 and B4||Y 4 denote the two resulting plaintexts. This is
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depicted in Figure 4.7. Y 3⊕ Y 4 = Z1⊕ Z2 with probability 1.

Figure 4.6: Chosen Plaintexts for the Chosen Plaintext - Chosen Ciphertext Attack

The equality is obtained as follows:

• Let α, α1 and α2 denote the bits left out of the second round as shown on the figures.

• Let µ = Z1⊕ Z2.

• Let ω be the output from the round function in the second round of decryption when

the input to the round function is µ = Z1⊕ Z2 as shown in Figure 4.7.

Notice that:

α = Z1⊕ f3−1(C1)

= Z2⊕ f3−1(C2)

α1 = f3−1(C1)⊕ µ

α2 = f3−1(C2)⊕ µ

Expanding u then substituting α in α1 results in:

α1 = f3−1(C1)⊕ Z1⊕ Z2
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Figure 4.7: Chosen Ciphertexts for the Chosen Plaintext - Chosen Ciphertext Attack

= Z2⊕ α.

Likewise,

α2 = f3−1(C2)⊕ Z1⊕ Z2

= Z1⊕ α

Rewriting Y 3 and Y 4 in terms of α1 and α2 results in:

Y 3⊕ Y 4 = ω ⊕ α1⊕ ω ⊕ α2

= α1⊕ α2

= Z2⊕ α⊕ Z1⊕ α

= Z1⊕ Z2

Therefore, with probability 1, Y 3⊕Y 4 = Z1⊕Z2 in this adaptive chosen plaintext - chosen

ciphertext attack. If the elastic network was a SPRP, then for large b, this equality would

hold with probability 2−b ± e for negligible e.

The attack does not hold with probability 1 when y < b because the input to the second

round of decryption is y bits of Z1 ⊕ Z2 and b − y bits from the output of f3−1. Since
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C1 6= C2, f3−1(C1) 6= f3−1(C2) and the b − y bits are not guaranteed to be equal. A

four-round elastic network is also not a SPRP.

Figure 4.8: Four-Round Elastic Network: Chosen Plaintext - Chosen Ciphertext Attack

Claim 4.6. A four-round elastic network is not a SPRP when b = y.

Proof. This claim holds regardless of the properties of the round functions and is due to

the fact that a three-round elastic network in the decryption direction is not a PRP. In the

three round case, using chosen ciphertexts only, a relationship can be pushed through the

three rounds of decryption into the right half of the output with probability 1 when y = b.

In the four round case, the same approach is used in that the halves of two ciphertexts are

switched to form to new ciphertexts and push a relationship into the rightmost y bits of

the output of the third round. When y = b, this becomes the entire input to the round

function in the fourth round of decryption. This time, one plaintext must be encrypted

to assist in providing the values from which the ciphertexts are formed. The sequence of

three decryptions and one encryption shown in Figure 4.8 can be used to distinguish the

four-round elastic network from a SPRP when y = b. Each plaintext and ciphertext is of

length 2b, ı.e. |B| = |Bi| = |Y i| = |Ci| = |Zi| = b ∀i. Let 0 denote a string of y zeroes.
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Decrypt a ciphertext of the form C1||0. Let B1||Y 1 be the resulting plaintext. Encrypt

a plaintext of the form B1||Y 2 with Y 2 6= Y 1. Let C2||Z2 be the resulting ciphertext. The

output of the first round function, α1, is identical in both the decryption and encryption.

Form two ciphertexts, C2||0 and C1||Z2, and decrypt them. Let B3||Y 3 and B4||Y 4 denote

the two resulting plaintexts.

Notice that:

α1 = f4−1(C1)⊕ f3−1(0)

= Z2⊕ f4−1(C2)⊕ f3−1(Z2)

α3 = f4−1(C2)⊕ f3−1(0)

α4 = Z2⊕ f4−1(C1)⊕ f3−1(Z2)

By rearranging the equations for α1:

f4−1(C2)⊕ f3−1(0) = Z2⊕ f4−1(C1)⊕ f3−1(Z2).

Therefore,

α3 = α4 and B3 = B4.

B3 = B4 with probability 1; whereas, if the network was a SPRP this equality would

hold for large b with probability 2−b ± e for negligible e. As in the other examples, this

result does not hold with probability 1 when y < b.

4.5 Three-Round Elastic Network: PRP from PRPs

I now prove that a three-round elastic network in the encryption direction is a PRP when

the round functions are independently chosen PRPs.

Theorem 4.3. A three-round elastic network in the encryption direction is a variable-

length PRP on b + y bits if the round functions are independently chosen PRPs on b bits

and 0 ≤ y ≤ b.

Proof. I consider the relationships between the four versions shown in Figure 4.9 of a three-

round elastic network. In each version, the round functions are chosen independently of

each other and map a b-bit input to a b-bit output.

I define the following six permutations:



CHAPTER 4. CREATION OF VARIABLE-LENGTH PRPS AND SPRPS 68

Figure 4.9: Three-Round Networks Consisting of RPs and PRPs

• Let PRP1, PRP2, PRP3 be three independently chosen pseudorandom permutations.

• Let RP1, RP2, RP3 be three independently chosen random permutations.

Let Ni refer to a three-round elastic network in the encryption direction in which the

first i round functions are pseudorandom permutations and the remaining round functions

are random permutations, for i = 0, 1, 2, 3 defined as follows:

• Network 0 (N0): Each round function is a RP. The round functions are RP1, RP2

and RP3.

• Network 1 (N1): The first round function is the PRP. The second and third round

functions are RPs. The round functions are PRP1, RP2 and RP3.

• Network 2 (N2): The first two round functions are PRPs and the third round function

is a RP. The round functions are PRP1, PRP2 and RP3.

• Network 3 (N3): Each round function is a PRP. The round functions are PRP1,

PRP2 and PRP3.
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As shown by Theorem 4.1, N0 is a PRP. Therefore, if Theorem 4.3 is not true it

is possible to distinquish N3 from N0 with probability ≥ α for some non-negligible α

where 0 < α ≤ 1. I will show that if N3 can be distinquished from random then at least

one of PRP1, PRP2 and PRP3 can be distinguished from random in order to derive a

contradiction and thus conclude Theorem 4.3 is true.

Let D be a distinguisher that takes (b + y)-bit inputs and runs in polynomial time. D

outputs a 1 if it thinks the inputs are the outputs of a random permutation and outputs a

0 otherwise. Let Pr(Ni) be the probability that D outputs a 1 when given polynomially

many outputs from Ni. If N3 can be distinguished from a random permutation, then

|Pr(N0)− Pr(N3)| ≥ α.

However,

|Pr(N0)− Pr(N3)| = |Pr(N0)− Pr(N1) + Pr(N1)− Pr(N2) + Pr(N2)− Pr(N3)|

≤ |Pr(N0)− Pr(N1)|+ |Pr(N1)− Pr(N2)|+ |Pr(N2)− Pr(N3)|.

Therefore, α ≤ |Pr(N0)− Pr(N1)|+ |Pr(N1)− Pr(N2)|+ |Pr(N2)− Pr(N3)|.

This implies at least one term on the right side of the inequality is ≥ α
3 . Therefore, it is

possible to distinguish a three-round elastic network in the encryption direction that has i

round functions that are pseudorandom permutations and 3 − i round functions that are

random permutations from a three-round elastic network that has i−1 round functions that

are pseudorandom permutations and 4 − i round functions that are random permutations

with non-negligible probability, where i is at least one value from {1, 2, 3}. Therefore, it

is possible distinguish between a round function which is a random function and one that

is a pseudorandom function with non-negligible probability, contradicting the definition of

pseudorandom.

I note that a four-round elastic network in the encryption direction is also a PRP. This

is used later when proving a five-round elastic network is a SPRP.

4.6 Four-Round Elastic Network: PRP from PRPs

I now prove that a four-round elastic network in the decryption direction is a variable-length

PRP when the round functions are randomly chosen PRPs.
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Theorem 4.4. The inverse of a four-round elastic network is a variable-length PRP on

b + y bits if the round functions are independently chosen PRPs on b bits and 0 ≤ y ≤ b.

Proof. The proof is similar to that for the three round network. This time I consider the

relationships between the five networks in the decryption direction instead of four in the

encryption direction. In each version, the round functions are chosen independently of each

other and map a b-bit input to a b-bit output.

I define the following eight permutations:

• Let PRP1, PRP2, PRP3, PRP4 be four independently chosen pseudorandom per-

mutations.

• Let RP1, RP2, RP3, RP4 be four independently chosen random permutations.

Let Ni refer to the inverse of a four-round elastic network in which the first i round

functions are pseudorandom permutations and the remaining round functions are random

permutations, for i = 0, 1, 2, 3, 4 defined as follows:

• Network 0 (N0): Each round function is a RP. The round functions are RP1, RP2,

RP3 and RP4.

• Network 1 (N1): The first round function is the PRP. The second to fourth round

functions are RPs. The round functions are PRP1, RP2, RP3 and RP4.

• Network 2 (N2): The first two round functions are PRPs and the last two are RPs.

The round functions are PRP1, PRP2, RP3 and RP4.

• Network 3 (N3): The first three round functions are PRPs and the last one is a RP.

The round functions are PRP1, PRP2, PRP3 and RP4.

• Network 4 (N4): Each round function is a PRP. The round functions are PRP1,

PRP2, PRP3 and PRP4.

As shown by Theorem 4.2, N0 is a PRP. Therefore, if Theorem 4.4 is not true it is

possible to distinquish N4 from N0 with probability ≥ α for some non-negligible α where

0 < α ≤ 1. I will show that if N4 can be distinquished from random then at least one of
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PRP1, PRP2, PRP3 and PRP4 can be distinguished from random in order to derive a

contradiction and thus conclude Theorem 4.4 is true.

Let D be a distinguisher that takes (b + y)-bit inputs and runs in polynomial time. D

outputs a 1 if it thinks the inputs are the outputs of a random permutation and outputs a

0 otherwise. Let Pr(Ni) be the probability that D outputs a 1 when given polynomially

many outputs from Ni. If N4 can be distinguished from a random permutation, then

|Pr(N0)− Pr(N4)| ≥ α.

However,

|Pr(N0)− Pr(N4)| = |Pr(N0)− Pr(N1) + Pr(N1)− Pr(N2) + Pr(N2)− Pr(N3) +

Pr(N3)− Pr(N4)|

≤ |Pr(N0)−Pr(N1)|+ |Pr(N1)−Pr(N2)|+ |Pr(N2)−Pr(N3)|+ |Pr(N3−Pr(N4)|.

Therefore, α ≤ |Pr(N0)−Pr(N1)|+ |Pr(N1)−Pr(N2)|+ |Pr(N2)−Pr(N3)|+ |Pr(N3)−

Pr(N4)|.

This implies at least one term on the right side of the inequality is ≥ α
4 . Therefore, it is

possible to distinguish a four-round elastic network in the decryption direction that has i

round functions which are pseudorandom permutations and 4− i round functions that are

random permutations from a four-round elastic network that has i−1 round functions that

are pseudorandom permutations and 5 − i round functions that are random permutations

with non-negligible probability, where i ∈ {1, 2, 3, 4}. Therefore, it is possible distinguish

between a round function which is a random function and one that is a pseudorandom

function with non-negligible probability, contradicting the definition of pseudorandom.

4.7 Five-Round Elastic Network: SPRP from PRPs

I will show that a five-round elastic network in which the round functions are independently

chosen pseudorandom permutations is a SPRP. I note that a five-round elastic network

consisting of round functions that are independently chosen pseudorandom permutations

is a PRP in both the encryption and decryption directions because the last four rounds in

either direction is a PRP.

Before stating the theorem regarding the SPRP, I prove a claim. By the definition of
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a SPRP, any random permutation is a SPRP. Let RP1 and RP2 be two independently

chosen random permutations, each on n bits. Define Perm1(x) = RP2(RP1(x)), where x

is of length m. Perm1 is a random permutation on n bits and is a SPRP. Now I consider

what happens if I use a combination of pseudorandom permutations and permutations in

place of RP1 and RP2.

I define the permutations, P1, P2, PRP1 and PRP2 to satisfy the following conditions:

• P1(x) and P2(x) are permutations on m bits. P1 and P2 are independently cho-

sen. P1 6= P2, except with negligible probability. P1 is not pseudorandom in that a

relationship between some subset of bits in its inputs and outputs that occurs with

non-negligible probability is known, but the exact permutation is unknown. Specifi-

cally, when given a black box that contains either P1 or a random permutation on b

bits, it is possible to determine the contents of the box in polynomially many queries.

However, when using P1 in forming PA as defined below, the exact permutation cor-

responding to P1 is unknown. Likewise for P2, which is used to form PB as defined

below.

• PRP1(x) and PRP2(x) are pseudorandom permutations on m bits whose indepe-

dence is defined by the independence of P1 and P2 such that P2(PRP2(P1(X))) =

PRP1−1(X).

• PA(x) = PRP2(P1(x))

• PB(x) = PRP1(P2(x)). Therefore, PB−1 = PA−1

• Perm2 will refer to the permutation corresponding to PA and PB. Perm2 = PA

and Perm2−1 = PB.

It is possible to define P1, P2, PRP1 and PRP2 that satisfy these constraints. For exam-

ple, I will later show how a five-round elastic network can be viewed in this manner by

defining P1 to be the first round, P2 to be the inverse of the last round, PRP2 to be the

last four rounds and PRP1 to be the inverse of the first four rounds. Perm2 is a pseudo-

random permutation on n bits (this is just PRP2 and PRP1 with the inputs selected by
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choosing n bits then applying a permutation, P1 or P2, to the input before giving it to the

pseudorandom permutation).

Claim 4.7. Perm2 is a SPRP.

Proof. In order for Perm2 to be a SPRP it must not be possible to distinguish Perm2 from

a random permutation on polynomially many (n) queries to PA and its inverse, PB. For

simplicity, when I say an adversary is querying Perm1 or Perm2, I mean the adversary is

able to issue queries to both the permutation and its inverse. The adversary does not have

direct access to P1 and P2, meaning the adversary is not able to query P1 and use the

output as input to PRP2 and/or query P2 and use the output as input to PRP1. The

adversary can only give inputs to PA and PB.

• Let (pi, ci), for i = 1 to n be pairs of m bit strings such that ci = PA(pi).

• Let < +, pi > denote a query to PA using input pi.

• Let < −, ci > denote a query to PB using input ci.

• Let ti be the output of the ith query. ti = ci when the query is < +, pi > and ti = pi

when the query is < −, ci >.

• Let T = (t1, t2, ....tn) be the output of n distinct queries to PA. If the ith query is

< +, pi > and the jth query is < −, ci >, tj = pi if and only if ti = cj , for i 6= j.

Without loss of generality I can assume that if an adversary queries with < +, pi >

that he will not later query with < −, ci > since he knows the answer will be pi

regardless of whether he is querying Perm1 or Perm2.

• Let U = (u1, u2, ....un) be the output of n distinct queries made to Perm1.

I will refer to U and T as transcripts of Perm1 and Perm2, respectively. In order for Perm2

to be a SPRP, it must not be possible to distinguish T from U with non-negligible probabil-

ity. The probability of ui+1 ocurring given (p1, c1), (p2, c2)...(pi, ci) is 1
2m−i because Perm1

is a random permutation. The probability of a specific U occuring is PrR =
∏n−1

i=0
1

2m−i .

Since PA is a pseudorandom permutation, it is not possible to distinguish the output, ti,

of any single query from the output of a random permutation with non-negligible probability.
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For any single query to PA, the output occurs with probability 1
2m + e for some negligible

e. When given i queries to PA, the (i + 1)st such query produces an output that occurs

with probability 1
2m−i + eAi

for negligible eAi
. Likewise, when given i queries to PB,

the (i + 1)st such query produces an output that occurs with probability 1
2m−i + eBi

for

negligible eBi
. Even though PA and PB are inverses of each other, there is no non-negligible

relationship between the outputs of PA and PB because these are the outputs of PRP2 and

PRP1, respectively. A transcript of n1 distinct queries to PA will occur with probability

(
∏n1−1

i=0
1

2m−i) + eA for negligible eA. A transcript of n2 distinct queries to PB will occur

with probability (
∏n2−1

j=0
1

2m−j ) + eB for negligible eB .

I consider the probability with which a transcript, TPA, of n1 queries to PA occurs and

with which a transcript, TPB, of n2 queries to PB occurs. Suppose an adversary makes

n1 queries to PA and that between the queries, the adversary is given (pl, cl) pairs that

correspond to PA (ı.e., the adversary is given extra pairs for which he did not need to expend

resources) such that overall, the adversary is given n2 such pairs. The adversary will not

repeat any query or make a query for which he already been given the outcome. Let nai be

the number of (pl, cl) pairs the adversary has been given prior to the (i +1)st query to PA.

nai ≥ nai−1 for 1 ≤ i ≤ n1. TPA occurs with probability PrA = (
∏n1−1

i=0
1

2m−i−nai
)+ePA for

negligible ePA. Suppose an adversary makes n2 queries are made to PB and that between

the queries, the adversary is given (pl, cl) pairs that correspond to PB (ı.e., the adversary

is given extra pairs for which he did not need to expend resources) such that overall, the

adversary is given n1 such pairs. The adversary will not repeat any query or make a query

for which he already been given the outcome. Let nbj be the number of (pl, cl) pairs the

adversary has been given prior to the (j+1)st query to PB. nbj ≥ nbj−1 for 1 ≤ j ≤ n2.

TPB occurs with probability PrB = (
∏n2−1

j=0
1

2m−j−nbj
) + ePB for negligible ePB .

When n = n1 + n2 queries are made to Perm2 such that n1 queries are made to PA

and n2 are made to PB (the queries can be in any order), the probability of the resulting

transcript, T , from Perm2 can be written as the product of PrA and PrB . Let qBi be the

number of queries made to PB between the ith and (i + 1)st queries to PA. Let qAj be

the number of queries made to PA between the j th and (j +1)st queries to PB. By setting

nai =
∑i

k=0 qAk and nbj =
∑j

k=0 qBk, the probability of T occurring is
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(PrA)(PRB) = ((
∏n1−1

i=0
1

2m−i−nai
) + ePA)∗ ((

∏n2−1
j=0

1
2m−j−nbj

) + ePB)

= (
∏n1−1

i=0
1

2m−i−nai
) ∗ (

∏n2−1
j=0

1
2m−j−nbj

)+ (
∏n1−1

i=0
1

2m−i−nai
) ∗ ePA +(

∏n2−1
j=0

1
2m−j−nbj

) ∗

ePB + ePA ∗ ePB .

=
∏n−1

i=0
1

2m−i + e for negligible e.

Therefore, it is not possible to distinguish T from U with non-negligible probability.

Figure 4.10: Five-Round Elastic Network as Two PRPs and Two Permutations

Theorem 4.5. A five-round elastic network on b + y bits, 0 ≤ y ≤ b, in which each round

function is an independently chosen PRP on b bits is a SPRP on b + y bits.

Proof. G′ refers to a five-round elastic network on b + y bits with round functions that

are independently chosen PRPs on b bits. G′ can be defined in a format consistant with

the four permutations used in Claim 4.7: P1, P2, PRP1, PRP2. Figure 4.10 shows a five-

round elastic network represented in this manner. In the figure, the RFi’s are independently

chosen pseudorandom permutations.

• Let P1 refer to the first round of G′, including the swap step.

• Let P2 refer to the inverse of the last round of G′, including the swap step that precedes

the round function. i.e. P2 is the first round in G′−1 (the decryption direction).
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• P1 and P2 are independently chosen permutations, because each RFi is a indepen-

dently chosen psuedorandom permutations. The exact permutations used for P1 and

P2 are unknown because they involve RF1 and RF4, respectively. P1 and P2 are

not pseudorandom because they can be distinguished from a random permutation by

using queries where the b bit portion of input is held constant and the y-bit portion

is varied.

• Let PRP2 refer to the last four rounds of G′. PRP2 consists of all steps in G′ after

P1.

• Let PRP1 refer to the inverse of the first four rounds of G′, excluding the swap step

after the third round. PRP1 consists of all steps in G′−1 after P2.

PRP1 and PRP2 are PRPs on b + y bits by Theorems 4.4 and 4.3. PRP1 6= PRP2−1.

P1 and P2 are permutations on b + y bits. By setting PA = PRP2(P1(x)) and PB =

PRP1(P2(x)), PB = PA−1. Therefore, by Claim 4.7 G′, is a SPRP.

4.8 mb + y Bit SPRP

Figure 4.11: CMC Mode for 4b Bits (Halevi and Rogaway)
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I can extend the use of the elastic network to create a (mb + y)-bit PRP and SPRP,

where m is an integer ≥ 1, b is the block size of a block cipher, G, and 0 ≤ y ≤ mb. Halevi

and Rogaway created a mode of encryption that allows a mb-bit SPRP, for m ≥ 2, to be

created from a block cipher that is a PRP on b bits [HR03b]. The mode is referred to as

CBC-Mask-CBC (CMC) and is shown in Figure 4.11.

The advantage an adversary has in distinguishing G in CMC mode from random when

querying a black box which contains either G or a random permutation with adaptive

chosen plaintext-ciphertext queries can be written in terms of the advantage an adversary

has in distinguishing G from random with adaptive chosen plaintext - chosen ciphertext

queries (e.g. the ability of an adversary to distinguish G in CMC mode from a strong

random permutation is quantified in terms of the ability to distinquish G from a strong

random permutation). Let AdvG(tG, qG, inG + outG) be the advantage of an adversary in

distinguishing a block cipher, G, from random in time tG when using qG adaptive chosen

plaintext - chosen ciphertext queries. inG is the total number of bits input by the adversary

and outG is the total number of bits output by the adversary. inG is an integer multiple

of the block length b. Let AdvG−CMC(tCMC , inG, outG) be the advantage of an adversary

in distinguishing G from random in time tCMC when the total number bits input by the

adversary is inG and the total number output by the adversary is outG. I will abbreviate

these advantages as AdvG and AdvG−CMC . Halevi and Rogaway proved that AdvG−CMC ≤

2 ∗AdvG [HR03b].

Suppose G is a PRP. I bound the advantage in distinguishing a five-round elastic network

that uses G in CMC mode as the round functions from a five-round elastic network with

independently chosen random permutations as the round functions. I use the same method

that was used in the proofs to Theorems 4.3 and 4.4. I define the following ten permutations:

• Let PRP1, PRP2, PRP3, PRP4, PRP5 be five independently chosen pseudorandom

permutations.

• Let RP1, RP2, RP3, RP4, RP5 be five independently chosen random permutations.

Let Ni refer to a five-round elastic network in which the first i round functions are

pseudorandom permutations and the remaining round functions are random permutations,
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for i = 0, 1, 2, 3, 4, 5 defined as follows:

• Network 0 (N0): Each round function is a RP. The round functions are RP1, RP2,

RP3, RP4 and RP5.

• Network 1 (N1): The first round function is the PRP. The second, through fifth round

functions are RPs. The round functions are PRP1, RP2, RP3, RP4 and RP5.

• Network 2 (N2): The first two round functions are PRPs, and the third through fifth

round functions are RPs. The round functions are PRP1, PRP2, RP3, RP4 and

RP5.

• Network 3 (N3): The first three round functions are PRPs and the last two round

functions are RPs. The round functions are PRP1, PRP2, PRP3, RP4 and RP5.

• Network 4 (N4): The first four round functions are PRPs and the last round function

is a RP. The round functions are PRP1, PRP2, PRP3, PRP4 and RP5.

• Network 5 (N5): Each round function is a PRP. The round functions are PRP1,

PRP2, PRP3, PRP4 and PRP5.

Let each PRP be an instance of G with a specific key. The keys are chosen randomly

and independently of each other in order for the PRPs to be chosen independently of each

other. The probability that network N(i + 1) can be distinguished from network Ni, for

i = 0, 1, 2, 3, 4 is the probability that one round function consisting of G can be distinguished

from a random permutation.

|Pr(Ni)− Pr(N(i + 1))| ≤ AdvG, for i = 0, 1, 2, 3, 4.

|Pr(N0)− Pr(N5)| =

|Pr(N0) − Pr(N1) + Pr(N1) − Pr(N2) + Pr(N2) − Pr(N3) + Pr(N3) − Pr(N4) +

Pr(N4)− Pr(N5)|

≤ |Pr(N0)− Pr(N1)|+ |Pr(N1)− Pr(N2)|+ |Pr(N2)− Pr(N3)|

+|Pr(N3)− Pr(N4)|+ |Pr(N4)− Pr(N5)|

≤ 5 ∗AdvG.
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If G in CMC mode is used as the PRP instead of G, |Pr(Ni)− Pr(N(i + 1))| ≤ 2 ∗AdvG,

for i = 0, 1, 2, 3, 4, 5. and |Pr(N0)− Pr(N5)| ≤ 10 ∗ AdvG.

When the elastic network has four rounds (i.e., the Ni’s each have four rounds and

i = 0, 1, 2, 3, 4) then |Pr(N0)−Pr(N4)| ≤ 4∗AdvG when the round functions are instances

of G with randomly chosen keys and ≤ 8 ∗AdvG when the round functions are instances of

G with randomly chosen keys in CMC mode. In this case, the four-round elastic network

with instances of G in CMC mode is a PRP in either the encryption or decryption direction.

This allows for the creation of variable-length PRPs and SPRPs using G and the elastic

network. Inputs range from b to mb for any integer m ≥ 2 for which 8 ∗ AdvG is negligible

when using a four-round elastic network to create a PRP and for which 10∗AdvG is negligible

when using a five-round elastic network to create a SPRP. Let m̂8 be the largest value of m

for which 8 ∗AdvG is negligible. and let m̂10 be the largest value of m for which 10 ∗AdvG

is negligible. Use G in a four-round elastic network to create PRPs on b to 2b bits and use

G in CMC mode in a four-round elastic network to create PRPs on 2b + 1 to 2m̂8b bits.

Similarly, variable-length SPRPs using G and a five-round elastic network can be created

for inputs of b to 2m̂10b bits. Note, I only need G in CMC mode to be a PRP, not a

SPRP. Therefore, it may be possible to increase the upper bound on m̂8 and m̂10 because

Halevi and Rogaway based AdvG and AdvG−CMC on G being a SPRP as opposed to a PRP

[HR03b].

4.9 Variable-Length PRPs and SPRPs Created from Fixed-

Length PRFs

The elastic network can be combined with existing methods for creating fixed length PRPs

to form variable-length PRPs and SPRPs, as long as the existing method allows for the

creation of three or four independently selected PRPs. One such method is the creation of

b-bit PRPs from b
2 -bit PRFs using Feistel networks. Either the method described by Luby

and Rackoff using a three-round Feistel network [LR88] or the method described by Naor

and Reingold using a b-bit permutation and a two-round Feistel network [NR99] can be

used to create the b-bit PRPs needed for the round functions in the elastic network.
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For each round of the elastic network, select three b
2 -bit PRFs independently of each

other and independently of the PRFs used in previous rounds. This produces an elastic

network with independently selected b-bit PRPs as the round functions and the results for

three, four and five-round elastic networks apply, resulting in (b + y)-bit PRPs and SPRPs

created from b
2 -bit PRFs. In this case, nine PRFs are needed to created a variable-length

PRP in the encryption direction and twelve are needed for the decryption direction. Fifteen

PRFs are needed to create the variable-length SPRPs.

A variation of this construction is to replace the first round of each Feistel network with

a randomly chosen b-bit permutation. Then, each round function of the elastic network

consists of a b-bit permutation followed by a two-round Feistel network. The round function

is a PRP, as proven by Naor and Reingold [NR99]. Three b-bit permutations and six b
2 -bit

PRFs, independently chosen, are required to create a three-round elastic network that is

a PRP in the encryption direction. These values are four and eight, respectively for the

decryption direction. Five b-bit permutations and ten b
2 -bit PRFs, independently chosen,

are required to create a five-round elastic network that is a SPRP.

For both variations, it may be possible to reduce the number of distinct PRFs required

by determining the implications of using one or more of the PRFs in multiple rounds.

Whether or not the same b-bit permutation can be used in multiple rounds of the second

construction has not been investigated.

4.10 Summary

I have proven that a three-round elastic network is a PRP, the inverse of a four-round elastic

network is a PRP and a five-round elastic network is a SPRP, when the round functions

are independently chosen PRPs. These results allow for the creation of (b + y)-bit PRPs

and SPRPs from b-bit PRPs, for 0 ≤ y ≤ b. I also proved that these are the minimum

number of rounds required and that the results do not hold when all of the round functions

are identical. By combining the elastic network with the CMC mode of encryption, 2b to

2mb-bit PRPs and SPRPs can be created from b-bit PRPs, for some m ≥ 2, where m is

limited by the (negligible) advantage an adversary has in distinguishing the b-bit PRPs
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from a random permutation. By using Feistel networks as the round functions in the elastic

network, (b + y)-bit PRPs and SPRPs can be created from b
2 -bit PRFs, for 0 ≤ y ≤ b.
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Chapter 5

Security Analysis

5.1 Overview

In this chapter I analyze the security of an elastic block cipher independently of the specific

block cipher used in the construction. First, I use a reduction to relate the security of the

elastic version, G′, to that of the original version, G. I prove that G′ is secure against any

attack that attempts to recover the key or the expanded-key bits if G is secure against

the attack, under certain assumptions on the independence of the expanded-key bits in

G′. This is accomplished by showing how to convert such an attack on G′ to an attack

on G. This result is important because it implies G′ does not have to be analyzed against

any practical attack to which G is immune. My approach is novel because I show how to

convert an attack on the variable-length version of a block cipher directly into an attack on

the fixed-length version of the block cipher. While Bellare and Rogaway, and Patel, et al.,

were able to define the security of their variable-length block ciphers described in Chapter

2 in terms of the original, fixed-length, cipher, they did not provide a means by which to

convert a practical attack on the variable-length version to an attack on the original cipher.

Second, I consider linear cryptanalysis and, more generally, any algebraic attack. While

these attacks are covered by the reduction method, I use them to provide an example of

how a specific type of attack on G′ can be converted into an attack on G. I show how

any linear or any algebraic equations relating the plaintext, ciphertext and key bits for

G′ can be converted into equations for G without decreasing the probability with which a
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specific equation holds. Therefore, any linear or algebraic attack on G′ can be converted

into such an attack on G, implying G′ is secure against such attacks if G is secure against

such attacks. Third, I discuss side channel attacks and differential fault analysis. Due to the

elastic version of a block cipher reusing the round function of the original cipher, any type

of side channel attack or differential fault analysis that exploits weaknesses or traits of the

round function will also be possible on the elastic version of the cipher. Additional security

analysis is provided in Chapter 7 when I discuss differential cryptanalysis and in Chapter 8,

where I consider attacks which exploit the key schedules of ciphers and explain why they are

not applicable to elastic block ciphers under my assumptions about the pseudorandomness

of the expanded-key bits.

5.2 Reduction Between the Original and Elastic Versions of

a Cipher

5.2.1 Scope

For any concrete block cipher used in practice (as opposed to a PRP in theory) the cipher

cannot be proven secure in a theoretical sense (is not proven to be a PRP or SPRP) but

rather is proven secure against known types of attacks. Thus, I can only do the same for the

elastic version of such a cipher. In order to provide a general understanding of the security

of elastic block ciphers, I provide a method for reducing the security of the elastic version

to that of the original version, showing that a security weakness in G′ implies a weakness

in G. My security analysis of G′ exploits the fact that there is an instance of G embedded

in G′.

I show how to reduce G′ to G in a manner that allows an attack which finds the key

or round keys of G′ to be used to find the round keys for G. Security against key recovery

attacks does not by itself imply security (e.g., the identity function which ignores the key is

insecure while key recovery is impossible). However, all concrete attacks against real ciphers

(linear, differential, higher order differential, impossible differential, related key attacks,

etc.) attempt key (or expanded-key) recovery and thus practical block ciphers should be

secure against such attacks. I note that if there is a relationship between the plaintext and
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ciphertext bits that does not involve the key bits, this relationship would either manifest

itself in the results of statistical tests on whatever versions of the block cipher (original

and/or elastic) for which the relationship holds, and/or as algebraic equations relating the

plaintext and ciphertext. In this latter case, any such equations that hold for the elastic

version can be converted into equations for the original cipher as shown in Section 5.3.

In my analysis, I consider G′ without the initial and final key-dependent mixing steps.

This allows me to focus on the core components of the elastic block cipher algorithm.

If present, the mixing steps only serve to increase the security of G′ since they prevent an

attacker from knowing with probability one which bits are omitted from the first application

of the round function. Furthermore, since the mixing steps are added steps (as opposed to

modifications to components of G) using key material that is independent of the round and

whitening key bits, they do not impact my analysis.

5.2.2 Round-Key Recovery Attack

I use the fact that an instance of G is embedded in G′ to create a reduction from G′ to G. As

a result of this reduction, an attack against G′ that allows an attacker to determine some of

the round keys implies an attack against G that is polynomially related in resources to the

attack on G′. Assuming that G itself is resistant to such attacks, I conclude that G′ is also

resistant to such attacks. I note that if an attack finds the key as opposed to the expanded-

key bits (the round keys) then the attacker can apply the key schedule to the key to obtain

the round keys. Therefore, in my analysis, I view any key recovery attack as providing the

round keys to the attacker. The reduction requires a set of (plaintext, ciphertext) pairs.

This is not considered a limiting factor because in most types of attacks, whether they are

known plaintext, chosen plaintext, adaptive chosen plaintext, chosen ciphertext etc., the

attacker acquires a set of such pairs.

In order to aid my analysis, I draw attention to the fact that the operations performed

in G′ on the leftmost b-bit positions in r consecutive rounds is an application of G. This is

depicted intuitively in Figure 5.1. This relationship can be used to convert an attack which

finds the round keys for G′ to an attack which finds the round keys for G. Let Grk denote

G using round keys rk. Specifically, if Gk
′(p ‖ x) = c ‖ z, a set of round keys, rk, for G
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Figure 5.1: G within G′

such that Grk(p) = c can be formed from the round keys and the round outputs in G′ by

collapsing the end-of-round whitening and swapping steps in G′ into a whitening step. The

leftmost b bits of the round key for the initial whitening are unchanged, and the rightmost y

bits are dropped. The resulting whitening key bits will vary in up to y positions across the

(plaintext, ciphertext) pairs due to the previous round’s output impacting the end-of-round

whitening step. However, it is possible to use these keys to solve for the round keys of G,

as shown Sections 5.2.3 and 5.2.4.

I state the following claim to assist the reader in understanding the linkage between G

and G′. The claim shows that for any set of (plaintext, ciphertext) pairs encrypted under

sets of round keys in G′ where the rightmost y bits used for whitening in each round may

vary amongst the sets and all other key bits are identical amongst the sets, there exists a

corresponding set of (plaintext, ciphertext) pairs for G where the round keys used in G ′
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for the round function and the leftmost b bits of each whitening step are the same as those

used in G, the plaintexts used in G are the leftmost b bits of the plaintexts used in G ′, and

the ciphertexts for G are the leftmost b bits of output of the r th round of G′ prior to the

swap step.

Claim 5.1. Let G be a b-bit block cipher and G′ be its elastic version. Let {(pi, ci)} denote

a set of n (plaintext, ciphertext) pairs such that |pi| = |ci| = b. Let b+y be the variable block

size for G′ where 0 ≤ y ≤ b. Under the following assumptions regarding the key schedules:

• The rightmost y bits of each whitening step in G′ can take on any value and are

independent of any other expanded-key bits within the round and in other rounds.

• No message-related expanded keys. Any expanded-key bits utilized in G depend only

on the key and do not vary across plaintext or ciphertext inputs.

• Any expanded-key bits used in the round function of the r consecutive rounds of G ′

can take on the same values as the expanded-key bits used in the round functions of

G.

• If G contains initial and end of round whitening, any expanded-key bits used for the

leftmost b bits of each whitening step in r consecutive rounds of G′ can take on the

same values as the whitening bits in G.

if Gk(pi) = ci then there exists n sets of round keys for the first r rounds of G′ that are

consistent with inputs pi ‖ w producing ci ‖ vi as the output of the r th round prior to the

swap at the end of the rth round, for i = 1 to n and |w| = |vi| = y, such that the leftmost

b bits used for whitening in each round are identical across the n sets and any expanded-

key bits used internal to the round function are identical across the n sets. There are no

restrictions on the vi values.

Proof. Let rk = {rk0, rk1, ...rkr} be the set of round keys corresponding to key k for G. rk0

denotes the key bits used for initial whitening. For (pi, ci), form a set of the first r round

keys for G′ as follows: Pick a constant string, w, of y bits, such as a string of 0′s. Let pi ‖ w

be the input to G′. Let rki′ = {rki′0, rki′1, ...rki′r} denote the round keys for G′ through the
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rth round for the pair (pi, ci). Set any bits in rki′j used internal to the round function to

be the same as the corresponding bits in rkj . Set the leftmost b bits used for whitening in

rki′j to the b bits used for whitening in rkj . Set the rightmost y bits used for whitening in

rki′j to be the same as the y bits left out of the round function in round j of G′. This is

illustrated by Figure 5.2. Notice that the leftmost b bits used for whitening in each round

are identical across the n sets, and any bits used internal to the round function are identical

across the n sets; specifically, they correspond to rk in each case, and the rightmost y bits

used in each whitening step differ based on (pi, ci) across the n sets. The case in which

G does not contain whitening steps corresponds to using 0’s for the leftmost b bits of each

whitening step in G′.

Figure 5.2: Converted Key Unchanged in b Whitening Bits

The operations of G′ on the leftmost b bits of rounds 1 through round r, prior to the

last swap, are identical to the operations in Gk(pi) because the swap step in G′ results in

XORing y bits of a round function’s output with y 0′s. Therefore, the leftmost b bits output

from the rth round prior to the swap in the rth round is ci. Therefore, for i = 1 to n there

exists a set of round keys, rki′ for G′
rki′ such that G′(pi) produces ci as the leftmost b bits

in the rth round prior to the swap step, thus proving Claim 5.1.
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Theorem 5.1. Given a fixed-length block cipher, G, that works on b-bit blocks and its

elastic version, G′, that works on (b + y)-bit blocks, where 0 ≤ y ≤ b, if there exists an

attack, A′
G′ , on G′ that allows the round keys to be determined for r consecutive rounds

of G′ using polynomial (in b) time and memory, then there exists an attack on G with r

rounds that finds the round keys for G and that uses polynomial (in b) many resources as

A′
G′ , assuming:

• No message-related expanded keys. Any expanded-key bits utilized in G depend only

on the key and do not vary across plaintext or ciphertext inputs.

• An attack on r′ rounds of G′ implies a reduced-round attack on r rounds of G′ for

r ≤ r′.

• A′
G′ finds all possible sets of round keys, if more than one set exists.

• Any expanded-key bits used in the round function of the r consecutive rounds of G ′

can take on the same values as the expanded-key bits used in the round functions of

G.

• If G contains initial and end of round whitening, any expanded-key bits used for the

leftmost b bits of each whitening step in r consecutive rounds of G′ can take on the

same values as the whitening bits in G.

Proof. Sections 5.2.3 and 5.2.4 contain two different proofs of the theorem. The proof in

Section 5.2.3 is applicable to all values of y where 0 ≤ y ≤ b and the proof in Section 5.2.4

works for values of y satisfying r(y − 2) < b.

The first assumption is typical of existing block ciphers and is true of the elastic versions

of block ciphers, which use a stream cipher as the key schedule. The second assumption is

true of block ciphers used in practice. The last two assumptions mean that the key schedule

of G′ is defined such that a subset of the expanded-key bits can have the same values as

if they were generated by the key schedule of G. These assumptions are easily satisfied in

practice by using the key schedule of G to generate a subset of the round key bits and a

separate algorithm to generate the expanded-key bits required in G′ for the additional r′−r
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rounds and any whitening present in G′ that is not present in G. Another option is if the

key schedule of G′ generates pseudorandom expanded-key bits such that it is possible the

expanded-key bits for the round function and leftmost b bits of whitening in r consecutive

rounds can take on the same values generated by the key schedule of G. In practice, given an

expanded-key, it is feasible to check if the expanded-key adheres to a specific block cipher’s

key schedule. A subset of the expanded-key bits being tested can be inserted into the key

schedule to generate additional key bits which can be checked against the bits in the value

being tested. Refer to Chapter 8 for further discussion on the structure of key schedules in

existing block ciphers.

The theorem holds by default for the case when y = 0, since G′ is just G (with the

possible addition of whitening which can be set to 0’s when applying the attack if G does

not contain whitening). I view G as having whitening steps in the proof to Theorem 5.1.

This is not an issue for the following reasons. If the attack on G′ involves solving for the

round key bits directly and allows the bits used in the whitening steps to be set to 0 for

bit positions not swapped and to 0 or 1, as necessary, for bit positions swapped, to ensure

the whitening on the leftmost b bits is equivalent to XORing with 0, which is the same as

having no whitening in G. If the attack on G′ finds all possible keys or sets of round keys,

the attack must find the key(s) or set(s) of round keys corresponding to round keys that

are equivalent to XORing with 0. Setting a subset of bits in each whitening step in G ′ to

0’s is equivalent to using a weaker version of G′. Any attack that works on G′ will work on

the weaker version. This is merely the case where the attacker knows certain bits of each

whitening step are 0’s.

I note that Theorem 5.1 only states that an attack on G′ can be converted to an attack

on G and not the reverse. This is because, in general, the claim that an attack on G can

be converted into an attack on G′ does not hold. Consider the case when G contains the

initial and end of round whitening steps. When y = 0, G′ is G with the initial and final key-

dependent permutations added and the key schedule replaced (such as by a stream cipher).

If the attack on G is due to the original key schedule, the attack does not necessarily hold

if the key schedule is changed to generate pseudorandom bits when creating G ′. For any

attack not due to the key schedule, the attack must be such that the addition of the two key-
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dependent permuations, the addition or expansion of the whitening steps and the swapping

of bits does not result in the attack no longer being applicable or the attack being infeasible

computationally in order to say an attack on G implies an attack on G′. In general, the

conversion of an attack from G′ to G works because there is a decrease in the complexity of

the block cipher being attacked when going from G′ to G; whereas, the reverse is not true

because there is an increase in the complexity of the block cipher when converting G to G ′.

To prove Theorem 5.1, I must show for any value of y that if an attack exists on G ′

it can be converted into an attack on G using polynomial time and memory. I define the

steps for converting a round-key recovery attack on G′ to an attack on G. I describe two

ways of performing the conversion. The first works for any value of y. The second requires

fewer computations than the first method, but is only guaranteed to work for small values

of y in relation to b. The methods described here treats whitening key bits as if they are

pseudorandom in that the whitening key bits can take on any value. In G, if there is a

relationship amongst the whitening key bits and/or between whitening key bits and key

material used within the round function due to the key schedule of G, such keys will be a

subset of all the possible sets of round keys found using the attack on G′. Then the set

of round keys that satisfies the key schedule of G can be determined by checking which

of the potential keys corresponds to the key schedule. If the number of potential sets

of round keys found by the attack on G′ is large enough such that it is computationally

infeasible to determine which ones adhere to the key schedule of G, then the attack on

G′ is not computationally feasible. This is because the number of potential sets of round

keys it finds for a set of (plaintext, ciphertext) pairs will also be large enough such that

it is computationally infeasible for an attacker to determine which set to use to decrypt

additional ciphertexts.

In both methods, when I refer to converting the round keys of G′ into round keys for

G, I mean the following: In round j of G′, let bjl denote the lth bit of the b bits output

from the round function prior to the end of round whitening. Let kwjl denote the end of

round whitening key bit applied to bjl. If bjl is involved in the swap step at the end of

round j, let yjh denote the bit from the rightmost y bits with which bjl is swapped and let

kwjh denote the whitening key bit applied to yjh. Set the lth whitening bit in round j of
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G to kwjl ⊕ kwjh ⊕ yjh when j ≥ 2. This conversion of whitening bits is illustrated in the

example in Figure 5.3. When j = 1, the lth whitening bit is set to kw1l⊕kw1h⊕y1h⊕kw0h

because the initial whitening is included in the conversion. Set all other key bits used in G

(both whitening and any internal to the round function) to be identical to the key bits used

in G′. I refer to the initial whitening as round 0. The initial whitening for G′ is converted

to initial whitening for G by using the leftmost b expanded-key bits of the initial whitening

as the initial whitening in G.

5.2.3 Round-Key Recovery Attack: First Method

I describe here a method for converting the attack on G′ to an attack on G. Without loss

of generality, I use the first r rounds of G′ as the r consecutive rounds for which the round

keys are found. The attacks are presented in terms of solving for the round keys from the

initial whitening to round r, but may also be performed by working from round r back to

the initial whitening or by using any consecutive r rounds with whitening applied before the

first round as long as the plaintext for G is the leftmost b bits of input to the r rounds and

the corresponding ciphertext from G is the leftmost b bits of the output of the r rounds.

This attack runs in quadratic time in the number of rounds of G. The attack, A ′
G′ , on

G′ is used to solve for round keys 0 and 1 for G, then repeatedly solves for one round key of

G at a time, using the output of one round of G as partial input to a reduced round version

of G′, running the attack on G′ and converting the 1st round key of G′ to the round key for

the next round of G. By the second condition in Theorem 5.1, an if an attack on G ′ with

r′ rounds exists, then a reduced round attack on G′ exists for any number of rounds < r′.

Let P be a set of plaintexts and C be a set of ciphertexts. I use the notation {(P,C)}

to indicate a set of plaintext,ciphertext pairs of the form (pi, ci) with pi ∈ P and ci ∈ C.

Given a set {(P ∗, C∗)} = {(pi∗, ci∗)} of n (plaintext, ciphertext) pairs for G, create a set

{(P,C)} = {(pi∗ ‖ 0, ci∗ ‖ vir)} of n (plaintext, ciphertext) pairs for an r-round version of

G′. Note: I only require that the y bits appended to each pi∗ when forming {(P,C)} be a

constant; I choose to use 0. The vir values appended to the ci′s are arbitrary and do not

need to be identical. The r subscript in vir denotes the number of rounds. My method

runs reduced round attacks on G′ and the vir’s can vary each time. Solve G′ for round
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keys 0 and 1. By the pseudorandomness of the round keys described in the definition of

elastic block ciphers, sets of round keys exist that correspond to {(P,C)} and which are

identical in at least the first two rounds (the round keys across all n pairs may be identical

in additional rounds, but I am only concerned with the first two rounds at this point in the

process). Denote these as rk′
0 and rk′

1. Use the leftmost b bits of rk′
0 as round key 0, rk0,

for G. Since the rightmost y bits are identical across all inputs to G′, when rk′
1 is converted

to a round key for G, the result will be the same across all n elements of {(P,C)}. Use the

converted round key as round key 1, rk1, for G. For each pi∗, apply the initial whitening

and first round of G using the two converted round keys. Let p1i denote the output of the

first round of G for i = 1 to n. Using a reduced round version of G′ with r − 1 rounds and

the initial whitening removed, set {(P,C)} = {(p1i ‖ 0, ci∗ ‖ vir−1)} and solve for the first

round key of G′. As before, convert the resulting round key for the first round to a round

key for G. Use the converted round key as the second round key for G. Repeat the process

for the remaining rounds of G, each time using the outputs of the last round of G for which

the round key has been determined as the inputs to G′ and reducing the number of rounds

in G′ by 1, to sequentially find the round keys for G.

This attack involves applying each round of G to n inputs for a total of rn rounds of G.

n(r+1)r
2 rounds of G′ are computed in the worst case if A′

G′ requires knowing the output of

each round of the reduced round version of G′ to find the first round key. r applications of

A′
G′ are needed on the reduced round versions of G′. Let tA denote the time to run A′

G′ . Let

kst be the time to check that an expanded-key found by A′
G′ adheres to the key schedule

of G. The time to attack G is O(nr2 + rtA + kst).

In summary, the attack on G can be written as:

Input {(P ∗, C∗)} = {(pi∗, ci∗) for i = 1 to n}.

Create {(P,C)} = {(pi∗ ‖ 0, ci∗ ‖ vir) for i = 1 to n} for a r-round version of G′,

where the vi′s are arbitrary.

Using A′
G′ , solve a r-round version of G′ for rk′

0 and rk′
1.

Convert rk′
0 to rk0 and rk′

1 to rk1.

Set p1i = first round output of G using rk0 and rk1, for i = 1 to n.

For j = 1 to r − 1 {
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{(P,C)} = {(pji ‖ 0, ci∗ ‖ vir−j) for i = 1 to n}.

Solve a r − j reduced round version of G′ for the first round key, rk′
1.

Convert rk′
1 to form rkj+1.

p(j + 1)i = output of round j + 1 of G on pji using rkj+1 for i = 1 to n.

}

Another method for proving Theorem 5.1 is presented in the next section. It requires

fewer computations than the method just described. When given the round keys for G ′

which correspond to n (plaintext, ciphertext) pairs, the method described here produces

round keys for G which correspond to n (plaintext, ciphertext) pairs. Whereas, the alter-

native method described in the next section requires 2y(r−2)n (plaintext, ciphertext) pairs

to guarantee the resulting round keys will correspond to at least n (plaintext, ciphertext)

pairs. However, because the second method requires fewer computations, it is useful when

y is small relative to b.

5.2.4 Round-Key Recovery Attack: Second Method

My second method for proving Theorem 5.1 requires fewer computations than the first

method, but provides rounds keys for a smaller set of (plaintext, ciphertext) pairs. The

attack works as follows: Assume there exists a known (plaintext, ciphertext) pair attack on

G′ which produces the round keys either by finding the original key and then expanding it,

or by finding the round keys directly. Using round keys for rounds 0 to r of G′, convert the

round keys into round keys for G one round at a time. For each round, extract the largest

set of (plaintext, ciphertext) pairs used in the attack on G′ that have the same converted

round key. If there are nj (plaintext, ciphertext) pairs involved at round j, there will be

at least
nj

2y pairs remaining for which the round keys are consistent after round j. The end

result is a set of round keys for G that are consistent with a set of n
2y(r−2) b-bit (plaintext,

ciphertext) pairs for G. I then describe how to take a set of (plaintext, ciphertext) pairs for

G, convert them into a set of (plaintext, ciphertext) pairs for G′ in order to run the attack

on G′ to find the round keys for G.

Let {(P,C)} = {(pi ‖ xi, ci ‖ zi)} (for i = 1 to n) denote a set of n known (b + y)-bit

(plaintext, ciphertext) pairs for G′, where |pi| = |ci| = b and |xi| = |zi| = y.
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Let AG′ be an attack on G′ that finds the key(s) corresponding to {(P,C)} in time less

than a exhaustive search for the key. Let m denote the number of keys found. Without

loss of generality, it is assumed the keys are available in expanded form. Let kj denote the

jth key found by AG′ . In practice, only one key should be found for any set of (plaintext,

ciphertext) pairs.

Let S = {ekj} for j = 1 to m be the set of expanded-keys used for whitening for which

ekj is from the expansion of key kj and G′
kj

(pi ‖ xi) = ci ‖ zi for i = 1 to n.

Let Rint denote any key material utilized within the round function. The values found

for such key bits will be the same for G′ and G.

Let {(P,U)} = {(pi||xi, ui||vi)} such that ui||vi is the output of the r th round of G′,

where |ui| = b and |vi| = y.

Let S′ = {ek′
j | ek

′
j = bits of ekj ∈ S corresponding to rounds 0 to r used for whitening

} be the set of expanded-key bits used for whitening in rounds 0 to r of G′.

For each ekj ∈ S′ and each (pi ‖ xi, ui ‖ vi) ∈ {(P,U)}, convert the round keys to round

keys for G. Let ek′
ij be the converted key corresponding to the ith element of {(P,U)}

and the jth element of S ′. The part of ek′
ij corresponding to round 0 will be identical

across all elements. When the round keys are converted, at most y bits change in the

leftmost b bits. Thus, the resulting round keys for round q, 1 ≤ q ≤ r can be divided

for each of the y impacted bits into those that have a 0 in the affected bit and those that

have a 1 in the affected bit. For q = 1 to r, define S ′
rndq

as the maximum-sized set of

ek′
ijs from Srndq−1 that have identical round key(s) for round q, where S ′

rnd0
= S′. Let

{(P,U)rndq
} be the corresponding elements of {(P,U)}. When forming {(P,U)rndq

}, at

least 2−y|{(P,U)rndq−1}| of the elements from {(P,U)rndq−1} are included.

To illustrate how the sets S ′
rndq

and {(P,U)rndq
} are created, consider the example shown

in Figure 5.3 where b = 4, y = 2, and the leftmost 2 bits are swapped with the y bits in the

swap step. The round number is q and {(P,U)rndq−1} contains three (plaintext, ciphertext)

pairs. Suppose the outputs of the round function in the qth of G′ are 100101, 110011 and

111111 and the whitening bits in the qth round are 011010. The converted round keys

corresponding to the three cases are 0110, 1110 and 1110. Since 1110 occurs in the majority

of the cases, set the qth round key of G to 1110. S ′
rndq

contains the round keys for rounds 0
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to q − 1 from S ′
rndq−1

and 0010, and {(P,U)rndq
} contains the second and third (plaintext,

ciphertext) pairs from {(P,U)rndq−1}.

1001   01 1100   11 1111   11

KB KB

KB = 0110
KY = 01

KBKY KY KY

1111   00 1010   10 1001   10

1111   11 0010   10 0001   10

1001 1100 1111

0110 1110

1111 0010 0001

1110

converted
key bits

converted
key bits

converted
key bits

Figure 5.3: Forming S ′
rndq

Let {(P,C)G} = {(pi, ci)|(pi ‖ yi, ui ‖ vi) ∈ {(P,U)rndr
}}. |{(P,C)G}| ≥ n/2yr.

{(P,C)G} is a set of (plaintext, ciphertext) pairs for which Grk(pi) = ci ∀ (pi, ci) ∈

{(P,C)G} with the whitening round keys of rk ∈ S ′
rndq

and any additional key material

utilized by the rounds is the same as that for G′, namely Rint.

To perform the attack on G when given a set of (plaintext, ciphertext) pairs for G,

convert the pairs into a set of (plaintext, ciphertext) pairs for G′ and find the round keys

for G′ then for G as follows: Given a set {(P ∗, C∗)} = {(pi∗, ci∗)} for i = 1 to n known

(plaintext, ciphertext) pairs for G, create the set {(P,C)} of (plaintext, ciphertext) pairs to

use in the attack on an r-round version of G′ by setting pi ‖ xi = pi∗ ‖ 0 and ci ‖ zi = (ci∗ ‖

zi) for i = 1 to n. For the set of (P,C) pairs are created, {(P,U)} = {(pi∗ ‖ 0, ci∗ ‖ zi)}.

Apply the attack on G′ to solve for the round keys of G′ then produce the sets {(P,U)rndr
}

and Srndr
. The sets of round keys in Srndr

will be consistent with the (plaintext, ciphertext)

pairs in {(P,U)rndr
}. A set of round keys that adheres to the key schedule of G will be

found by Claim 5.1 and the assumption that the attack on G′ finds all possible sets of round



CHAPTER 5. SECURITY ANALYSIS 96

keys.

Let tr be the time to run r rounds of G′, tA be the time to run AG′ and m be the

number of keys (sets of round keys) found by A′
G′ . In the case of obtaining at least one set

{(P,U)rndr
} of size ≥ n

2yr , the time required beyond tA consists of: nmtr time to obtain

the outputs of the first r rounds for each {(P,U)}, O(nmr) time to perform the conversion

of the round keys from G′ to round keys for G and O(nmr) time to form the S ′
rndr

sets.

Let kst be the time to check that an expanded-key adheres to the key schedule of G. Thus,

the additional time required to attack G (beyond the time required to attack G ′
b+y) is

O(nm(r + tr) + mkst). The only unknown value is m, the number of keys produced by the

attack on G′
b+1. If m is large enough, to the extent that it approaches the average number

of keys to test in a brute force attack on G′, then this contradicts the assumption that an

efficient attack exists on G′ because the attacker is left with a large set of potential keys for

decrypting additional ciphertexts.

I have defined a method which produces a set of at least n
2yr (plaintext, ciphertext) pairs

which are consistent with the round keys. This lower bound on the number of plaintext,

ciphertext pairs can be slightly increased to n
2y(r−2) by using (b + y)-bit plaintexts that are

the same in the rightmost y bits (which I did by setting these bits to 0), and by defining

the ui values representing the ciphertext output of G in the r th round of G′ to be the

output of the rth round prior to the swapping step. This will result in |S ′
rnd1
| = n and

|S′
rndr
| = |S′

rndr−1
|, thus in first and rth rounds the set of (plaintext, ciphertext) pairs is not

reduced. The number of (plaintext, ciphertext) pairs produced for G that are consistent

with the round keys for G is ≥ n
2y(r−2) . The number of possible plaintexts for G is 2b;

therefore, it is necessary for y(r − 2) < b to use this method. The first proof method

overcomes this restriction at the cost of increased computation.

5.3 Linear Cryptanalysis

In order to demonstrate the security of elastic block ciphers against a specific type of attack

and provide a more detailed analysis than the general relationship between the security

of the elastic and original versions of a cipher presented in Section 5.2, I consider linear
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cryptanalysis and differential cryptanalysis of elastic block ciphers. These are two of the

most fundamental attacks and bounds for these attacks are typically provided for most

block ciphers. In the approach used for the differential cryptanalysis presented in Chapter

7, I analyze specific elastic block ciphers and compute the actual bounds for its differential

characteristic probabilities based on the bounds for the original cipher. In this section, I

consider linear attacks and algebraic attacks on elastic block ciphers in general. I prove that

any practical linear or any algebraic attack on an elastic block cipher, G′, can be converted

into a polynomial time related attack on the original cipher, G, independently of the specific

block cipher used for G.

Linear cryptanalysis involves finding linear equations (equations involving XORs) re-

lating plaintext, ciphertext and key (usually expanded-key) bits that hold with probability

1
2 +α for non-negligible α, 0 < α ≤ 1

2 . I note that any equation that holds with probability

< 1
2 can be converted into an equivalent equation that holds with probability > 1

2 . By

inserting the bits from known (plaintext, ciphertext) pairs into the equations, the attacker

can determine (expanded) key bits based on the values for the key bits most often indicated

by the equation. For an equation to be useful in an attack, α must be large enough such

that it is computational feasible to obtain and insert enough plaintext, ciphertext pairs into

the equation to obtain a statistically significant result. Once a few expanded-key bits are

found, it may be possible to insert them into the cipher’s key schedule (based on existing

key schedules) to find additional expanded-key bits. Or, if the cipher is poorly designed

such that most key bits are obtained from the equations, the remaining key bits may be

found by an exhaustive search.

I show that a linear relationship across r rounds of G′ implies such a relationship across

r rounds of G. If any such linear relationship holds with a probability such that fewer

than 2(b−1) (plaintext, ciphertext) pairs are required for an attack, then G is subject to

a linear attack that requires fewer plaintexts, on average, than an exhaustive search over

all plaintexts. Whether or not using the equations is computationally feasible depends on

number of (plaintext, ciphertext) pairs and the number of equations that must be computed.

If at least 2(b−1) plaintext, ciphertext pairs are required for an attack on r rounds of G′,

then either the attack is infeasible on r rounds of G′ from a practical perspective or G is
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subject to a brute force attack in practice. Note that I am dealing with an attack on only

r rounds of G′ and the probability of a linear relationship holding across r ′ = r + d ry
b e

rounds of G′ will be less than that for r rounds. More specifically, if the attack on G′

involves a maximum correlation between plaintext, ciphertext and key bits which occurs

with probability ≤ 2−b on r rounds (thus requiring in practice ≥ 2b plaintexts), then an

attack on 2r rounds involves a maximum correlation that occurs with probability ≤ 2−2b

and requires > 22b plaintexts. In this case, G′ is practically secure against a linear attack

when d ry
b e = r regardless of the computational requirements.

Without loss of generality, I assume any linear relationship involves the expanded-key

bits as opposed to the original key input to the key schedule. I omit the initial and final

key-dependent permutations from my analysis because these permutations do not impact

any linear relationship that exists across r rounds of G′. A direct implication of the result

is that if G′ is subject to an attack using any algebraic equations, as opposed to just linear

equations, then so is G. From these results, I can conclude that an elastic version of AES

is not subject to a practical linear attack. This is because AES is not subject to such an

attack based on the linear trails analysis ([DR99], pages 30-31) and the 128-bit block size

and 128-bit key size is not subject to an exhaustive search in practice. Also the elastic

version of AES is subject to an algebraic attack only if AES is subject to such an attack.

Claim 5.2. Given a block cipher G with a block size of b bits and r rounds, and its elastic

version G′ with a block size of b + y bits for 0 ≤ y ≤ b and r ′ rounds where r′ = r + dyr
b e, if

G′ is subject to a linear attack on r rounds then either G is subject to a linear attack or the

resources exist to perform an exhaustive search on G over all plaintexts, under the following

assumptions regarding the key schedules:

• The rightmost y bits of each whitening step in G′ can take on any value and are

independent of any other expanded-key bits within the round and in other rounds.

• No message-related expanded keys. Any expanded-key bits utilized in G depend only

on the key and do not vary across plaintext or ciphertext inputs.

• Any expanded-key bits used in the round function of the r consecutive rounds of G ′

can take on the same values as the expanded-key bits used in the round functions of
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G.

• If G contains initial and end of round whitening, any expanded-key bits used for the

leftmost b bits of each whitening step in r consecutive rounds of G′ can take on the

same values as the whitening bits in G.

Proof. I first note that if the linear attack on r rounds of G′ requires at least 2b (plain-

text, ciphertext) pairs then either the attack is computationally infeasible or G is insecure

independent of the attack (since the attacker has the resources to encrypt 2b plaintexts).

Therefore, it can be assumed that the attack on G′ requires < 2b (plaintext, ciphertext)

pairs. To understand how a linear relationship (if one exists) between the plaintext, cipher-

text and expanded-key bits is determined for G′, I first consider how a linear relationship

is derived for a block cipher structured as a series of rounds with block length b and then

add the impact of the whitening and swap step to these relationships. I number the rounds

from 1 to r. I will refer to any initial whitening step that occurs prior to the first round as

round 0 and the round function of round 0 is just the initial whitening. The relationship

between the output of the jth round and the input to the (j + 1)st round is depicted in

Figure 5.4 for both G and G′.

I use the following notation:

• Two bits, x1 and x2, cancel each other in an equation means x1 ⊕ x2 = 0 with

probability 1.

• Let uji denote the ith bit of the input to the round function in round j, 1 ≤ i ≤ b,

0 ≤ j ≤ r.

• Let vji denote the ith bit of the output from the round function in round j, 1 ≤ i ≤ b,

0 ≤ j ≤ r.

• Let nj denote the number of expanded-key bits used in the round function in round

j, 0 ≤ j ≤ r. This does not include any end of round whitening added to form G′,

but does include the end of round whitening if it is part of the round function of G

(as is the case with AES). The round function in round 0 is the identity function and

n0 = 0 if G does not contain initial whitening.
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Figure 5.4: Linear Relationship Between Round j’s Output and Round (j + 1)’s Input

• Let ekji denote the ith expanded-key bit in the round function in round j, 1 ≤ i ≤ nj.

• Let Lj([uj1, ...ujb]⊕ [vj1, ...vjb]⊕ [ekj1, ...ekjnj
]) denote the set of linear equations (if

any) relating the input, output and round key bits with non-negligible probability for

the round function in round j, 0 ≤ j ≤ r. I will abbreviate this as Lj. An equation

in Lj holds with probability 1
2 + α for some non-negligible α such that 0 < α ≤ 1

2 .

For example, if u12⊕ v13⊕ ek15 = 0 with probability 0.75, this equation will be in L1.

Any equation which reflects a negative relationship, meaning the equation holds with

probability 1
2 − α, is rewritten as an equation holding with probability 1

2 + α.

• Without loss of generality, the equations in Lj are in reduced form; for example,

uj2 ⊕ uj2 ⊕ uj2 = 1 will be reduced to uj2 = 1.

• Internal variables for r rounds plus any initial whitening (round 0) will refer to the

set of uji for 1 ≤ j ≤ r and vji for 0 ≤ j ≤ r − 1, with 1 ≤ i ≤ b. i.e., the round
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inputs and outputs that are not the plaintext or ciphertext.

A linear relationship across consecutive rounds is obtained by combining the linear equa-

tions for each of the rounds, with vji becoming u(j+1)i. A linear relationship exists that

involves only plaintext, ciphertext and expanded-key bits if the intermediate round inputs

and outputs cancel when combining the per round equations, leaving equation(s) involving

only u0i’s, vri’s and expanded-key bits.

For example, if in G with two rounds:

u11 ⊕ v12 = ek11

and

u22 ⊕ v26 = ek23

then since v12 = u22

u22 = u11 ⊕ ek11

and

u11 ⊕ ek11 ⊕ v26 = ek23

I now consider how the steps between the rounds in G′ impact the linear relationships

across the rounds.

• Let Y denote the rightmost y bits of the data block for a (b + y)-bit data block.

• Let Γ′ refer to the set of the equations used in a linear attack on r rounds of G′

formed from combining the Lj ’s for the individual rounds along with the end of round

whitening and swap steps.

• Let Γ refer to a set of linear equations for G formed from equations in Γ′.

• Let kwji denote the ith key bit used for the whitening step added in round j when

constructing G′, 1 ≤ i ≤ b + y and 1 ≤ j ≤ r. kwji = 0 for 1 ≤ i ≤ b if the round

function of G includes end of round whitening and kw0i = 0 for 1 ≤ i ≤ b if G contains

initial whitening because G′ does not add whitening to the b bits when it is already

present.
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• Let wjl denote the lth bit of the Y portion of the data, for 1 ≤ l ≤ y and 2 ≤ j ≤ r.

wjl = v(j−1)h ⊕ kw(j−1)h where 1 ≤ h ≤ b and h is the bit position swapped with bit

position l in the previous swap. When j = 1, w1l = w0l ⊕ kw0(b+l), the initial input

bit XORed with the initial whitening applied.

With the addition of the whitening and swap steps, the input to the round function is now

defined as:

• u(j+1)i = vji ⊕ kwji when vji is not involved in the swap step.

• u(j+1)i = vji ⊕ kwji ⊕ wjl ⊕ kwj(b+l) when vji is involved in the swap step. When

j ≥ 2, this can be written as u(j+1)i = vji ⊕ kwji ⊕ v(j−1)h ⊕ kw(j−1)h ⊕ kwj(b+l).

Notice that the steps between applications of the round function in G′ maintain a linear

relationship between the output of one round and the input of the next round.

Recall that the key schedule of G′ produces whitening bits which are created indepen-

dently of the key bits used within the round function (to the extent that the key bits are

pseudorandom), and of the round function’s input and output. Therefore, these whitening

bits will cancel with any vji, uj+1 and/or ekji with probability 1
2 + e for negligible e (i.e.,

there is no discernable relationship between these whitening bits and any of the plaintext,

ciphertext and expanded-key bits used internal to the round function by definition of the

key schedule). Thus, the kwji’s added when forming G′ will not increase the probability

of a linear relationship between plaintext bits, ciphertext bits and expanded-key bits used

in the round function. Even if a different key schedule is used that does not guarantee

independence amongst the kwji’s and that results in cancellation among some kwji’s, this

is merely cancelling variables that are not present in the linear equations for the round func-

tion and thus will not simplify the equations or increase the probability that an equation

holds across r applications of the round function.

Now I assume a set of equations, Γ′, exist for G′ that contains no internal variables

and show how to convert them to a set of equations for G. Given the sets, Lj’s, of linear

equations for the round function in G′, these same sets of equations hold for G because

the elastic version does not alter the round function. These equations are combined across

rounds as was done for G′, except now when forming the input to one round from the output
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of the previous round, the impact of the swap step and any whitening added when forming

G′ is removed as follows:

• Set kwji to 0 for 0 ≤ j ≤ r and 1 ≤ i ≤ b so these whitening bits are omitted from the

resulting equations. This removes any initial and end of round whitening that was

added to the leftmost b bits when forming G′. Recall that if G had initial and end

of round whitening, it was treated as part of the round function of G and additional

whitening on the leftmost b bits in each round was not added when forming G′ (i.e.

kwji was already 0 in the equations for G′ for 0 ≤ j ≤ r and 1 ≤ i ≤ b).

• Set kw0(b+l) = 0 and kw1(b+l) = 0 for 1 ≤ l ≤ y. This sets the rightmost y bits of the

initial whitening and of the end of round whitening in the first round to 0. By using

plaintexts that have the rightmost y bits set to 0, this results in the rightmost y bits

in the first round having no impact on the equations.

• Set kwj(b+l) to v(j−1)h for 2 ≤ j ≤ r − 1 and 1 ≤ l ≤ y, where h is the index in

the leftmost b bits corresponding to the bit position swapped with the lth bit of the

rightmost y bits. This removes the impact of the swap steps by having the rightmost

y bits of whitening in each round cancel with the y bits omitted from each round.

These settings are needed only on rounds 2 through r−1. The output of the r th round

function is the ciphertext so the swap step is not applicable after the r th round. Per

the previous item, the rightmost y bits in the first round can be set to have no impact

on the equations. Each such setting can add an internal variable, v(j−1)h, which now

equals ujh, to the equations.

These settings result in each input bit to the (j + 1)st round function being of the form

u(j+1)i = vji and the impact of any added end of round whitening and the swap step being

removed. The equations will combine to form a set of equations, Γ from the equations in

Γ′ with any kwji’s which appear in Γ′ removed and with at most (r− 2)y internal variables

added to the equations. Before explaining how these variables can be accommodated, I first

state a few additional notes on the resulting equations. The equations in Γ may contain up

to y extra plaintext bits and up to y extra ciphertext bits beyond the b-bit block size of G

since G′ processes b + y bit blocks. The attacker can set these extraneous y plaintext bits
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to any value (the whitening bits were set in the conversion based on these plaintext bits

being set to 0) and the extra y ciphertext bits are identical to y of the bits output from the

next to last round function. For any equation Eq ′ ∈ Γ′ that holds with probability 1
2 + α,

the corresponding equation, Eq ∈ Γ, formed by removing the kw ′
jis from Eq′ will also hold

with probability 1
2 + α. Furthermore, only variables representing whitening bits present

not in G are deleted when converting Γ′ to Γ and no equations are added or removed. An

equation will not be disappear when removing kwji variables because that would imply the

equation did not involve plaintext and/or ciphertext bits. Since any whitening bits added

when forming G′ are pseudorandom, there will not be equations in Γ′ containing only such

whitening bits.

I now address the presence of the internal variables in Γ. Since it was assumed Γ ′

consists entirely of equations involving only plaintext, ciphertext and expanded-key bits,

the removal of the swap step can introduce up to y internal variables, (vji′s), per round into

the equations. The removal of the swap step impacts r− 2 rounds, resulting in a maximum

of (r−2)y internal variables in the equations in Γ. If equations in Γ′ corresponding to some

y > 0 are converted directly into equations for the original cipher (y = 0), this results in at

most 2(r−2)y possible values to try for the internal variables. However, if Γ′ is converted into

a set of equations for the cipher corresponding to a b + y − 1 blocksize, there are at most

2r−2 possible combinations of values for the internal values to try. Let Γ′
−1 denote this set

of equations. Solve the equations, setting the r−2 internal variables in the equations to the

specific values that resulted in a solution. Then convert the resulting equations to equations

for the cipher corresponding to a b + y− 2 blocksize. Repeat the processs, setting the r− 2

internal variables to specific values each time that result in a solution for the specific block

size. This removes the internal variables from the equations. Let Γ′
−n denote the sets of

equations corresponding to the version of G′ with a b + y − n block size, where 1 ≤ n ≤ y.

The set of equations, Γ, used to attack G will be Γ′
−b. This results in ≤

∑y
1 2(r−2) = y2(r−2)

possible combinations of the internal variables to try as opposed to ≤ 2(r−2)y combinations.

Since r is constant (and small in practice) and y is bounded by b, which is constant, the

amount of work in converting the attack on G′ to an attack on G is polynomial in the time

to attack G′, specifically, the work is bounded by a constant times the time to attack G′.
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For example, in AES the value of 2(r−2)b is 256 ∗ 128 = 32768. The amount of memory

required is linear in the amount of memory required to attack G′. In the worst case, a

separate amount of memory is required when forming each Γ′
−n. Thus, a linear attack on a

r-round version of G′ that requires less than 2b (plaintext, ciphertext) pairs implies a linear

attack exists on G.

Claim 5.2 can be applied to algebraic equations in general. An algebraic attack on a

block cipher G is defined in the same manner as the linear attack with the modification

that the equations can involve any algebraic operations, not just XORs.

Claim 5.3. Given a block cipher G with a block size of b bits and r rounds, and its elastic

version G′ with a block size of b + y bits for 0 ≤ y ≤ b and r ′ rounds where r′ = r + dyr
b e,

if G′ is subject to an algebraic attack on r rounds then either G is subject to an algebraic

attack or the resources exist to perform an exhaustive search on G over all plaintexts. An

algebraic attack refers to an attack involving a set of equations relating the bits of a single

plaintext and its corresponding ciphertext, and the expanded-key bits.

Proof. The proof follows directly from the proof to Claim 5.2 by removing the qualification

in Claim 5.2’s proof that the equations in the Lj sets are linear. Now Γ′ and Γ contain

algebraic equations instead of only linear equations. Γ is formed from Γ′ exactly as before

(the conversion adds only XORs of variables to the equations). Therefore, if an algebraic

attack exists on r rounds of G′ then an attack exists on G.

5.4 Side Channel and Differential Fault Analysis Discussion

The elastic version of a block cipher will likely be subject to any side channel and differential

fault attacks on the original cipher. These types of attacks involve monitoring and/or

physically damaging the device performing the cryptographic operations. Such attacks

rely on at least partial access to the component performing the encryption. The first

type is passive side channel analysis in which either resources of the device performing the

cryptographic operation are monitored or information the device emits is monitored. The

second type is differential fault analysis. This involves the introduction of faults into the

device and comparing the results of the operation performed with and without the fault.
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The idea for these two categories of attacks first appeared in the late 1990’s. Side channel

attacks involve observing side channels of a device. The type of information monitored in-

cludes power consumption, timing characteristics, electromagnetic emanation and acoustic

emanation. For example, the time and/or power involved in performing an exponentiation

may vary depending on the exponent in a public key algorithm [Koc96]. There are compa-

nies, for example Riscure, that sell software for performing power analysis on smart cards.

CPU acoustics were found to be of use in attacking RSA [ST04]. In the acoustic attacks, the

sound omitted from the CPU can be separated from that of the fan because the fan noise

is typically less than 10Khz; whereas, the CPU is above 10Khz. Early work by J. Kelsey, et

al., on applying side channel attacks to symmetric key ciphers discusses side channel attacks

on block ciphers based on their structure as a number of rounds [KSWH00]. Examples of

how certain types of side channel information can be used to attack DES [NIS99a], IDEA

[LM91] and RC5 [Riv95] are covered. The side channel attacks attempt to recover internal

state information, such as the output from or input to a round in order to determine enough

round key bits per round to allow an exhaustive search on the remaining bits. Memory usage

has also been shown to be a valuable source of information. D. Osvik, et al., demonstrated

how the cache, which is shared memory, contributes to information leakage [OST06]. By

having a second process accessing the same memory used by the cipher, enough information

is obtained to determine the expanded-key for AES.

Differential fault analysis involves inducing faults into the device performing the cryp-

tographic operation then observing outputs prior to the fault and after the introduction of

the fault. For example, by using radiation to damage a device. The concept of fault analysis

was first proposed by Boneh, et al., for public key ciphers [BDL97]. The applicability of

fault analysis to a symmetric-key cipher was discussed by Biham and Shamir, who described

how the round key bits of DES, the standard block cipher at the time, could potentially

be recovered through the introduction of faults [BS97]. However, differential fault analysis

attacks assume that an attacker is able to introduce faults into a sealed tamper proof device

with non-negligible probability that a fault is created in a (unknown) single bit location in

one of the registers at some random intermediate stage in the encryption or decryption. As

a result, this concept is less practical than side channel analysis.
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In the elastic version of a cipher, the length of y and the exact bit positions being

swapped can influence the time spent in the swap step. However, y and the bit positions

involved in the swap are already known (except y is unknown in the proposed Elastic ECB

mode in Chapter 10 that varies y based on key bits). Any side channel or differential fault

analysis that works on the round function of the original cipher will work on the elastic

version since the round function is not modified. Attacks which alter memory or depend

on memory access will also continue to be feasible. The difference is that the key schedule

will not be highly structured, assuming a stream cipher is used, resulting in the need for

the attack to determine all expanded-key bits instead of relying on using the key schedule

to determine additional expanded-key bits from the bits found by the attack.

5.5 Summary

I have proven that the security of the elastic version of a block cipher against key recovery

attacks is related, in polynomial time and memory, to the security of the original, fixed-

length, version of the block cipher. All practical attacks attempt to recover key or expanded-

key bits. If the original version is immune to such attacks, then the elastic version is also

immune to such attacks. This result is due to a reduction between the original and elastic

versions of the ciphers that allows the round keys for the original version to be derived from

the round keys for the elastic version. An attack on the original version of a cipher does

not automatically imply an attack exists on the elastic version of the cipher due to the fact

that the elastic version involves steps in addition to the steps of the original cipher.

While the general result regarding key recovery attacks covers linear cryptanalysis, I use

a separate method to prove that any attack on the elastic version of a block cipher using

linear cryptanalysis can be converted into an attack on the original version of the block

cipher, using polynomial time and memory. More generally, any algebraic equation relating

the plaintext, ciphertext and key or round key bits for the elastic version can be converted

into an equation for the original version. Therefore, if the original cipher is immune to

any attack based entirely on algebraic equations involving the plaintext, ciphertext and

key bits, then the elastic version is also immune to such attacks. I also discussed why any
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side channel or differential fault attack on the original cipher is likely to be applicable to

the elastic version of the cipher, provided that the attack does not work by finding a few

expanded key bits then inserting them into the key schedule to find the remaining expanded

key bits.
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Chapter 6

Elastic Block Cipher Examples

6.1 Overview

I created four examples of elastic block ciphers from AES, Camellia, MISTY1 and RC6.

These examples demonstrate that the method for creating elastic block ciphers is practical

and can be applied to existing block ciphers, in general. AES is the winner of NIST’s

advanced encryption standard competition for block ciphers. RC6 was a finalist in the

competition. AES and Camellia are 128-bit block ciphers recommended in the final results

of NESSIE’s competition for cryptographic algorithms. MISTY1 is NESSIE’s recommended

64-bit cipher for existing applications requiring a 64-bit cipher. I chose to create an elastic

version of AES because it is a standard. Creating elastic versions of Camellia and MISTY1

allowed me to demonstrate how the method can be applied to block ciphers using a Feistel

network. Both Camellia and MISTY1 include other functions in addition to a Feistel

network. RC6 is a simple algorithm consisting of few steps compared to the other block

ciphers. I use RC6 to demonstrate how to create an elastic version of a block cipher that is

not a Feistel network but whose round function processes only segments (one half) of the

block. The elastic version of MISTY1 covers block sizes of 64 to 128 bits and the elastic

versions of the other three block ciphers each cover block sizes of 128 to 256 bits.

For each of the four elastic block ciphers, I measured the performance of the elastic ver-

sion to the original version with padding. The performance indicates the rate of encryption.

It does not include the time to expand the key, which I measured separately and summarize
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in Chapter 8. The relationship between the rates of decryption of the original cipher and

that of the elastic version is the same as the relationship for encryption and is not reported

(i.e., if the elastic version encrypts 110 blocks in the time it takes the original version to

encrypt 100 blocks, it also decrypted 110 blocks in the time it took for the original version

to decrypt 100 blocks). This is because the time to execute the decryption function is close

(although not always identical) to the time to execute the encryption function in each of

the four ciphers. As a result, the operations added when creating the elastic version repre-

sented approximately the same percentage of the computations when decrypting as when

encrypting a block of data. I include the performance for encrypting each block size that is

an integral number of bytes. In the implementations, when the block size is not an integral

number of bytes, the fractional byte is stored in a byte and the processing time is the same

as if a full byte of data is present; therefore, the time to encrypt b + y bits is the time

to encrypt d b+y
8 e bytes. It is possible for the computational workload to vary at a more

granular level, such as in a hardware implementation.

I performed the statistical tests used by NIST in the AES competition to measure the

randomness of a cipher’s output. I implemented my own version of the tests in order to

accommodate the different block sizes. The description of the statistical tests and the results

are in Appendix A. Based on the results, all four constructions of the elastic block ciphers

show no signs of any statistical weakness compared to the original ciphers. In the AES

competition, finalists passed each test at a rate of 96.33% or higher [NIS00]. The elastic

versions of the ciphers also met or exceeded this rate. In the remainder of this chapter,

I provide a summary of each elastic block cipher and results from the performance tests.

Descriptions of the original ciphers are in appendices C, D, E and F.

6.2 Common Items

Per the elastic block cipher algorithm description, the round function and range for the

number of rounds will vary amongst elastic versions of different ciphers. The exact bit

positions used in the swap steps may also vary. The other steps will not vary. I describe

here implementation details shared by the four examples I created. I remind the reader
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that the number of rounds in the elastic version is r + d ry
b e where r is the number of rounds

or cycles in the original version of the cipher.

• In the elastic versions of block ciphers, the bits in a block of data are counted from

the most significant (leftmost) to the least significant (rightmost). Bits 1 to b become

the b-bit portion and bits b+1 to b+ y become the y-bit portion. For example, in the

bit string 0111111, the first bit is the 0 and the bits numbered two to eight are 1’s.

• The mixing step performed a byte or word level rotation combined with a swapping

of any fractional byte of data. The amount of the rotation depended on an expanded-

key byte. When the block size was not an integral number of bytes or words, the

rightmost fractional byte or word was omitted from the rotation and swapped with

bits from the rotation’s result. A second expanded-key byte determined the byte or

word from which bits are swapped with the fractional byte. If the block size is an

integral number of bytes or words, this second expanded-key byte is unused.

• RC4 was used for the key schedule in all implementations of the elastic block cipher.

The first 512 bytes of RC4’s output were discarded [Mir02], then RC4 was run until

the required amount of expanded key bytes were obtained. Refer to Chapter 8 for

a discussion on key schedules and the benefits using RC4 (or another stream cipher)

provides over modifying the cipher’s original key schedule when creating the elastic

version of a block cipher.

• When comparing the performance of the elastic version of a cipher against the original

version with padding, the time to pad the data was not included when measuring the

original version’s performance.

In the examples, how the bits selected for the swap steps vary slightly among the ciphers.

In all cases, the bits swapped out of the b-bit portion at the end of the round are y sequential

bits (circling back to the leftmost bit after reaching the rightmost bit). It is the starting

position of this sequence that varies. However, as shown in Chapter 5, the exact positions of

the bits swapped does not matter in the sense that the elastic version will be secure against

any attack that works by recovering key or round key bits if the original cipher is secure

against the attack regardless of the bit positions chosen for each swap step.
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6.3 Elastic AES

Description

Figure 6.1: Elastic AES

I implemented two elastic versions of AES with 128-bit blocks as the original block size.

Elastic AES is shown in Figure 6.1. I refer to the first version, Version I, as the standard

textbook definition of AES, with the round function described as the SubBytes, ShiftRows,

MixColumns and AddRoundKey steps [NIS01b]. This version is described in Appendix C.

Each of the steps of the round function are performed in sequence in Version I. The second

version, Version II, combines the SubBytes, ShiftRows and MixColumns steps and performs

them as a table lookup. This results in the round function being a series of table lookups

and XORs. Version II requires fewer CPU cycles than Version I, at the cost of an increase

in memory usage. Version II performs table lookups at the byte level. AES can also

be implemented to process 32-bit words, in which case the table entries are 32-bit words.

I kept the processing at the byte level because I chose to implement the key-dependent

permutations and swap step at the byte level.
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The number of rounds, r, in AES for 128-bit blocks is 10; therefore, the number of

rounds, r′, in the elastic version ranges from 10 (when y = 0) to 20 (when b + y ≥ 244).

The application of whitening in the elastic version requires including y extra bits in AES’s

AddRoundKey step. I implemented the swap step by selecting y sequential bits from the

leftmost b bits, wrapping around from the right end to the left as needed. The starting

position is varied by moving one byte to the right each round to avoid using the same bit

positions in each swap. This avoids any complex selection process for choosing the y bits

that would decrease performance.

Performance

I implemented the elastic versions of both Version I and Version II of AES in C and

compared the performance of the elastic versions to the fixed-sized versions with padding.

The elastic versions increase the number of operations beyond the 128-bit versions due to

the swap steps, the two key-dependent permutations and the expansion of whitening to

cover 128 + y bits. In Version I, the elastic version saves processing time over padding.

Obviously, as the block size approaches two full blocks, 20 rounds of AES are incurred in

the elastic version along with the added steps, which increases the number of operations

beyond the 20 rounds of AES that are required when padding the data to two full blocks.

Therefore, it is expected that there is no performance benefit when encrypting blocks just

under 32 bytes. In Version II, the elastic version does not offer a performance benefit

compared to padding. This is because of the simplistic nature of the operations involved

(table lookups and XORs) for the round function. Even though there are fewer rounds in

the elastic version than with padding, the operations for the swap step and the two key-

dependent permutations consume any savings gained from having fewer rounds. However,

Version II offers a performance benefit over the black-box approaches described in Chapter

2.

Both the elastic version and regular 128-bit version of AES were run on several processors

in Linux and Windows environments to compare their performance. In the tests, the data

to be encrypted was viewed as individual (b + y)-bit blocks. The elastic version of AES

encrypted each block individually with no padding. To encrypt the data with regular AES,

the b + y bits were padded to 2b bits and encrypted as two b-bit blocks. When measuring
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encryption performance (in terms of blocks per second), AES’s performance for a single

block was based on the time to encrypt 32 bytes, to represent the padding required when

using AES for b + y bit blocks. I measured the time to encrypt one million (128 + y)-bit

blocks, where y = 8n for n = 1 to 16, using the elastic version of AES and two million 128-

bit blocks using the original version of AES. As explained previously, the performance of the

elastic version adjusts per byte size increments as opposed per bit. Figure 6.2 summarizes

the results from the following three cases. The values used to generate the graph are in

Table B.1 in Appendix B.

• Case 1: A C implementation of Version I tested on a 1.3 Ghz Pentium 4 processor

with 512MB RAM running Windows XP.

• Case 2: A C implementation of Version I tested on a 2.8 Ghz Pentium 4 processor

with 1GB RAM running Redhat Linux 2.4.22.

• Case 3: A C implementation of Version II tested on a 2.8 Ghz Pentium 4 processor

with 1GB RAM running Redhat Linux 2.4.22.

In the first trial, the number of (b + y)-bit blocks the elastic version can encrypt per

second ranges from 190% of the number of 2b-bit blocks AES can encrypt per second when

y = 1 to 100% when y = 97. Then the elastic version’s performance decreased gradually

to a low of 83% of AES’s rate when y = 128. In the second trial, the values ranged from

186% to 69% of AES’s rate, with the elastic version becoming slower than the fixed-length

version when y = 73. The third trial used Version II of AES and the elastic version was

slower than the fixed-sized version with padding for all block sizes.

In contrast to the elastic version of AES, the computational workload does not vary

by block size in the methods by Bellare and Rogaway and by Patel, et al., described in

Chapter 2. Bellare and Rogaway’s method requires slightly more than twice the work of

using fixed-sized, 128-bit blocks for any (b + y)-bit block size where 0 < y ≤ b. Patel’s

method requires two full applications of the block cipher plus the cost of a hash function. I

compared Bellare and Rogaway’s method and Patel’s method to AES with padding on the

Pentium 4 processor used in cases 2 and 3. I used SHA-256 [NIS02] as the hash function
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Figure 6.2: Normalized Number of Blocks Encrypted by Elastic AES in Unit Time (Regular

AES = 100)

in Patel’s method. Bellare and Rogaway’s method encrypted between 49 and 50 (b + y)-

bit blocks in the same amount of time AES with padding encrypted 100 blocks, for both

Version I and II of AES. Patel’s method encrypted 96 (b + y)-bit blocks in the time it

took Version I of AES to encrypt 100 blocks, and encrypted 18 (b + y)-bit blocks in the

time it took Version II of AES to encrypt 100 blocks. When using Version I of AES, elastic

AES is computationally more efficient than both Bellare and Rogaway’s method and Patel’s

method. When using Version II of AES, elastic AES is computationally more efficient than

Bellare and Rogaway’s method for block sizes up to 21 bytes in length, and is more efficient

than Patel’s method for block sizes less than 31 bytes and is as efficient as Patel’s method

for block sizes between 31 and 32 bytes.

6.4 Elastic Camellia

Description

Camellia process 128-bit blocks and is a Feistel network with additional steps [AIK+00].
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A description of Camellia is in Appendix D. A function, referred to as the FL function,

is applied after every three cycles in the Feistel network, except after the last three cycles.

FL is applied to the left half and its inverse is applied to right half of the 128 bits. Camellia

contains initial and final whitening steps. Creating the elastic version requires expanding

these two whitening steps and adding end of round whitening steps to all the other rounds.

I also added the initial and final key-dependent permutations and the swap steps. In the

elastic version, a cycle of Camellia is used as the round function and the FL function is

applied after every three rounds. The round function of the elastic version is shown in

Figure 6.3. The data is processed as bytes. The swap step was implemented by altering

the starting positions between the left and right halves of the b-bit portion. Camellia has

9 cycles. The number of rounds in the elastic version ranges from 9 to 18, where the round

function is a cycle of Camellia.

Figure 6.3: Round Function for Elastic Camellia

Performance

Unlike the other three ciphers, there was no performance gain when using elastic Camel-

lia compared to the original Camellia with padding. When processing 128-bit blocks, there
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Figure 6.4: Normalized Number of Blocks Encrypted by Elastic Camellia in Unit Time

(Regular Camellia = 100)

are nine cycles in the Feistel network, and there are applications of the FL function after

the third and sixth cycles. I also measured the performance without the initial and and final

permutations Removing these two steps results in a performance benefit when encrypting

blocks that are one to three bytes over the normal 16 byte block size with the elastic version

compared to using the original version with padding. Results for the following two cases

are shown in Figure 6.4:

• Case 1: A C implementation of elastic Camellia with all steps.

• Case 2: A C implementation of elastic Camellia without the initial and final key-

dependent permutations.

Results for both cases are from tests on a 2.8 Ghz Pentium 4 processor with 1GB RAM

running Redhat Linux 2.4.22. The values used to generate the graph are in Table B.2

in Appendix B. By using a lower bound of twice the work of padding for Bellare and

Rogaway’s method, elastic Camellia with the key-dependent permutations provides a per-

formance benefit for block sizes up to 22 bytes and the version without the key-dependent



CHAPTER 6. ELASTIC BLOCK CIPHER EXAMPLES 118

permutations provides a performance benefit for block sizes in the range of 9 to 25 bytes

compared to Bellare and Rogaway’s method. Patel’s method using SHA-256 as the hash

function encrypted 61 (b + y)-bit blocks, 0 < y ≤ b, in the time it took Camellia with

padding to encrypt 100 blocks. Elastic Camellia is more efficient than Patel’s method for

block sizes up to 21 bytes and 23 bytes, respectively, for the two cases.

6.5 Elastic MISTY1

Description

MISTY1 is a 64-bit block cipher structured as a Feistel network with an additional

function, called the FL function (not to be confused with the FL function from Camellia),

applied once per cycle [Mat00a]. MISTY1 does not contain whitening steps. A cycle from

MISTY1 is used as the round function in the elastic version. Creating the elastic version

involved adding the whitening steps, the initial and final key dependent permutations and

the swapping of bits after each cycle. The description provided here summarize the general

structure of MISTY1. Refer to Appendix E for the definitions of the individual components.

While the number of rounds is not fixed, four cycles are recommended [NES03] and is the

number upon which I based the number of rounds in the elastic version.

Notation:

• Li and Ri denote the left and right halves of output, respectively, of the ith round

after the halves are switched with i = 0 denoting the input to round 1.

• FL(x,KL) and F0(x,K0,KI) are functions taking bit string x and key material

KL,K0,KI.

• FLi and F0i denote the ith occurrence of FL and F0, respectively.

• KL,KI and K0 denote subkeys from the expanded-key material, with a subscript of

i denoting the ith component.

In the fixed-length version of MISTY1, the output of odd numbered rounds is defined by:

Ri = FLi(Li−1,KLi)

Li = FLi+1(Ri−1,KLi+1)⊕ F0i(Ri,K0i,KIi)
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The output of even numbered rounds is defined by:

Ri = Li−1

Li = Ri−1 ⊕ F0i(Ri,K0i,KIi)

FLi FLi+1

F0i

F0i+1

right 32 bitsleft 32 bits

y bitsb bits

whitening and swap steps

round 
function

Figure 6.5: Round Function for Elastic MISTY1

When creating the elastic version by positioning the swap step after a cycle, every bit

ends up in the left half and right half of input to the round function at least the same

number of times as occurs in regular MISTY1. The round function in the elastic version

is shown in Figure 6.5. The data is processed as 32-bit words. The bit positions from

a round’s output that are involved in the swap step will vary across each round to avoid

some bit positions from being swapped every round while others are never involved in the

swap. I chose to alternate the starting position for the swap between the left and right

halves of the round’s output and, within each halve, rotate the starting position one word

each time. Regardless of where a bit was positioned when swapped out and where it is

when it is swapped back in, the bit will end up in the left and right halves of the original

round function the same number of times as in regular MISTY1. Furthermore, since the

swap XORs the bits being swapped out with those being swapped in, the bits swapped out

continue to influence the next round in the same positions they would have influenced had

they not been swapped out.
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Performance

Figure 6.6: Normalized Number of Blocks Encrypted by Elastic MISTY1 In Unit Time

(Regular MISTY1 = 100)

I implemented elastic versions, with and without the key-dependent permutations, and

the regular version of MISTY1 in C. The elastic versions accommodate block sizes of 64 to

128 bits. Case 1 refers to the version with the key-dependent permutations and Case 2 refers

to the version without the key-dependent permutations. The elastic versions increased the

number of operations beyond the 64-bit version of MISTY1 due to the whitening, the swap

steps and, in one version, the key-dependent permutations.

Both the elastic and regular versions of MISTY1 were tested in Redhat Linux and Win-

dows XP environments with Intel Centrino, Pentium 3 and Pentium 4 processors varying

from 1Ghz to 2.8Ghz to compare their encryption and decryption rates. The results in

terms of how large the block size can be in the elastic version while remaining more efficient

than padding a second block and encrypting two blocks in MISTY1 are consistent across

the environments.

The results shown in Figure 6.6 are from trials on a 2.8Ghz Pentium 4 processor with
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1GB RAM running Redhat Linux 2.4.22. The values used to generate the graph are in Table

B.3 in Appendix B. The elastic version of MISTY1 provides a performance benefit compared

to padding for blocks that are one to four bytes over the 8-byte block size that MISTY1

processes. The benefit increases significantly in Case 2 compared to Case 1 for block sizes

that are up to one additional byte over MISTY1’s 8-byte block size. The performance

benefit from removing the initial and final key permutations decreases as the block size

increases because they represent an increasingly smaller portion of the operations as more

rounds are added. In both cases, the elastic version provides a performance benefit when

compared to Bellare and Rogaway’s method based on a lower bound of twice the work of

padding for Bellare and Rogaway’s method. Patel’s method with SHA-256 as the hash

function encrypted 51 (b + y)-bit, 0 < y ≤ b, in the time it took MISTY1 with padding to

encrypt 100 blocks using padding. Both cases of the elastic version of MISTY1 encrypt at

a faster rate than Patel’s method for all blocks between 8 and 16 bytes.

6.6 Elastic RC6

Description

RC6 is an example of a 128-bit block cipher whose round function processes only a

segment of the data block, but it is not a Feistel network. Appendix F contains a description

of RC6. Creating the elastic version of RC6 involved adding the swap steps, whitening

steps, and the initial and final key dependent permutations to RC6. RC6 divides the 128-bit

data block into four 32-bit words, which I will refer to as ABCD. Each word is processed

differently in the round function. A and C are updated by the round function based on

the values of B and D. At the end of the round the words, A and C have expanded-key

bits added to them then all the words are rotated to the left one word. Before the first

round of RC6, B and D have expanded-key bits added to them and after the last round,

A and C have expanded-key bits added to them. The addition of expanded-key bits to a

word is a type of whitening. Since this ”whitening” does not cover the entire data block

and is not the same as performing whitening by XORing data with expanded-key bits, I

view this addition as a step in the round function and not as whitening that should be
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expanded to all b+ y bits when forming the elastic version. A sequence of four applications

of the round function of RC6 is a cycle (the point at which each word has had the entire

sequence of operations from the round function performed on it) This cycle becomes the

round function in the elastic version of RC6. Therefore, the end of round whitening and

swap step are added after every four original rounds of RC6 as shown in Figure 6.7. The

number of cycles in RC6 for 128-bit blocks is 5 (20 applications of the round function). The

number of rounds in the elastic version ranges from 5 to 10 (20 to 40 applications of the

round function). The swap step was implemented with the starting position rotating to the

right one word each round.

Figure 6.7: Round Function for Elastic RC6

Performance

The performance was tested on a 3Ghz Pentium 4 processor with 1GB of RAM run-

ning Redhat Linux 2.4.22. The elastic version provides a performance benefit compared to

padding for blocks of under 21 bytes in length. The results are shown in Figure 6.8. The

values used to generate the graph are in Table B.4 in Appendix B. Using a lower bound

of twice the work of padding for Bellare and Rogaway’s method, the elastic version of RC6

provides a performance benefit for blocks under 30 bytes in length when compared to Bel-
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lare and Rogaway’s method. Patel’s method with SHA-256 as the hash function encrypted

52 blocks (b + y)-bit blocks, 0 < y ≤ b, in the time it took RC6 with padding to encrypt

100 blocks, making elastic RC6 more efficient than Patel’s method for block sizes up to 29

bytes.

Figure 6.8: Normalized Number of Blocks Encrypted by Elastic RC6 in Unit Time (Regular

RC6 = 100)

6.7 Summary

The constructions of the elastic versions of AES, Camellia, MISTY1 and RC6 illustrate how

to apply the method for creating variable-length block ciphers. By applying the statistical

tests used in NIST’s AES competition, I conclude that there is no obvious flaw in the design

because the level of randomness of the ciphertext produced by each of the elastic versions

is consistent with the level required in the AES competition. The workload of the elastic

version of a cipher is proportional to the block size, with the number of rounds increasing

as the block size increases. This offers a performance benefit over previous methods that

treated the block cipher as a black box and apply it multiple times, which results in the
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amount of computation being fixed for any size block between one and two times the original

block size instead of being proportional to the block size.

The performance benefit from using the elastic version of a block cipher for encrypting

one plus a fractional block of data instead of padding the data to two full blocks depends

on the original cipher and the exact implementation. The percent of overhead involved in

adding the swap steps, whitening and two key dependent permutations varies based on the

number of operations and exact implementation of the original cipher. For AES, whose

block size is 16 bytes, there is a significant performance benefit when using the elastic

version to encrypt blocks up to 25 bytes in length using an implementation of AES that

requires little memory; whereas, there is no performance benefit when using a memory

intensive implementation that consists entirely of table lookups and XORs. For Camellia,

whose block size is 16 bytes, there is a performance benefit when using the elastic version for

block sizes up to 19 bytes in length when the initial and final key-dependent permutations

are not included. For MISTY1, whose block size is 8 bytes, there is a performance benefit

when using the elastic version for block sizes up to 12 bytes. For RC6 with a block size of

16 bytes, there is a performance benefit when using the elastic version for blocks up to 20

bytes in length.
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Chapter 7

Differential Cryptanalysis

7.1 Overview

In this chapter I discuss differential cryptanalysis of elastic block ciphers. While differential

cryptanalysis is covered under Theorem 5.1, the results regarding the security of elastic

block ciphers presented in Chapter 5 do not include examples of cryptanalysis for specific

instantiations of elastic block ciphers. In order to provide an example of concrete cryptanal-

ysis, I consider how the conversion of a block cipher to its elastic form impacts differential

cryptanalysis. I define a general method for bounding the probability a differential char-

acteristic occurs in the elastic version of a cipher when given the bound for a single round

of the original cipher. I illustrate the method on the elastic versions of AES and MISTY1

described in Chapter 6.

Differential cryptanalysis was introduced by Biham and Shamir in their analysis of DES

[BS93]. It works by determining a sequence of differences computed using the XOR of pair

of inputs and outputs of each round, as shown in Figure 7.1. I will refer to any individual

difference as a delta, indicated by the symbol ∆. The sequence of delta inputs and outputs

of the rounds is called a differential characteristic. Specifically, let (P1, C1) and (P2, C2)

be two (plaintext, ciphertext) pairs for a block cipher with r rounds. ∆P = P1 ⊕ P2 and

∆C = C1 ⊕ C2. Let λij refer to the delta input to round j and let λoj refer to the delta

output of round j. λi1 = ∆P . λor = ∆C. Let prj be the probability λoj occurs given λij .

Let Ω = (λi1, λo1, λi2, λo2...λir, λor). The probability Ω ocurrs is
∏j=r

j=1 prj.
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Figure 7.1: Differential Characteristic

If a differential characteristic occurs with high enough probability, a round key recovery

attack may be possible. Given a set of (plaintext, ciphertext) pairs matching the ∆P and

∆C of the characteristic, the delta inputs and outputs of the internal rounds are assumed to

match those of the differential characteristics when encrypting or decrypting the plaintexts

or ciphertexts. Typically starting with the first or last round, round key bits impacting

the deltas are set to correspond the values needed to produce the delta. As the key bits

for a round are determined, the number of rounds is reduced by one and the process is

repeated, using one less round. If the block size is b bits, a differential characteristic must

hold with probability > 2−b for an attack to even be possible. Otherwise, the number

of (plaintext, ciphertext) pairs required to perform the attack is ≥ 2b. Therefore, when

proving a differential attack is not possible on a block cipher, it is sufficient to show that

no differential characteristic occurs with probability ≤ 2−b. A characteristic that occurs

with probability > 2−b does not automatically imply a differential attack is possible. The

probability of the differential characteristic must be large enough to allow the result to be
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both statistically relevant and reduce the number of (plaintext, ciphertext) pairs needed to

a quantity for which the memory and CPU requirements are feasible.

The method I use to bound the probabilities of differential characteristics for an elastic

block cipher involves defining states representing which bytes in the differential input to

a round have a non-zero delta and tracking what sequences of states the cipher can be

potentially pass through over a number of rounds. Using this method and differential

bounds for the round function of the original cipher, I can derive an upper bound on

differential characteristics for the elastic version of a cipher. I exclude the initial and final

key-dependent mixing steps from my analysis because they will only reduce the probability

of any specific differential characteristic occurring. I analyzed the elastic versions of AES

and MISTY1 described in Chapter 6 in this manner to bound the probability of a differential

characteristic occurring across all rounds of the elastic versions.

7.2 General Observation

The first observation I make regarding differential cryptanalysis of elastic block ciphers is

that, unlike linear cryptanalysis where the equations for the elastic version, G ′, of a block

cipher can be converted directly into equations for the original cipher G, a differential

characteristic for G′ cannot be converted directly into a differential characteristic for G

except for one special case.

I use the following notation when describing a differential characteristic of an elastic

block cipher.

• ∆Yi is the XOR of two y-bit segments for round i.

• ∆Bini is the XOR of two b-bit segments input to the round function in round i.

• ∆Bouti is the XOR of two b-bit segments output from the round function in round i.

• A b-bit value formed from the XOR of a b-bit value and a y-bit value, where y ≤ b,

refers to the b-bit result when the y bits are XORed with a subset of y bits of the b

bits and the remaining b− y bits are unchanged.
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• Forming ∆Yi+1 from ∆Bouti refers to setting ∆Yi to the y bits from ∆Bouti that are

in the bit positions involved in the swap step after round i.

• ∆Y , ∆Bin and ∆Bout without a subscript of i refers to a specific delta independently

of the round.

Figure 7.2: Two-Round Differential in Original and Elastic Versions of a Cipher

In the elastic version of a cipher, ∆Bini+1 is determined by ∆Bouti and ∆Yi. If ∆Yi 6= 0

then ∆Bini+1 6= ∆Bouti; whereas, ∆Bini+1 = ∆Bouti in the original block cipher. This

is shown in Figure 7.2. Therefore, a sequence of deltas ocurring across multiple rounds in

the elastic version will not hold across the original version unless ∆Yi = 0 for r sequential

rounds. For the same sequence of ∆Bini values to occur in the original version, ∆Bini

must produce the ∆Bini+1 from the elastic version. There is no reason this will occur with

the same probabilities corresponding to the ∆Bini values producing the ∆Bouti values in

the elastic version unless the ∆Yi values are all zero.

Now consider the special case where r consecutive ∆Yi’s are 0. If a differential charac-
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teristic occurs in the elastic version, G′, of a block cipher that contains r consecutive rounds

with ∆Yi = 0 and this characteristic can be used to attack G′, then it can be used to attack

G. Let Ω′ be the characteristic corresponding to the ∆Bini values and ∆Bouti values for

the r consecutive rounds each with ∆Yi = 0. Ω′ is also a characteristic for the r rounds of

G. Ω′ must hold with probability > 2−b−y to be used in an attack on G′. If Ω′ holds with

probability 2−α > 2−b, then it can be used to attack G directly, provided the probability

is large enough that it is computationally feasible to encrypt O(2α) plaintexts. If it holds

with probability 2−α such that 2−b > 2−α > 2−b−y, it can be used to attack G as follows:

Using an r round version of G′ and (plaintext, ciphertext) pairs consistent with the delta

input and delta output of Ω′ by setting the leftmost b bits to be consistent with Ω′ and the

rightmost Y bits equal to 0. Then apply the attack on G′ to find the round keys for the

r rounds and use these as the round keys for the r rounds of G. However, if this is com-

putationally feasible, it implies it is feasible to encrypt or decrypt 2b+y data blocks, which

means it is computationally feasible to encrypt 2b plaintexts with G. Thus G is insecure

because given a ciphertext, C, an attacker can ask for all 2b plaintexts be encrypted with

the same key (which is unknown) used to generate C and see which plaintext produces C.

As an estimate of the probability of r consecutive rounds having ∆Y = 0, consider what

happens if the y bits left out of each round in G′ take on any of the possible 2y values with

equal probability. Then, ignoring the differential for the b-bit portions of each round’s input

and output, a case where ∆Yi = 0 for r consecutive rounds may be found for small values

of y and r. If each ∆Yi occurs with probability 2−y, then the probability that ∆Yi = 0

in r consecutive rounds is 2−yr. For example, in MISTY1 r = 4 (MISTY1 contains four

cycles and a cycle is used as the round function in the elastic version). When y = 1, the

probability of r consecutive ∆Y ’s being zero is 1
16 .

7.3 State Transition Method

The general method I use is the tracking of states through the rounds of an elastic block

cipher. I devise a method for categorizing the impact of the swapping of bits between rounds

on the differentials entering a round. I combine the impact of the swap step with the upper
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bound on the probability a differential characteristic occurs in a single application of the

round function (from available analysis on the original version of the cipher) to determine

an upper bound the probability of a differential characteristic across multiple rounds. By

obtaining a bound, α, on the probability across n rounds, the probability across r ′ rounds

can be bounded by αb r′

n
c.

In the case of elastic AES, I view the (b + y)-bit data block entering a round as a b-bit

segment and a y-bit segment. Three main states are defined:

• ∆Bin = 0 and ∆Y 6= 0.

• ∆Bin 6= 0 and ∆Y = 0.

• ∆Bin 6= 0 and ∆Y 6= 0.

The state in which ∆Bin = 0 and ∆Y in = 0 is not of interest because, given a non-zero

delta input to the cipher, a delta of zero across all b + y bits cannot occur. Within a main

state, the number of bytes for which the delta is non-zero are counted. For example, if the

input to the third round has a ∆Bin that is 1 in the 2nd and 18th bit positions and is zero

in all other bits, then there are two bytes with non-zero deltas in ∆Bin. Tracking of states

between rounds involves determining what ∆Bin||∆Y can result for the (i + 1)st round

based on the delta in the ith round. For example, if ∆Bin = 0 and ∆Y 6= 0 in the input

to round i, then ∆Bin 6= 0 and ∆Y = 0 in round i + 1. This is because the delta output

of the ith round function wil be zero, then the non-zero ∆Y will be swapped into the b-bit

portion input to the (i+1)st round and a delta of zero will be swapped out to form the ∆Y

for the (i + 1)st round.

When the original cipher is a Feistel network (or is a Feistel network with additional

steps as in the case of MISTY1), the ∆Bin portion is viewed as a left half (∆Lin) and right

half (∆Rin). The main states are:

• ∆Lin = 0, ∆Rin = 0, ∆Y 6= 0.

• ∆Lin 6= 0, ∆Rin = 0, ∆Y = 0.

• ∆Lin = 0, ∆Rin 6= 0, ∆Y = 0.
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• ∆Lin 6= 0, ∆Rin 6= 0, ∆Y = 0.

• ∆Lin = 0, ∆Rin 6= 0, ∆Y 6= 0.

• ∆Lin 6= 0, ∆Rin = 0, ∆Y 6= 0.

• ∆Lin 6= 0, ∆Rin 6= 0, ∆Y 6= 0.

Using the states, an upper bound (which is not necessarily a tight upper bound) can be

determined for the probability of a differential characteristic for r ′ rounds of the elastic block

cipher. The probability of a differential characteristic occurring for a single application of the

round function from existing analysis of the original cipher and the possible ∆B or ∆L||∆R

values entering the round function in each round are used to bound the probability for each

round. The possible ∆B or ∆L||∆R and ∆Y values in a round determine the possible input

states to the next round.

7.4 Elastic AES Differential Bounds

I show that a differential attack on an elastic version of AES is impossible for block sizes

of 128 + y bits where 0 ≤ y ≤ 128. My intent here is to show how the probabilities of the

differential characteristics can be calculated or bounded in the elastic version of a block

cipher when given the upper bound on the probability a differential characteristic for one

application of the round function. My analysis is performed using a computer model that

tracks how many bytes contain a non-zero differential characteristic in each round. This

allows me to form an upper bound on the probability a differential characteristic occurs

across all rounds of the cipher.

The variable block size and the swap step significantly increase the number of cases to

explore when determining the probability of a differential characteristic compared to that

of the fixed-length version of a block cipher. This is the reason why I had to find a new

approach to modelling the differentials instead of using the differential trails approach used

on AES [DR02]. My analysis results in the following claim.
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Claim 7.1. For the elastic version of AES described in Chapter 6 accepting block sizes of

128 + y bits for 0 ≤ y ≤ 128, the probability of a differential characteristic occurring is

≤ 2−128−y.

I use the remainder of this section to explain the computer model and how the result in

Claim 7.1 was obtained. I note that my analysis is general in terms of block size but only

considers a single method for selecting the bits to swap after each round as opposed to all

possible ways of selecting y bits from 128 bits. The method used in the computer model

can be applied to any choice of bits to swap, but it is computationally infeasible to include

in one model all 2y(r′−1) possible ways of selecting the bits to swap in the first r ′− 1 rounds

(recall that the swap step adds no value after the last round and thus can be omitted from

round r′). Therefore, I modelled the swap step to correspond to how I implemented it in the

software version of elastic AES. In the implementation, the swap is performed by selecting

y consecutive bits from the round function’s output to swap with the y bits left out of the

round function and the starting position of the bits selected rotates to the right one byte

each round. Also, I omit the initial and final key-dependent permutations from the model

for simplicity since they will only decrease the probability of any differential characteristic.

I first explain how the model is designed and then follow with specific results.

7.4.1 Model Description

I describe here how I modelled the elastic version of AES and the impacts of each step on

the differential characteristic. The following terms and notation are used:

• delta refers to the difference between two bit strings. Given two data blocks, a delta

byte means there is a non-zero difference between the two bytes in a specific position

in the two data blocks.

• exp: The probability a specific differential characteristic occurs (across some number

of rounds) is 2−exp where exp is a non-negative integer. If exp ≥ b+ y for all differen-

tials across r′ rounds in the elastic version of a block cipher then the elastic version

is immune to a differential attack regardless of the attacker’s resources because more

than 2b+y (plaintext, ciphertext) pairs are required for an attack.
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• B||Y indicates the (b+y)-bit plaintext input to the elastic block cipher. For the elastic

version of AES, B refers to the leftmost 16-byte portion of the data block input to

AES’s round function and Y refers to the rightmost y bits of the data block.

• ∆Bin and ∆Y are as defined in Section 7.2.

• ∆B refers to the 16-byte delta in the B portion of the data block without specifying

whether or not it is the input or output of a round function. i.e. ∆B can indicate

∆Bin or ∆Bout.

• |∆Bini| and |∆Yi| refer to the number of delta bytes in ∆Bini and ∆Yi, respectively.

In the model, the ∆B portion of the data is viewed as a 4-by-4 matrix of bytes. Refer to

Figure 7.3. In this representation, the bytes are numbered from 1 to 16 as opposed to being

referred to by the row and column number as done in the description of AES in FIPS197

[NIS01b]. The model tracks the number of bytes which differ per column of this matrix at

the start of each application of the round function. I refer to this number as the column

delta. For example, if bytes in the 1st,2nd and 4th rows of the second column contain a delta,

the delta for column two is 3. I track the delta at the column level instead of the exact

byte position due to the number of cases that would need to be considered if every byte

is tracked. The lower bound of a probability for a differential characteristic is determined

by adding up the number of delta bytes entering each application of AES’s round function

and multiplying the result by 6 to obtain a lower bound for exp. The multiplication by 6 is

due to the fact that the probability a specific difference in two one-byte inputs to the S-Box

produces a specific difference in the two outputs of the S-Box is 2−6 or 2−7, depending on the

exact byte values ([DR02] pages 205-206). The ShiftRows and MixColumns steps in AES’s

round function, and the swap step and end of round whitening transform the differential in

a fixed manner in that the specific input differential results in a specific output differential

with probability 1 for each step. Therefore, the differential probability for a single round is

≤ 2−exp where exp = 6 ∗ |∆Bin|.

The bytes in the ∆Y portion of the data are also viewed as a 4-by-4 matrix as shown

in Figure 7.3, with the matrix being filled in one row at a time. For example, if Y contains

7 bytes, there will be three columns containing two bytes each and one column containing

one byte. The last byte is a partial byte if Y is not an integral number of bytes. In elastic
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Figure 7.3: Elastic AES Data Block as 4x4 Matrices

AES, the swap step swaps Y with y bits in d y
8e sequential bytes from B, moving the starting

position one byte to the right in B each round and wrapping around to the beginning of B

as needed. Therefore, when computing the differentials, a column of ∆Y is swapped with a

column of ∆B. If the last byte in ∆Y is a partial byte, the bits are swapped with the most

significant bits of the corresponding byte in ∆B.

The column deltas are tracked through each step of the round function and through

the swap step, with all possible resulting cases explored recursively. The following is an

overview of how the tracking is performed. An input state consisting of the number of delta

bytes per column for both ∆Bin1 and ∆Y1 along with the size of Y in bytes are input

to the model. The model determines all possible states of ∆Bout1 resulting from AES’s

round function then, for each of these states, determines all possible states of ∆Bin2||∆Y2

resulting from the swap step. These states become inputs to the next round. The specific

impacts of each step are modelled as follows:

AES’s Round Function:

• SubBytes: While it is the S-Box that produces the 2−6 bound for the round function,

the S-Box has no impact on the size of the column delta. This is because the model is
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not tracking the actual delta value but only the number of bytes with a delta. Each

delta byte input to the SubBytes step produces a delta byte in the output of this step

and does not alter the position of the delta byte.

• ShiftRows: This step causes each byte in the 2nd through 4th rows to change columns.

Since the number of delta bytes per column and not their exact positions are tracked

(i.e. the exact row number is not tracked), this step leads to multiple cases to in-

vestigate. For example, if one column has a single delta byte and the other three

columns have zero deltas, the single delta byte may be in any of the four columns

after ShiftRows is applied because the row number is not tracked.

• MixColumns: Given the number of delta bytes in a column when entering Mix-

Columns, all possible states that can result are investigated. If there are x delta

bytes in a column at the start of MixColumns, there can be anywhere from 5−x to 4

delta bytes in the column at the end of MixColumns because the specific delta values

input to MixColumns are not known. For example, two delta bytes in a column will

result in either 3 or 4 delta bytes in the output column.

• AddRoundKey: The whitening steps have no impact on the number of and positions of

the delta bytes. Any whitening step cancels with itself when determing the difference

between two inputs or between two outputs of a round.

Swap Step:

The impact of XORing a column of ∆Y with a column of ∆B and swapping the results

is determined. Given that the specific positions of the delta bytes are not tracked, the swap

step may lead to more than one state and all possible resulting states are investigated. For

example, suppose a column of ∆B has a delta of 2 after AES’s round function is applied,

the swap impacts all bytes and the corresponding column in ∆Y has a delta of 1. Then the

resulting column in ∆B can have a delta of 1,2 or 3 bytes and the resulting column in ∆Y

will have a delta of 2 bytes. This is because the entire two byte delta in ∆B is swapped

out into the next ∆Y . The single delta byte in ∆Y may be XORed with one of the delta

bytes in ∆B during the swap step and result in either a delta or no delta in this byte, or the

single delta byte in ∆Y may be XORed with a non-delta byte in ∆B. A second example

illustrates the cases where the swap does not impact all bytes of the column of ∆B (this
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will happen to one or more columns of ∆B when y ≤ 120). If only one byte of a column

in ∆B is impacted by the swap, the column in ∆B has a delta of 2 and the byte from ∆Y

being swapped into the column is a delta byte, the resulting columns in ∆B and ∆Y may

have deltas of 1 and 1, 2 and 1, or 3 and 0 bytes, respectively. Since the exact delta values

are not known, the model assumes that any delta byte in ∆Y which is XORed with a delta

byte in ∆B may or may not produce a zero (a non-delta byte), resulting in multiple cases

to explore.

Even with the multiple cases to investigate in ShiftRows, MixColumns and the swap

step, the amount of computation required is lower than what is required to track the exact

position of each delta byte. The multiple cases to investigate due to MixColumns can be

avoided only if the exact delta for each byte along with each delta byte’s exact position was

tracked, which requires computing all 2128+y differentials. As a result of tracking the deltas

only at the column level, the model will investigate states which cannot be reached. The

inclusion of these unattainable states is not an issue because they can only lower exp and

thus reduce the tightness of the bound.

7.4.2 Results

I ran the model for each case where Y contains an integral number of bytes from 1 to 16.

These cases cover all values of y for 0 < y ≤ 128. Since I am only tracking how many byte

positions involved non-zero deltas, the lower bound for y = 8x where x is an integer such

that 1 ≤ x ≤ 16 covers the cases of y such that 8(x− 1) < y ≤ 8x. For example, the lower

bound for when Y contains exactly one byte (y = 8) is also the lower bound for values of y

in the range of 1 to 7 because this range of y influences exactly one byte in B during each

of the swap steps.

For each case, the model was run through three rounds for all possible input states

except for the state involving ∆Bin1 = 0 because this produces a first round probability

of 1 and involves the same analysis as the cases where ∆Bin1 6= 0 and ∆Y1 = 0, only

with one less round. States producing a three round bound which did not exclude the

possibility of a differential attack were traced through subsequent rounds with the number

of rounds depending on the exact size of Y and the probability produced after each round.
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An example of the my analysis is provided in Section 7.4.3. For each case (value of Y

tested), I found that the total exp across r ′ − 1 rounds is at least 128 + y. Recall that r ′

depends on the size of Y . Therefore, the probability of a specific differential characteristic

occurring is ≤ 2−128−y . The probability was computed across r ′ − 1 rounds instead of r′

rounds to cover the case of the first round producing a differential characteristic with a

probability of 1 when ∆Bin1 = 0 and ∆Y1 6= 0 due to the key-dependent permutations

being omitted.

The model was run for only three rounds for all input states because of the time required

to compute the trace for subsequent rounds for all possible input states. Performing the

trace over four or five rounds resulted in the program running up to three hours in some

cases. While this is not an infeasible amount of time for a few cases, it is infeasible when

testing all cases. By viewing a byte has having either a zero or non-zero delta, there are 232

possible combinations when dealing with a 32-byte block.

Claim 7.2. In the elastic version of AES with the block size ranging from 129 to 224 bits,

any three round differential characteristic occurs with probability ≤ 2−30.

Proof. For the cases where Y contains at most 12 bytes, the total exp across three rounds

is ≥ 30. This was determined via the model for the cases in which ∆Bin1 6= 0 (although it

can easily be determined manually). In the case where ∆Bin1 = 0, exp is also at least 30

for the first three rounds regardless of the size of Y . This is because the ∆Bin2 = ∆Y1. If

1 ≤ |∆Yi| < 5 and ∆Bin1 = 0, the delta output from the second application of the round

function will be at least 5−|∆Y1| due to the ShiftRows and MixColumns states in the round

function, and |∆Bin2|+ |∆Bin3| ≥ 5. If |∆Y1| ≥ 5, then |∆Bin2| ≥ 5. Therefore, the total

exp across rounds two and three is at least 30 (6 ∗ (|∆Bin2|+ |∆Bin3|)).

For block sizes between 225 and 256 bits, I obtain the following result:

Claim 7.3. In the elastic version of AES with the block size ranging from 225 to 256

bits, any three round differential characteristic occurs either with probability ≤ 2−30 or with

probability 2−12. If the three round probability is 2−12, the five round probability is 2−132.

Proof. For the block sizes where Y involves 13 or more bytes, the model produces a three

round exp ≥ 30 except in the scenario depicted in Figure 7.4. In this exception case, a three
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round exp = 12 is possible, but leads to a five round exp = 132. This five round exp is

large enough such that when it is combined with the other possible three to five round exp

values it produces a total exp ≥ 128+y for r ′−1 rounds. The three round exp = 12 can be

produced by having a single byte delta in the 4th row of the 4-by-4 matrix representing B.

Let a denote the value of this single byte delta. Let a′ be the value after SubBytes is applied.

This will produce delta of 4, d, in a single column as a result of MixColumns. Suppose Y

contains a delta which is entirely in the column which will be swapped with the 4-byte delta

output from the round function. Also assume ∆Y and d are identical in the three bytes in

rows 1 to 3, and produce a delta byte = a in the byte in the 4th row. Furthermore, assume

the two bytes producing this difference of a are such that the SubBytes step will produce

the same delta, a′, as it did in the first round. This results in the input to the second round

function involving a single delta byte with value a which is identical to the delta input to

the first round function, with the exception that it will be in a different column. Since a is

in the fourth row, it will be rotated 3 columns to the left during ShiftRows. The starting

position of the swap step moves one byte to the right each round. In the second round, ∆Y

contains the 4 bytes swapped out of the first round function’s output. These 4 bytes are

in a single column whose value is a′, a′, 3a′, 2a′. The delta output from the second round

function will also be a single column containing a′, a′, 3a′, 2a′. Thus the swap step after the

second round will result in no delta input to the third round function and a ∆Y of 4 bytes

in a single column. Therefore, a 4-byte delta in a single column is input to the 4th round,

Y contains no delta in the 4th round, a 16-byte delta is output from the 4th round and a

16-byte delta is input to the 5th round.

The exception case occurs only when Y is at least 13 bytes because it requires that Y

contains enough bytes to impact an entire column of B in the swap step. 12 bytes in Y

populate three rows entirely (3 bytes in every column).

7.4.3 Example: Differential Bounds for the Elastic Version of AES with

152-Bit Block Size

As an example of how the output of the model was used to calculate the differential bounds

for the elastic version of AES, I include here the results from the case of Y containing 3
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Figure 7.4: Elastic AES Differential: Case with Three-Round exp = 12 and Five-Round

exp = 132

bytes. When Y is 3 bytes, the total block size is 152 bits (19 bytes) and twelve rounds are

applied. I compute the bound for eleven rounds to accommodate the case when ∆Bin1 = 0.

Notice that a differential attack is not possible if each series of three rounds has a exp ≥ 54

because this produces a exp ≥ 162 across nine rounds. States producing a three round

bound ≤ 48 were evaluated through four or five rounds as needed. The resulting bounds for

exp are indicated in Table 7.1. For simplicity, I do not list cases in the table with a three

round exp ≥ 48 and a four round exp ≥ 152, which precludes a differential attack.

If a total exp ≥ 152 occurs in eleven or fewer rounds, a differential attack cannot occur.

To bound the value of exp, I consider what happens based on the number of three round

sequences that have an exp ≥ 54 and fill in the remaining rounds with the values from

Table 7.1. Specifically, I view the eleven rounds as three, four and five round sequences,

such as (three rounds, four rounds, four rounds). As I previously stated, three sequences

of three rounds with exp ≥ 54 in each sequence eliminates a differential attack. If two
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3 Round exp 4 Round exp minimum 5 Round exp

30 54 144

42 60 126

42 84 132

42 108 not computed

48 66 132

≥ 54 not computed not computed

Table 7.1: Elastic AES Differential: Minimum exp Across 4 and 5 Rounds when Y is 3

Bytes

series of three rounds have an exp ≥ 54, the minimum exp for four rounds in the remaining

five rounds is 54; therefore, the total exp across ten rounds is ≥ 162. If one series of

three rounds has an exp ≥ 54, there are two remaining series of four rounds, each with an

exp ≥ 54 and the total exp across eleven rounds is ≥ 162. If each series of three rounds has

a exp ≤ 48, then there is either a five round exp ≥ 126, in which case any other four or five

round exp from Table 7.1 will produce a nine or ten round exp ≥ 234, or there is a four

round exp ≥ 108 and any two three-round exp values combined with the 108 will produce

a exp ≥ 168 in ten rounds. In all cases, the total exp exceeds 152. Thus the probability

of a specific differential characteristic occurring is < 2−152 when Y is 3 bytes, implying a

differential attack is not possible for a 152-bit block size.

7.5 Elastic MISTY1 Differential Bounds

In MISTY1, an upper bound of 2−56 on the probability a differential characteristic occurs

was derived for 4 cycles of the 64-bit version [Mat96]. This is a result of a bound of 2−14

per cycle due to the F0 function. Using an analysis of state transitions and only the bound

for the F0 function, I derive an upper bound on the elastic version of MISTY1 of 2−14(r′−1),

where r′ is the number of rounds (cycles of MISTY1) in the elastic version. The bounds

for each block size are shown in Table 7.2. This bound is not tight and does not by itself

eliminate the possibility of a differential attack (either in MISTY1 or the elastic version).
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However, the state transition analysis does reduce the number of state sequences that need

to be investigated to tighten the bound over r ′ rounds. The bound of 2−14(r′−1) also allows

the potential contribution needed from the initial and final key-dependent mixing steps in

preventing differential attacks to be determined. I evaluate the elastic version of MISTY1

with the swap step defined to have the starting position of the y bits selected to be swapped

out at the end of a round alternating between the left and right halves.

Rounds Block Size Bound

r′ 14(r′ − 1)

5 65 to 80 2−56

6 81 to 96 2−70

7 97 to 112 2−84

8 113 to 128 2−98

Table 7.2: Elastic MISTY1 Differential Bounds Based on F0 Function

Notation:

• FL and F0 refer to the functions within a cycle of MISTY1.

• b+ y is the variable-length block. b = 64, is the block length in MISTY1. 0 ≤ y ≤ 64.

• A single round will be defined as the application of FL to each half of the leftmost

64 bits of data and two applications of F0. The swap step will occur after the second

application of F0 as indicated in Figure 7.5.

• Round input and output refers to the inputs and outputs of MISTY1’s round function

unless otherwise stated.

• ∆ indicates the difference between two bit strings.

• ∆Lin and ∆Rin refer to the ∆ for the left and right halves of input to the round

function, respectively.

• ∆Lout and ∆Rout refer to the ∆ for the left and right halves of output from the

round function prior to the swap.
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Figure 7.5: Differentials for Elastic MISTY1

• ∆Y refers to the ∆ for the y bits left out of a round.

• A subscript of i after any ∆ indicates the ith round.

• exp is used as it was in the description of the elastic AES differential cryptanalysis. It

is the absolute value of the exponent in the probability that a differential characteristic

occurs, i.e. 2−exp.

• ∆F0(∆X) for ∆X = x1⊕ x2 refers to F0(x1) ⊕ F0(x2).

• ∆FL(∆X) for ∆X = x1⊕ x2 refers to FL(x1)⊕ FL(x2).

• || indicates concatenation. For example, ∆Lin||∆Rin is the ∆ of the leftmost b bits

input to a round.

Figure 7.5 shows four consecutive rounds of elastic MISTY1 with the differentials for the

inputs and outputs of each round labelled. The applications of the FL and F0 functions
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are numbered in order to be easily referenced later.

Assumptions:

• The probabilities for per round differential characteristics in the elastic version of

MISTY1 are independent of other rounds. Specifically, the probability F0 produces a

specific differential in round i+1 is independent of the differential produced by F0 in

round i. This assumption is a result of the expanded key bits being pseudorandom.

In the original version of MISTY1, the expanded key bits have a known relationship

to each other and this assumption does not hold.

Facts:

• Fact 1: The probability a specific differential characteristic occurs as the output of

F0 is ≤ 2−14 [Mat96].

• Fact 2: FL does not influence the probability of a differential characteristic [Mat97].

• Fact 3: A non-zero differential in one half of the round’s input impacts both halves of

the round’s output. This follows directly from the definition of MISTY1.

• Fact 4: If ∆Li = 0 and ∆Ri 6= 0, the probability of a differential characteristic

occurring in round i is ≤ 2−14 because there is a non-zero delta input only to the

second F0 in the round.

• Fact 5: If ∆Li 6= 0 and ∆Ri = 0, the probability of a differential characteristic

occurring in round i is ≤ 2−28 because there is a non-zero delta input to both F0′s in

the round.

• Fact 6: The probability of a differential characteristic occurring in MISTY1 with 4

cycles is ≤ 2−56 [Mat97].

Claim 7.4. In the elastic version of MISTY1 as described in Chapter 6, the probability

a differential characteristic occurs ≤ 2−14(r′−1). where r′ is the number of rounds in the

elastic version.

Proof. I derive the bound using the following steps. First, I define the possible states of ∆L,

∆R and ∆Y . There are seven possible states consisting of all combinations of each of the
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three components being zero or non-zero, excluding the state in which all are zero. These

are the states listed in Section 7.3. Second, I determine the possible transitions between

states and the bound on the value of the exp for each state and transition. Figure 7.6 shows

the states and possible transitions between states. Third, I determine what sequence of

states are possible that involve multiple occurrences of state I. The bound is derived by

proving that between any two occurrences of state I, at least one state with an exp ≥ 28

must occur. In the second step of my analysis, I do not determine whether it is possible for

the y bits swapped in to result in a delta of zero in either the left or right half of input to

the round function, but instead determine bounds assuming this could occur. The bounds

are based entirely on whether or not a non-zero delta occurs in the input to one or both

applications of the F0 function within the round. The bound is ≤ 2−28 when the delta

is non-zero to both applications of F0, and is ≤ 2−14 when there is a possibility that the

delta is non-zero to exactly one application of F0. When the ∆Lin||∆Rin = 0 for a round,

the differential does not change in that round. When ∆Lin||∆Rin 6= 0, a delta of zero can

occur in the input to exactly one of applications of F0 for the following reasons:

• ∆Lin = 0, in which case the input to the first F0 has a delta of zero and the input

to the second F0 has a non-zero delta.

• ∆Lin 6= 0, ∆Rin 6= 0 and the XOR after the first application of F0 produces a delta

of zero, i.e., ∆F0(∆FL(∆Lin)) = ∆FL(Rin). This results in a delta of zero input

to the second application of F0.

I also note that if the inputs to both applications of F0 in a round have a non-zero delta,

there is the possibility that the XOR after the second application of F0 results in ∆Lout = 0.

This requires ∆F0 output from the second application of F0 being equal to ∆FL(∆Lin).

The possible transitions between the states shown in Figure 7.6 are indicated in Ta-

ble 7.4. In Figure 7.6, the value next to each state is the upper bound on the probability

any specific differential occurs when considering only the current state and the next state.

The sequence of states prior to the current state and the exact block size are not considered

at this point in the analysis. Taking these into consideration lowers the bound for some

transitions and eliminates other transitions, as seen later in the analysis. In two cases, the
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I
∆L=0
∆R=0
∆Y≠ 0

II
∆L≠ 0
∆R=0
∆Y=0

III
∆L=0
∆R≠ 0
∆Y=0

IV
∆L≠ 0
∆R≠ 0
∆Y=0

V
∆L=0
∆R≠ 0
∆Y≠0

VI
∆L≠ 0
∆R=0
∆Y≠0

VII
∆L≠ 0
∆R≠ 0
∆Y≠0

∆ is input to round
Probability indicates upper bound 
resulting from ∆ input.

1

2-28

2-14

2-28 to II,VI: 2-14

2-14

2-14

to III: 2-28

to III,IV,V,VII: 2-28

Figure 7.6: Elastic MISTY1 Differential States

bound is lower if a specific next state occurs and is listed separately along with the corre-

sponding next state(s). For example, state VII has an upper bound of 2−14 except when

the next state is state III, in which case the bound is 2−28. These bounds are summarized

in Table 7.3.

The state transitions assume all outcomes are possible in theory. Specifically, in cases

where ∆Lout 6= 0 and ∆Rout 6= 0, I make no assumptions on the bits swapped and assume

it is possible that the y bits swapped from the round output can produce ∆Y = 0 (except

in the case where y = 64 since then either all of ∆Lout or all of ∆Rout becomes part of ∆Y

which I omit indicating since it only serves to reduce the bounds for one specific value of y).

I note that as y approaches 64, it is unlikely that the majority of bits in ∆Lout ‖ ∆Rout are

0, as required to obtain ∆Y = 0 entering the next round. As y increases, it is also unlikely

that a non-zero ∆Y will result in ∆L = 0 and/or ∆R = 0 in the input to the next round.
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State Bound

I 1

II ≤ 2−28

III ≤ 2−14

IV ≤ 2−14 to states II,VI

≤ 2−28 to states III,IV,V,VII

V ≤ 2−14

VI ≤ 2−28

VII ≤ 2−28 to state III

≤ 2−14 to states I,II,IV,V,VI,VII

Table 7.3: Elastic MISTY1 Differential Probabilities per State

State I is the only state for which a differential holds through the round with probability 1.

In the third part of my analysis, I derive the bounds in Table 7.2 by determining what

sequences of states are possible. This is done in a series of steps. From the state transition

diagram, at least two states other than state I must occur between any two occurences of

state I.

In order to show that the total exp across r ′ rounds is ≥ 14(r′ − 1) for 5 ≤ r′ ≤ 8, I

need to bound how many times state I can occur because state I is the only state with an

exp < 14 and determine the total exp across the states between any two occurrences of

state I. If state I does not occur in r ′ rounds, the total exp across all r′ rounds is at least

14r′. If state I occurs exactly once in r′ rounds, the total exp across all r′ rounds is at least

14(r′ − 1). In order to achieve a lower bound of 14(r ′ − 1) for any r′ rounds with two or

more occurrences of state I, it is necessary to show that at least one state between any two

occurrences of state I must have an exp ≥ 28.

Using only the state transition diagram, the following sequences are potential three state

sequences that begin with state I:

• Case A. I,II,X for X ∈ {III,IV,V,VII}

• Case B. I,III,IV
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From State To State

I II,III,IV

II III,IV,V,VII

III IV,VII

IV II,III,IV,V,VI,VII

V I,IV,V,VI,VII

VI I,III,IV,V,VI,VII

VII all

Table 7.4: Elastic MISTY1 Differential State Transitions

• Case C. I,III,VII

• Case D. I,IV,X for X ∈ {II,III,IV,V,VI,VII}

In Case A, state II has an exp ≥ 28. In Case D, for each X, either state IV and/or

state X has an exp ≥ 28. In Case B, I need to consider one more state to guarantee some

exp ≥ 28 occurs. Adding one more state to the sequence results in a sequence of the form

I,III,IV, X for X ∈ {II,III,IV,V,VI,VII}. For each X, either state IV and/or state X has an

exp ≥ 28. Therefore, only Case C needs to be investigated further to conclude that a state

with an exp ≥ 28 occurs before the next (if any) occurrence of state I.

I extend the sequence in Case C by one state and consider the sequence I,III,VII,X

for X ∈ {I,II,III,IV,V,VI,VII}. If X is state II, III, IV or VI then a state with exp ≥ 28

occurs before state I can potentially occur again. This is because state II and VI both have

exp ≥ 28 and state VI or the state that follows it will have an exp ≥ 28. If X is state III,

state VII will have an exp ≥ 28. This leaves the following sequences to be investigated:

• Case C1: I,III,VII,I

• Case C2: I,III,VII,V

• Case C3: I,III,VII,VII

I will show that each case cannot occur if each occurrence of state VII has an exp < 28 (i.e.

the bound on exp is ≥ 14 as opposed to ≥ 28). I note that it may not even be possible for
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each case to occur even if state VII occurs with an exp ≥ 28; however, to prove the claim,

I only need to show at least one state has an exp ≥ 28 in each sequence.

Using Figure 7.5 to represent the four states, the following values can be assigned to the

inputs and outputs of the first three rounds:

Round 1 corresponds to state I:

• ∆Lini = 0

• ∆Rini = 0

• ∆Yi 6= 0

• ∆Louti = 0

• ∆Routi = 0

The swap at the end of round 1 must move any non-zero portion of ∆Yi into ∆Rini+1.

Round 2 corresponds to state III:

• ∆Lini+1 = 0

• ∆Rini+1 6= 0

• ∆Yi+1 = 0

• ∆Louti+1 = F04(FL4(∆Rini+1))

• ∆Routi+1 = FL4(∆Rini+1)

Because I defined the swap step such that the starting position of the y bits swapped out

after each round alternates between the left and right halves of the round function’s output,

at least some of ∆Louti+1 will form ∆Yi+2.

Round 3 corresponds to state VII with exp < 28:

• ∆Lini+2 = ∆Louti+1 = ∆F04(∆FL4(∆Rini+1))

• ∆Rini+2 = ∆Routi+1 = ∆FL4(∆Rini+1)

• ∆Yi+2 6= 0 and contains at least part of ∆Louti+1
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• ∆Louti+2 = ∆FL5(∆F04(∆FL4(∆Rini+1)))

• ∆Routi+2 = 0

In order for state VII to have an exp < 28, the output of F05 XORed with the output

of FL6 must produce an delta of zero entering F06. This results in the ∆Louti+2 and

∆Routi+2 values indicated. The swap at the end of round 3 will impact at least the right

half, resulting in ∆Rini+3 6= 0. Therefore, state VII with an exp < 28 cannot transition to

state I in this sequence and Case C1 cannot occur.

The next round also cannot be state V because the swap will not produce a ∆Lini+3 =

0. If the span of ∆Yi+2 is not large enough to impact ∆Lini+3 then ∆Lini+3 6= 0 and

state V cannot occur. If the span of ∆Yi+2 is large enough to impact ∆Lini+3, then

∆Lini+3 = ∆Yi+2 ⊕ ∆Louti+2 6= 0. This is because ∆Yi+2 will contain some or all of

∆Routi+1, which equals ∆FL4(∆Rini + 1). It is this value that will be XORed with

∆Louti+2 to form ∆Lini+3. However, ∆Louti+2 = ∆FL5(∆F04(∆FL4(∆Rini+1))). Since

F0 influences the probability of the differential and FL does not, ∆Louti+2 ⊕∆Routi+1 =

∆FL5(∆F04(∆FL4(∆Rini+1)))⊕∆FL4(∆Rini+1) 6= 0. Therefore, Case C2 cannot occur.

So far I have shown cases C1 and C2 cannot occur. This leaves Case C3 (round four is

state VII) to consider.

Round 4 corresponds to state VII with exp < 28:

• ∆Lini+3 6= 0

• ∆Rini+3 6= 0

• ∆Yi+3 6= 0 and its span must be large enough to contain at least part of ∆Routi+2,

which is 0 from the output of round 3.

• ∆Louti+3 = FL7(∆Lini+3)

• ∆Routi+3 = 0

At the end of round 3, ∆Routi+2 = 0 if exp < 28 in round 3. This results in the

part of ∆Yi+3 that impacts the left half in the swap at the end of round 4 being 0. Since

∆Louti+3 6= 0, the swap step at the end of round 4 cannot lead to state I. In general, any



CHAPTER 7. DIFFERENTIAL CRYPTANALYSIS 150

sequence of n state VII’s for n ≥ 2, cannot lead directly back to state I if each occurrence

of state VII has exp < 28 because ∆Loutn 6= 0 and ∆Yn is 0 (due to ∆Routn−1 = 0 in

the part that will impact the ∆L portion of the nth swap. As a result, ∆Linn+1 6= 0 and

the (n + 1)st state cannot be state I. Therefore, state VII must transition to some state X

∈ {II, III, IV, V, V I} before state I can occur and the analysis from Cases A,B,C and D

applies (from the point after state I), which implies a state with an exp ≥ 28 must occur

at some point in the sequence before state I can be reached.

Overall, I have shown that for any sequence of states involving two occurrences of state

I, at least one state between the occurrences of state I must have an exp ≥ 28. Since any

state X other than state I has an exp ≥ 14, the total exp in any sequence of r ′ states is

≥ 14(r′ − 1), where 5 ≤ r ≤ 8 in the elastic version of MISTY1 for block sizes in the range

of 65 to 128 bits.

7.6 Summary

When performing differential cryptanalysis on an elastic block cipher, the differential bound

for the round function is unchanged from the original version of the cipher because the

round function in unaltered. The swapping of bits between rounds impacts the sequence

of differentials entering the series of rounds by altering the output of the ith application

of the round function before it is input to the (i + 1)st application of the round function.

The bound for the round function and the impact of the swap step can be combined to

bound the probability a differential charactertistic occurs in the elastic version of a block

cipher. This is accomplished by defining states representing whether or not there is a non-

zero differential in the b-bit portion or y-bit portion of the round’s input, then determining

what states may potentially occur as input to each round as a result of the swap step.

The possible state sequences in the elastic version of the cipher are combined with the

probabilities a differential characteristic occurs in one round of the original cipher to bound

the probability of a differential characteristic across r ′ rounds of the elastic version of the

cipher.

I used the elastic versions of AES and MISTY implemented as described in Chapter 6
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to illustrate this method. I used a computer model to assist with determining the possible

sequence of states in the elastic version of AES. The resulting bounds show that a differential

attack on the elastic version of AES is impossible. I note that the upper bound for a

differential characteristic on AES precludes a differential attack on AES. In contrast, the

existing bounds for MISTY1’s round function do not prove a differential attack is impossible.

As a result, when using the existing bound for a differential occurring in one round of

MISTY1 combined with the possible state transitions in the elastic version, I can only

derive an equivalent bound for the elastic version. Specifically I show that, on average,

each round contributes a factor that is ≤ 2−14 to the probability a differential characteristic

occurs across all rounds in the elastic version of MISTY1 (which is the same result obtained

for MISTY1). Thus, the bound is not sufficient to conclude from it alone that a differential

attack on elastic MISTY1 is impossible, just as it does not prove a differential attack on

MISTY1 is impossible.
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Chapter 8

Key Schedules

8.1 Overview

In this chapter I discuss the choice of key schedules for elastic block ciphers along with

general key schedule requirements for any block cipher. In practice, every block cipher

includes its own key schedule, which typically is designed with a focus on performance

and little concern about the lack of pseudorandomness in the expanded-key bits. This

tendency in key schedule design results in key schedules contributing to attacks and forces

applications supporting multiple block ciphers to support a separate key schedule for each

cipher. When creating elastic block ciphers, I wanted to avoid these disadvantages of

existing key schedules. Therefore, I required a key schedule that is independent of the block

cipher and that generates pseudorandom expanded keys (or close to pseudorandom) while

adhering to a performance bound. Existing stream ciphers are potential candidates for

satisfying these requirements. I used RC4 as the key schedule in the elastic block ciphers

to illustrate the concept of a generic key schedule satisfying these requirements. I explain

how increasing the randomness of expanded-key bits beyond that found in existing block

ciphers contributes to the security of block ciphers.

The key schedule for an elastic version of a block cipher has to generate more expanded-

key bits than the key schedule of the original block cipher. Additional key bits are needed

due to the expansion or addition of whitening steps, the two key-dependent mixing steps

and the increase in the number of rounds. As a result, I needed to consider how to create
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the key schedules of elastic block ciphers. Options include modifying the original cipher’s

key schedule to generate additional bits, running the original key schedule multiple times

or replacing the key schedule entirely. The first option is unattractive because it requires

modifying each cipher’s key schedule when creating the elastic versions of ciphers. Unlike the

encryption algorithms of block ciphers which follow a somewhat generic structure by being

a series of rounds, key schedules vary extensively in their structures. This makes it unlikely

a general method can be devised for modifying existing key schedules to generate additional

bits. One solution is to use the existing key schedule followed by another algorithm (that

could be used for all block ciphers) that generates all additional key bits needed by the

elastic version. However, there is no point in keeping the original key schedule in this case

because the common algorithm can be used to generate all expanded-key bits, which is

my third option. The second option is simplier than the first, but either requires a longer

secret key or a way of generating additional ”secret” keys from the original key to use in the

additional runs of the key schedule. The third option is the simplest of the options because

a stream cipher can be used to generate as many key bits as needed and can be used for

any block cipher. By using this option, I am able to satisfy the requirements I placed on

key schedules in general.

8.2 Key Schedule Requirements

There are two features I required of the key schedule for elastic block ciphers which are not

characteristic of the key schedules of existing, fixed-length block ciphers. First, I wanted

the key schedule to be a stand-alone algorithm that is usable by any block cipher. This

eliminates the need to create a new key schedule for every block cipher, whether it is a

fixed-length or variable-length block cipher. Second, I wanted the expanded-key bits to be

pseudorandom (or as close to pseudorandom as practical). This requirement is to prevent

attacks that exploit the lack of randomness in the output of existing key schedules. In

order to satisfy the second requirement, the key expansion will be slower than that in the

original block ciphers; however, the performance must still be reasonable. For example, a

key schedule which satisfies the first two requirements but which takes a minute to run is
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unacceptable. Therefore, I placed a third requirement on the key schedule to bound the

performance. The key expansion rate for elastic block ciphers should be a small multiple of

the key expansion rate of a standard block cipher. I use AES’s key expansion rate as the

reference point. As shown later, using RC4 as a key schedule for elastic block ciphers results

in a key expansion time of approximately six to eight times that of AES’s key schedule for

the four example elastic block ciphers created.

The first requirement makes it easier to implement block ciphers because there is no need

to support multiple key schedules in applications that must support a set of ciphers. This

is especially beneficial to hardware implementations by allowing shared hardware across all

the block ciphers supported. Furthermore, the elastic version of a block cipher requires

more expanded-key bits than the fixed-length version and the number of expanded key bits

needed will depend on the block size. Having a single algorithm that generates as many

expanded-key bits as needed avoids modifying each cipher’s key schedule when creating the

elastic version to create additional key bits based on the block size.

The second requirement is because, ideally, expanded-key bits should be pseudorandom.

This contributes to the security of a block cipher by eliminating attacks based on the

relationship between expanded-key bits. If an attacker discovers a few expanded-key bits,

the attacker should not be able to easily determine other expanded-key bits from them.

However, this is not the case in existing block ciphers. Refer to appendices C, D, E, and

F for the key schedules of AES, Camellia, MISTY1 and RC6. For example, in AES’s key

schedule, knowing two expanded-key bits located four bytes apart can immediately expose

another key bit. In both MISTY1 and Camellia, the same expanded-key bit is used in

multiple locations. All practical attacks based on relationships between the inputs and

outputs of the cipher and or individual rounds attempt to recover the round key bits as

opposed to directly recovering the original key. Differential fault analysis and side channel

attacks also attempt to find expanded-key bits. While practical attacks attempt to recover

as many expanded-key bits as possible, they depend on the fact that additional expanded

key bits can be determined once a few are found because it is unlikely enough expanded-key

bits can be found by using only an attack (and not the key schedule) to allow an exhaustive

search on the remaining expanded-key bits. Any 16-byte block cipher that includes initial
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and end of round whitening has at least 128(r + 1) expanded-key bits over r rounds. AES

has 1408 expanded-key bits for a 128-bit block. An attack would have to find 1280 of these

bits just to reach the point of being equivalent to an exhaustive search on the original 128-

bit key if it wasn’t for the lack of randomness in AES’s expanded key. Linear cryptanalysis

(or any algebraic cryptanalysis) may only find equations relating plaintext, ciphertext and

a few round key bits. Differential cryptanalysis may only produce a differential that allows

recovery of a few round key bits. Furthermore, there are attacks (related key attacks) that

arose due to the lack of randonmess in the expanded key. Therefore, eliminating the ability

to derive many expanded-key bits from a few known expanded-key bits is beneficial. The

second requirement is consistent with the definition of a strong key schedule defined by

Knudsen [Knu94], which requires a key schedule with the following two properties:

• Given any s bits of the round keys, it is ”hard” to find any of the remaining expanded-

key bits from the known s bits.

• Given a relationship between two secret keys, it is ”difficult” to predict the relationship

between any of the round keys in the expansion of the two secret keys.

Knudsen’s definition states that the terms ”hard” and ”difficult” are to be replaced by more

precise definitions depending on the application.

The third requirement is to insure some reasonable performance of the key schedule.

The main reason existing key schedules are not designed to produce pseudorandom bits is

not because of a lack of algorithms (any existing stream cipher is an improvement over the

current key schedules in terms of randomness) but because of performance considerations.

Key schedules are designed to be fast at the cost of security. The rate at which a key can be

expanded is an issue because of the need to quickly re-key a cipher in certain circumstances.

The time to key a cipher is not an issue when key expansion occurs infrequently, such as an

application involving a user accessing a database encrypted with one key. At most, the key

may be expanded each time the user initiates a session with the database (if the expanded

key is not stored) and when the key is changed. In contrast, in network applications

the key may need to change frequently. The specific circumstances determine if the key

schedule for the block cipher is a significant factor impacting performance. For example,
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key agility is an issue when a hardware device is processing multiple streams of data, each

using a different key. Key expansion is a performance concern if the expanded keys cannot

be stored in the device but instead the device stores the secret keys and expands a key

each time it switches what data stream is being processed. Additional concerns on the

key agility of block ciphers are discussed in public comments to the AES selection process

[WSB00]. In circumstances involving re-keying, the key expansion is less of a concern if

the time to expand a key is negligible compared to the time to establish a new secret

key. For example, the IETF recommendation for SSH is to re-key a block cipher after

every gigabyte or once per hour, which ever occurs first [YL06]. A generalization of this

recommends re-keying after every 2b/4 bytes, where b is the block length of the cipher

[BKN06]. The recommendations are due to the probability that identical blocks with the

same sequence number will occur in the ciphertext after this many bytes and potentially

allow blocks to be replayed or reordered. Furthermore, continuous use of a single key with

streaming data readily provides an attacker with enough data blocks for attacks (if any

attacks exist) [AB00]. However, in such circumstances, the block cipher’s key schedule is

not the factor determining the re-keying rate. In protocols that create a key for a block

cipher by establishing a shared secret key using public key cryptography, such as Diffie-

Hellman or RSA, the public key portion is the limiting factor when re-keying the block

cipher.

8.3 Randomness of Key Schedules

Here I discuss the randomness of existing key schedules compared to that of RC4. Refer

to Appendix G for the definition of RC4. I chose to use RC4 for the key schedule in the

four examples of elastic block ciphers that I created because it demonstrates that the three

requirements can be satisfied with a simple, existing algorithm. Other stream ciphers can

be used in place of RC4. A fourth benefit of RC4 is that is allows any key of length up

to 256 bytes to be expanded, in contrast to block ciphers’ key schedules that support a

few key sizes, such as 128, 192 and 256 bits. While the existing key schedules are faster

than RC4 (refer to Section 8.5), their expanded-key bits are highly predictable when given
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just a few expanded-key bits, with the possible exception of RC6. I note that the output

of RC4 (a single key stream) can be distinguished from random, but doing so requires

a number of bytes well beyond the number of bytes needed for an expanded key in any

practical cipher. One test by Golic uses a linear sequential circuit approximation (LSCA)

method and requires 648/225 (over 240) bytes [Gol97]. Another method by Fluhrer and

McGrew requires 230.6 bytes [FM00]. These methods only distinguish the RC4 key stream

from random. They do not allow an attacker to recreate portions of the key stream. There

are also weaknesses in the beginning of the key stream. A second byte of all 0’s occurs

with probability 2−7 instead of 2−8 [MS01] and, for n key bytes used as the seed (n ≤ 256),

there is a weakness that exists in the first n key stream bytes [FMS01]. Therefore, the first

256 bytes are discarded to cover all sizes of n (with a recommendation that 512 bytes be

discarded) [Mir02]. Currently there is no known attack that can generate a portion of the

key stream when given a portion of the key stream. This implies there is no known method

by which an attacker can generate additional expanded-key bits from known expanded-key

bits. If there are x expanded-key bits generated by RC4 (after the first 512 bytes are

discarded), as far as an attacker is concerned, the expanded key may be any of the 2x

possible bit strings. I tested the randomness of RC4’s output with a subset of the statistical

tests used by NIST for testing the randomness of a block cipher’s output (some of the tests

are not applicable to a stream cipher and thus were not used). The results are included in

Appendix A.

In contrast to RC4 and any other stream cipher used in practice, the key schedules

of AES, Camellia and MISTY1 generate expanded keys that can be distinguished from

random bits. If x is the number of expanded-key bits, there are significantly fewer than

2x possible expanded keys when using the key schedules of existing block ciphers. In AES,

each expanded-key byte is a combination of two other expanded-key bytes. When designing

AES, Daemen and Rijmen noted the benefit of pseudorandom key bits, but stated that

they took a ”less ambitious” approach focused on avoiding symmetry between rounds and

attacks due to related keys because ”All other attacks are supposed to be prevented by the

rounds of the block cipher.” [DR02], page 77. In Camellia, there is a large overlap amongst

the round keys. In MISTY1, the same expanded-key bits are used in multiple locations
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within the cipher. In RC6, it is more difficult to determine key bits from other expanded-

key bits compared to AES, Camellia and MISTY1. Each original key byte is altered with

an addition and a rotation. The resulting byte is then added to a previous expanded-key

byte and a constant to create the next expanded-key byte.

8.4 Key Schedules’ Contributions to Attacks

The lack of pseudorandomness in existing key schedules may result in specific attacks aimed

at exploiting the key schedules. Related key attacks (such as the slide attack) are examples

of such attacks. Related key attacks involve encrypting data with two related keys where

the attacker gets to specify the relationship between the (expanded) keys but not the exact

keys [CPQ02]. For example, in the slide attack, two keys, k1 and k2, are chosen such that

the expansion of k2 consists of k1’s expansion slide forward one round. In a differential

related key attack, the attacker specifies k1⊕k2 or the XOR of their expansions. While the

attacker, in theory, can request two related expanded keys be used, this will not convey any

information about the actual values of k1 and k2 when using a pseudorandom bit generator

as the key schedule. Given an expanded key, each value of k1 may have produced it with a

probability of approximately 1
|k1| . A related key attack where the relationship is between the

expanded keys (such as a slide attack) becomes meaningless. In order for someone to grant

an attacker’s request to encrypt plaintexts with the related expanded keys, the expanded

keys are not created per the key schedule because there is no way to determine a k1 and

k2 that can be expanded to produce the desired relationship. Thus, encrypting plaintexts

in this manner is an artificial exercise. If the relationship between k1 and k2 is specified

and the expanded-key bits are pseudorandom, the resulting expanded keys for both keys

will still be pseudorandom and thus will have no discernable relationship between them.

Therefore, specifying the relationship between k1 and k2 will not assist the attacker if the

key schedule generates pseudorandom expanded-key bits.

In general, the usefulness of related key attacks and specifically the slide attack, is

questionable because, while the key schedules of existing block ciphers are obviously not

pseudorandom functions, more recent ones do include steps that prevent two keys from
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producing expanded keys where one is the other slide forward one round. For example,

the application of rounds of encryption using constants as keys in Camellia’s key schedule

removes any obvious relationships between two expanded keys. AES’s key schedule allows

for the initial whitening of one expanded key to be the first round’s end of round whitening

created from another key by applying the key schedule to a key, k1, and setting k2 to be

the second 128 bits generated from expanding k1. Therefore, the ”slide” works for one

round. The XOR of every 4th word with a constant that varies per round prevents the

slide from holding across more rounds. The use of the S-Box in AES’s key schedule assists

in eliminating any obvious relationship between two expanded keys when the XOR of the

128-bit keys, k1⊕ k2, is specified. RC6’s and MISTY1’s key schedules also prevent obvious

relationships between two expanded keys, including sliding the keys one round, and when

expanding k1 and k2 in the case where k1⊕ k2 is known.

As previously mentioned, using pseudorandom expanded-key bits assists in preventing

any attack that attempts to recover expanded-key bits. An attack will likely find only a few

expanded-key bits (unless the block cipher has a serious flaw) and rely at least partially on

the key schedule to fill in missing bits. Not being able to obtain additional expanded-key

bits from a few known expanded-key bits decreases the possibility of a successful attack

based on the recovery of round key bits.

8.5 Key Schedule Performance

While the use of RC4 as the key schedule in the elastic block cipher examples satisfies the

requirements of being usable by any block cipher and in creating pseudorandom expanded

keys, it comes with the cost of being slower than existing key schedules. The following

performance measurements are from RC4, and the key schedules of AES, Camellia, MISTY1

and RC6. All conditional statements in AES, Camellia, MISTY1 and RC6 that are present

for accommodating key sizes aside from 128 bit keys were removed. For example, AES’s key

schedule supports 128, 192 and 256 bit keys. The conditional statements were eliminated

so they did not impact the time to expand the 128 bit keys. Including them (as would

be the case in implementations that support multiple key sizes) will slightly decrease the



CHAPTER 8. KEY SCHEDULES 160

performance. The tests were run on a 2.8 Ghz processor with 1MB RAM running the

Redhat Linux operating system, version 2.4.22.

The times provided are the times to create 1 million expanded keys. In the tests, a fixed

128-bit key was used and expanded 1 million times by each key schedule. Each test was

run ten times and the average of the times is listed.

Cipher Time to Expand 1 Million

Keys (in Seconds)

AES 9.025

Camellia 1.428

Misty1 0.457

RC6 11.259

Table 8.1: Performance of Original Key Schedules

When using the key schedules of the four fixed-length block ciphers, the expanded key

corresponded to the fixed sized block of b = 128 bits in the case of AES, Camellia and

RC6, and to a block of b = 64 bits in the case of MISTY1. Three expanded key sizes were

considered when using RC4 as the key schedule and the elastic versions of the block ciphers.

The sizes correspond to the number of expanded-key bits needed when encrypting b + y

bit blocks for y ∈ {0, 8, b}. In the elastic block cipher, two expanded-key bytes were used

in each of the two key-dependent permutations (for a total of 32 bits). When y = 0, the

number of expanded-key bits needed is 32 more than that needed for the original cipher

plus any whitening added that was not present in the original cipher. y = 0 provides a

comparison between using RC4 and the original key schedules when working on the fixed-

length b-bit block (with the minor overhead of creating four additional bytes with RC4 for

the two permutations). y = 8 shows the impact of adding one additional round key and

an extra byte of whitening per round compared to when y = 0. y = b shows the impact

of doubling both the number of round keys and the number of expanded-key bits used for

whitening compared to when y = 0.

Table 8.2 shows the number of expanded-key bytes needed for each of the four block
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ciphers for each block size tested. In all calculations, the first term is the number of

whitening bytes and the ”+4” is for the key-dependent permutations. Let r be the number

of rounds in the original version of the cipher, let r ′ be the number of rounds in the elastic

version. Elastic AES requires expanded-key bits only for the whitening and key dependent

mixing steps, which equates to (r′ + 1)(b + y) + 32 bits. Elastic RC6 requires (r ′ + 1)(b +

y) + 64r′ + 32 + 128 expanded-key bits. The 64 bits per round are used internal to the

round function. The 128 bits are for the initial and final ”addition” steps in RC6. The 32

bits are for the key-dependent permutations. Aside from the whitening and key-dependent

permutations, MISTY1 and Camellia require expanded-key bytes within the round function

as well as in their FL functions (both have a function called ”FL”, these are not identical).

Each round in the elastic versions of Camellia and MISTY1 corresponds to a cycle in the

fixed-length version. The elastic versions will require (r ′ + 1)(b + y) + 32 expanded-key

bits for the whitening steps and key-dependent mixing steps, plus the key bytes needed for

the round function and FL function in each. In Camellia, the FL function is applied after

every third cycle except for the last cycle. 16 bytes of expanded key are required for each

such cycle (two applications of the FL function, one per half). Each cycle involves two

applications of the F function, which takes an 8-byte key each time. In MISTY1, the F0

function takes 14 bytes and is applied twice per cycle. (FO takes one 8-byte and one 6-byte

key for a total of 14 bytes). The FL function takes 4 bytes and is applied twice per cycle,

plus at the end of the last round. Therefore, the number of expanded-key bytes needed for

the F0 and FL functions in MISTY1 is 8 plus 36 times the number of cycles.

Three variations of the elastic block cipher’s key schedule (i.e. RC4) were tested to

measure the impact of discarding the first 512 bytes and the impact of re-initializing RC4’s

”S” array. The rates for the key expansion are shown in Table 8.3.

• Case 1: The first 512 bytes are discarded and the ”S” array is re-initialized for each

expanded key.

• Case 2: The first 512 bytes are discarded once. The ”S” array is not re-initialized for

each expanded key (i.e., one continuous key stream is generated).

• Case 3: The first 512 bytes are not discarded. The ”S” array is re-initialized each

time.
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Cipher Block Size # of Calculation # of

in Bytes Rounds Expanded-Key

(or Cycles) Bytes

AES 16 10 16*11 + 4 180

AES 17 11 17*12 + 4 208

AES 32 20 21*32 + 4 676

Camellia 16 9 16*10 + 4 + 9*16 + 2*16 340

Camellia 17 10 17*11 + 4 + 10*16 + 2*16 383

Camellia 32 18 32*19 + 4 + 18*16 + 5*16 980

MISTY1 8 4 8*5 + 4 + 4*36 + 8 196

MISTY1 9 5 9*6 + 4 + 5*36 + 8 246

MISTY1 16 8 16*9 + 4 + 8*36 + 8 444

RC6 16 20 16*21 + 20*8 + 16 + 4 516

RC6 17 21 17*22 + 21*8 + 16 + 4 562

RC6 32 40 32*41 + 40*8 + 16 + 4 1652

Table 8.2: Number of Expanded-Key Bytes Needed

Case 1 represents how RC4 is used as the key schedule in the implementations of the elastic

block ciphers. Case 2 reflects the use of RC4 as a key stream generator, outputting a

continous stream of bytes that are used as expanded keys without re-seeding RC4. This

is not realistic of how RC4 would be used as a key schedule but indicates the best rate

possible, with the overhead of discarding the first 512 bytes once. Case 3 is intended for

comparison to Case 1 and indicates the overhead due to discarding the first 512 bytes.

I use AES’s key schedule as a reference point because, since it is a standard, the time

it takes for re-keying AES is sufficient in practice. I remind the reader that the time

given for AES’s key schedule is for a version in which the conditional statements used for

supporting 192 and 256-bit key sizes were removed. I compare the time it takes to generate

the expanded-key bytes in the elastic versions of the ciphers for b-bit blocks (y = 0) to

that of the original cipher’s key schedule. Let ti be the time it takes to expand a key in
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Cipher Expanded Case 1 Case 2 Case 3

Key Bytes

AES 180 53.632 9.628 25.468

AES 208 55.069 11.117 26.964

AES 676 80.202 36.113 52.033

Camellia 340 62.179 18.197 34.048

Camellia 383 65.298 21.368 37.246

Camellia 980 96.224 52.447 68.345

MISTY1 196 54.494 10.504 27.028

MISTY1 246 57.173 13.173 28.880

MISTY1 444 67.732 23.785 38.966

RC6 516 70.763 26.704 42.602

RC6 562 73.257 29.172 46.081

RC6 1652 131.53 87.402 103.397

Table 8.3: Key Expansion Times in Seconds Using RC4

the original cipher, for i = 1,2,3,4 corresponding to AES, Camellia, MISTY1 and RC6,

respectively. The key expansion rates for the four elastic block ciphers for b-bit blocks are

shown in Table 8.4.

I note that Camellia and MISTY1 have the fastest key schedules of the four ciphers and

also require the most expanded-key bits, thus resulting in the elastic version’s key schedule

appearing to be significantly slower. However, Camellia and MISTY1 have the key schedules

with the least amount of randomness of the four ciphers due to reusing expanded-key bits in

multiple locations. When the RC4 based key schedule is compared to AES’s key schedule,

the rate is 6.89t1 for elastic Camellia and 6.09t1 for elastic MISTY1. The rate for Elastic

RC6 is 7.84t1. Overall, the time to generate the expanded key when encrypting 16-byte

blocks of data is just under six to just under eight times the speed of AES’s key schedule.
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Elastic Block Case 1 Rate vs Case 1 Rate

Cipher Size Original Cipher’s Rate vs AES Rate

AES 16 5.94t1 5.94t1

Camellia 16 43.54t2 6.89t1

MISTY1 8 119.24t3 6.09t1

RC6 16 6.29t4 7.84t1

Table 8.4: Key Expansion Rates

8.6 Summary

Overall, creating a generic, standalone key schedule for block ciphers that outputs (almost)

pseudorandom bits offers advantages over existing key schedules. Only one key schedule

implementation is required in applications supporting multiple block ciphers. Pseudoran-

dom key bits enhance the security of block ciphers. Using an existing stream cipher is one

option for creating such a key schedule. RC4 was used in the four elastic block ciphers. It

serves as a generic key schedule that generates pseudorandom bytes (when limited to the

number of bytes required in any expanded key) while performing at a rate which is a small

multiple of AES’s key schedule rate. The one disadvantage of a generic key schedule is that

if a weakness is discovered in the key schedule that can be exploited independently of what

block cipher is being used, then any block cipher using the key schedule will be impacted.

However, having one key schedule decreases the likeliness of overlooked design flaws and

implementation errors compared to when multiple key schedules are required.
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Chapter 9

Application: Database Encryption

9.1 Overview

One application of elastic block ciphers is the encryption of databases. Using variable-

length blocks can reduce the amount of ciphertext by eliminating padding when encrypting

a database. Due to data storage being inexpensive, in general, reducing the size of an

encrypted database may not be viewed as a significant benefit in terms of required storage

capacity. However, using an elastic block cipher that is computationally faster than a

fixed-length block cipher with padding can reduce querying times by reducing the time

required for decryption. Also, reducing the database size reduces backup and retrieval

times. The level at which encryption is performed on a database depends on the application

and the implementation. Obviously, encrypting the entire database as a single file is not an

appropriate approach because the entire file must be decrypted when querying or updating

the database. Encryption must be done at a more granular level to allow for efficient

processing of queries and updates. This may involve encrypting at the row, column or field

level. When a query is performed, only the relevant rows, columns or fields need to be

decrypted in order to return the result. When updating an entry, only the row, column or

field being updated needs to be decrypted, altered then encrypted. Another approach is to

encrypt segments of tables. The segment containing the data being accessed is determined

and only the segment decrypted as opposed to decrypting an entire table. This approach

is beneficial compared to encrypting an entire table as a single component when the query
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can be isolated to a specific segment.

Encrypting a database at the row, column or field level with a fixed-length block cipher

can easily increase the amount of padding required compared to encrypting entire tables

or the entire database as a single component. This is because a database is, as one would

expect, designed to fit the application. The type of data stored, the table layouts and

size of fields are based on the application, not around the need to break data into 16-

byte segments in order to encrypt it. As examples, consider databases a consumer queries

when accessing online banking, brokerage and credit card accounts, and databases storing

customer information for online retailers. The fields are seldom an integral number of 16

bytes. The online transaction history for Mastercard customers with consumer accounts

consisted of the following information in 2005: account number: 16 bytes; sales date: 10

bytes; post date: 10 bytes; description: maximum of 46 bytes; amount: 8 bytes. If this is a

row of a database, each row is 90 bytes if the description field is a fixed 46 bytes. Therefore,

6 bytes of padding are required when using a 16-byte block cipher and encrypting at the row

level. As a result, 6.25% of the ciphertext is due to padding. If the fields are encrypted, an

elastic block cipher eliminates 2 bytes per row by eliminating the padding in the description

field if it is a fixed-length field and eliminates between 0 to 15 bytes per row if it is a variable-

length field. Typical customer information stored with any account includes name, address

and phone number. Table 9.1 indicates the length in characters for such fields in a database

from a Schwab brokerage account and a Mastercard credit card account in 2005.

When a 128-bit block cipher is used and individual fields are encrypted, only one of

the values greater than 16 bytes (the street address field in the credit card information)

is an integral number of 16 bytes. Using an elastic block cipher with a range of 16 to 32

bytes will eliminate the padding required for the street address (for the brokerage account),

city, and email address fields. While the savings obtained using an elastic block cipher are

small per individual record in a table, the amount is significant when considering millions

of records and numerous other fields storing information for holdings and transactions. In

the next section, I consider one database example in detail and compute the amount of

padding avoided by using an elastic block cipher in place of a fixed-length block cipher

when encrypting at the row level and when encrypting at the field level.
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Length in Characters

Field Brokerage Credit Card

street address 62 48

city 31 20

state 2 2

zip code 9 9

phone number 10 10

email address 31 42

data of birth 10 10

account number 9 16

Table 9.1: Sample Database Field Sizes

9.2 Example: Online Bookstore

In order to illustrate the space savings obtained by using a variable-length block cipher to

eliminate padding, I consider a database for an online bookstore from a database benchmark

[Tra02]. The benchmark provides specifications of database layouts and sizes for different

types of applications. The tables in the example are representative of the information Barnes

and Noble, and Amazon.com maintain. The tables described here are those containing

customer information, including contact and credit card information, and customer orders.

There are separate tables in the benchmark for the merchandise information that is displayed

to customers shopping on the web site. These tables are not described here because they

do not contain confidential information and can be stored unencrypted.

There are eight tables containing information about the customers and their orders. The

following is a list of the tables along with their sizes and fields. The size of each field in

bytes is listed after each field name. An ’∗’ after a field indicates a variable-length field, in

which case the size listed is the maximum length allowed. All other fields are fixed-length.

The sum of bytes per field is calculated using the maximum value for variable-length fields.

The number of entries in each table is indicated by a size factor that is a constant times

the scale factor (sf) or item scale factor (isf). The size of a table is the number of bytes per
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row multiplied by the size factor. The first field in each table is the key.

• address table:

– size factor: 2sf

– bytes per row: 154

– fields: id 10, street1∗ 40, street2∗ 40, city∗ 30, state∗ 20, zip∗ 10, country 4

• author table:

– size factor: isf/4

– bytes per row: 580

– fields: author id 10, first name∗ 20, last name∗ 20, middle name∗ 20, date of

birth 10, bio∗ 500

• cc xacts table:

– size factor: 0.9sf

– bytes per row: 123

– fields: order id 10, credit card type∗ 10, credit card number 16, name∗ 31, expi-

ration date 10, auth id 15, amount 8, auth date and time 19, country 4

• country table:

– size factor: 92 entries

– bytes per row: 45

– fields: id 4, name∗ 15, exchange 8, currency∗ 18

• customer table:

– size factor: sf

– bytes per row: 248
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– fields: id 10, user name∗ 20, password∗ 20, first name∗ 15, last name∗ 15, address

id 10, phone∗ 16, email∗ 50, since date 10, last visit date 10, login date and time

19, expiration date and time 19, discount 8, balance 8, ytd payment 8, birthdate

10

• item table:

– size factor: isf

– bytes per row: 851

– fields: id 10, title∗ 60, author id 10, publication date 10, publisher∗ 60, subject∗

60, description∗ 500, related item id 1 to 5: 10 bytes each (5 fields), pointer to

image 4, availability 10, suggested retail price 8, cost 8, stock 4, isbn 13, page 4,

backing∗ 15, dimensions 25

• orders table:

– size factor: 0.9sf

– bytes per row: 127

– fields: id 10, customer id of order 10, date 19, subtotal 8, tax 8, total 8, ship

type∗ 10, ship date 19, billing address id 10, ship address id 10, status∗ 15

• order line table:

– size factor: 2.7sf

– bytes per row: 23

– fields: id 3, order id 10, unique item id 10

I calculated the amount of padding that is required when encrypting at the row level

and at the field level. The computations are based on the number of bytes per field only

and exclude any formatting information a particular database utility may add when storing

the data. The maximum length is used for variable-length fields. For example, the street

address has a maximum allowed length of 40 bytes. If a customer’s street address is under

40 bytes, 40 bytes are still allocated for the entry. When using fixed-length fields, the
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field separation can be based on byte position as opposed to formating information or field

deliminators. Using fixed-length fields assists in limiting information leakage based on the

field length. Consider the city field in the address table. Even if padding is used to reach 32

bytes, the attacker knows the city name is in the first 30 bytes. However, if the city name is

encrypted based on its actual length instead of the maximum field length of 30 bytes, then

any city name less than or equal to 16 bytes will be encrypted as 16 bytes, which allows

the attacker to narrow down the possible candidates for the city. For the variable-length

fields, if the field entries are encrypted based on the actual length of the entry instead of the

maximum length, the elastic block cipher may or may not reduce the size of the ciphertext

for an individual entry in comparison to the ciphertext resulting from a fixed-length block

cipher. A 34-byte value stored in a field with a maximum length of 40 bytes will be padded

to 48 bytes when using a fixed-sized block and encrypting at the field level. In this case,

the elastic block cipher will produce only 34 bytes of ciphertext for a savings of 14 bytes. If

the entry was 32 bytes, then it would not require padding and the elastic block cipher will

provide no space savings for this entry.

table multiple size padding total size total

name of scale in bytes in without padding

factor bytes padding

address 2sf 154 6 308sf 12sf

author isf/4 580 12 145isf 3isf

cc xacts 0.9sf 123 5 110.7sf 4.5sf

country 92 entries 45 3 4140 276

customer sf 248 4 248sf 8sf

item isf 851 13 851isf 13isf

orders 0.9sf 127 1 114.3sf 0.9sf

order line 2.7sf 134 10 361.8sf 27sf

Table 9.2: Padding per Table When Encrypting at the Row Level

Table 9.2 indicates the amount of padding required per table when encrypting individual
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table scale size required avoidable total total percent

factor in padding padding bytes bytes of avoidable

bytes fields < fields > includes avoidable padding

16 bytes 16 bytes all padding

padding

address 2sf 154 24 30 416sf 60sf 14.42%

author isf/4 580 12 48 640isf 48isf 7.50%

cc xacts 0.9sf 123 31 14 151.2sf 12.6sf 8.33%

country 92 entries 45 21 14 7360 1288 17.50%

customer sf 248 56 64 368sf 64sf 17.39%

item isf 851 110 31 992isf 31isf 3.13%

orders 0.9sf 127 55 26 187.2sf 23.4sf 12.50%

order line 2.7sf 134 46 12 518.4sf 32.4sf 6.25%

Table 9.3: Padding per Table when Encrypting at the Field Level

rows with a fixed-length block cipher using 16-byte blocks. This padding can be avoided if

an elastic block cipher is used. The benchmark uses 10,000, 100,000, 1 million, 10 million as

test values for the sf and isf parameters. The size of a table is the number of bytes per row

times the scale factor. For example, the address table contains 2sf * 154 bytes of data when

there is no padding and 2sf * 160 bytes with padding. When encrypting at the row level,

the total bytes across all tables without padding is 1642.8sf + 4140 + 996isf. The amount

of padding is 52.4sf + 276 + 16isf. The percent of ciphertext that is padding will range

between approximately 1.61% when isf is significantly larger than sf and 3.19% when sf is

the dominant value. If the number of items for sale (the isf value) is 1 million, the percent

of ciphertext that is padding for 10,000, 100,000 and 1 million customers is 1.61%, 1.80%

and 2.53%, respectively. As a point of reference, Amazon.com had 33.8 million customers

in 2002 [GLS02]. Using 34 million customers for Amazon and 1 million items, the percent

of ciphertext that is padding is 3.05%.

Table 9.3 indicates the amount of padding required per table when encrypting individual
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fields with a 16-byte block cipher. All fields under 16 bytes are padded to 16 bytes regardless

of whether a fixed-length or elastic block cipher is used. The amount of padding per table

due to fields under 16 bytes is indicated in the ”required padding” column. All fields over

16 bytes are padded when using a fixed-length version of the block cipher. The amount of

such padding per table entry is indicated in the ”avoidable padding” column. The avoidable

padding is eliminated when using a variable-length block cipher. The last column indicates

the percent of ciphertext when using a 16-byte fixed-length block cipher that is avoidable

padding. The country, customer and address tables have the highest percentage of avoidable

padding. Of all the tables, the customer table contributes the largest amount of avoidable

padding bytes when using the sf and isf values in the benchmark.

The total size of all the tables when padding per field is 1640sf + 1152isf + 7360 bytes.

192.4sf + 43isf + 1288 bytes of this total are avoidable padding. When padding per field,

the percent of ciphertext across all the table that is avoidable padding will range from 3.73%

when isf dominants sf to 11.73% when sf dominants isf. When isf is 1 million, the percent of

ciphertext that is avoidable padding for 10,000, 100,000 and 1 million customers is 3.85%,

4.73% and 8.43%, respectively. Using 34 million customers and 1 million items, the percent

of ciphertext that is avoidable padding is 11.57%.

9.3 Summary

In real applications, databases are not (and should not have to be) designed around a single

fixed value in order to conform to the block size of current block ciphers. Encrypting a

database at a more granular level then the entire database or table level can reduce the

time to perform queries and updates, but increases the amount of padding required due to

the data being treated as smaller segments, each of which must be padded to an integral

of the block size when using a fixed-length block cipher. Using an elastic block cipher can

reduce or eliminate padding. I used a database from a benchmark for online bookstores to

illustrate the percentage of ciphertext that can be eliminated per table and over all tables

when an elastic block cipher is used in place of a 16-byte block cipher.
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Chapter 10

Application: Modes of Encryption

10.1 Overview

An elastic block cipher can be used in existing modes of encryption in two ways. The first

option is to use the block size of the original, fixed-length block cipher for all blocks except

the last block, then use a variable-length block at the end to avoid padding. A second option

is to use a block size different from the fixed-length block cipher for all blocks, with the size

of the last block set to avoid padding. When using an existing mode, the only benefit the

elastic version of a cipher provides is the elimination of padding; it does not eliminate any

existing attack against the mode. For short segments of data between one and two blocks,

an elastic block ciphers allows all of the bits to be encrypted as a single block, avoiding

the need to use a mode of encryption and creating a stronger binding across the ciphertext

bits compared to the ciphertext produced by a mode of encryption. For example, when

encrypting a 256-bit key with a 128-bit block cipher, the entire key can be encrypted as a

single plaintext block with the elastic version of the cipher instead of as two 128-bit blocks.

The elastic block cipher structure also allows for new modes of encryption. As examples

of how support for variable-length blocks can be used to create modes of encryption, I

provide a sketch of two new modes: Elastic Chaining mode and Elastic Electronic Code

Book mode. Each mode is suitable for certain types of applications, and has advantages

and disadvantages compared to existing modes. Both modes are intended as initial ideas

for future work.
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10.2 Existing Modes and Attacks

Before describing the new modes, I provide a summary of the most common modes of

encryption. I list the modes, their strengths and their weaknesses. The weaknesses stated

are based on using the mode by itself. Combining a message authentication code (MAC)

with a specific mode can eliminate the possibility that ciphertext is altered and not detected.

Electronic Code Book (ECB)

Figure 10.1: ECB Encryption Mode

ECB, shown in Figure 10.1, is basic block-by-block encryption. The plaintext is divided

into b-bit blocks, with padding at the end if needed, and each block is encrypted individually.

The mode allows data blocks to be encrypted in parallel and any individual ciphertext block

to be decrypted without decrypting other blocks. This mode is not recommended for use

because identical plaintext blocks encrypt to the same ciphertext, allowing for patterns and

identical blocks to be detected, and the ciphertext can be rearranged or have blocks removed

or replaced with other ciphertext blocks to alter the message. Altering a ciphertext block

will alter only the corresponding plaintext block. As shown in the tests described in Section

10.4, patterns are not likely to occur in files containing content where strings of bytes may

be repeated but do not occur on block boundaries. For example, files containing articles

written in English, such as the content of this thesis. Certain words occur freuqently in this
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thesis, but few are 16 bytes long and those that are 16 bytes are unlikely to align perfectly

on block boundaries. Even digital images of scenes that appear to have repeated bytes,

such as a picture of grass, will not cause patterns due to compression and subtle changes in

color between pixels. In contrast, highly structured files, such as system and email logs, will

produce patterns. Images with large areas of a single shade stored without compression,

such as a cartoon character on an all-white background, will also have noticable patterns. A

final note is that regardless of what method of encryption is used, if multiple files containing

identical first blocks are encrypted with the same key, the pattern will be detectable with

all of the methods described here. For example, multiple postscript files with the same

formatting information in the first block will produce the same first ciphertext block.

Cipher Block Chaining Mode (CBC)

Figure 10.2: CBC Encryption Mode

CBC is shown in Figure 10.2. The plaintext is divided into b-bit blocks. When encrypt-

ing the blocks, the ciphertext generated by the ith block is XORed with the (i+1)st plaintext

block and the result of the XOR encrypted. An initialization vector (IV) is XORed with

the first plaintext block. Any individual ciphertext block can be decrypted by applying the

decryption function and XORing the result with the previous ciphertext block to obtain

the plaintext.
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CBC is not subject to ECB’s flaws of pattern detection and ease with which messages

can be modified by inserting, swapping or removing blocks. Identical plaintext blocks will

not encrypt to the same ciphertext block, except with probability 2−b. Changing the ith

ciphertext block will result in both the ith and (i+1)st plaintext blocks being altered when

decrypting. Removing a ciphertext block will result in the ith plaintext block missing and

the (i + 1)st plaintext block being garbled.

CBC is subject to block-wise adaptive attacks [JMV02]. In such an attack, the attacker

sends two 2b-bit messages, M1 and M2, to be encrypted and receives the ciphertext of

one message. The attacker then sends a message M3 to be encrypted by first sending

an arbitrary block and receiving the ciphertext. The attacker generates the next block

of M3 by XORing the first block from the first ciphertext received, the ciphertext block

just received from M3 and the second block of M1. This block is then encrypted; if the

ciphertext matches the second block of the first ciphertext, the first message encrypted was

M1, else it was M2. Specifically,

• M1,M2,M3 are three distinct plaintexts.

• Mi[j] is the jth block of Mi with j = 1 denoting the first block.

• Cx = the encryption of whichever of M1 or M2 was encrypted.

• C3 = the encryption of M3.

• Ci[j] is the jth block of Ci with j = 1 denoting the first block.

• M3[2] = Cx[1]⊕ C3[1]⊕M1[2]

When M3[2] is encrypted, C3[1] is XORed with M3[2] then encrypted, resulting in the

encryption of Cx[1]⊕M1[2]. Therefore, C3[2] = Cx[2] if Cx is the encryption of M1 and

C3[2] 6= Cx[2] if Cx is the encryption of M2.

A splicing attack is also possible on CBC with minor distortion of the plaintext. When

two ciphertexts are spliced together, only the first plaintext block of the second portion is

altered. Attacks which produce only minor distortion of the plaintext are a concern because

one or two garbled plaintext blocks can easily go unnoticed if no other means of detecting
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changes is used, such as a MAC. For example, a few pixels of an image, or one line or symbol

in a figure being garbled can easily go unnoticed by the user.

Output Feedback Mode (OFB)

Figure 10.3: OFB Encryption Mode

OFB, shown in Figure 10.3, uses a block cipher to build a stream cipher. In OFB, an

IV is encrypted. x bits from the IV are used in the key stream. The remaining b− x bits

are discarded. The x bits are also appended to the IV and the last b bits of the result are

used as the next input to the block cipher. The process is repeated, each time taking x

bits from output of the block cipher to add to the key stream, and forming the next input

to the block cipher from the current input and x bits of the output. The key stream bits

are XORed with the plaintext. When using OFB, the ciphertext blocks must be decrypted

sequentially from the beginning in order to allow the key stream to be regenerated.

By creating a stream cipher, the key stream can be computed in advance or as needed.

Altering a bit in the ciphertext will only alter the corresponding plaintext bit. Removing

a ciphertext bit will result in the key stream being out of sync with the data stream when

decrypting, garbling all subsequent plaintext, unless a synchronization method is used and

the missing bit is viewed as lost. Inserting ciphertext also will not work because the data
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will be out of sync with the key stream and all blocks from the point of modification onward

will be garbled when decrypted. Splicing is only possible if the ciphertexts being spliced

together were created using the same IV and key (which should not be done since this

would produce the same key stream), and the splice occurs at the ith block of the first

ciphertext and i + 1st block of the second ciphertext so the key stream is unaltered. As

with any stream cipher, if both the plaintext and ciphertext are known by the attacker,

the attacker can compute the key stream by XORing the plaintext and ciphertext and thus

has the information necessary to modify the ciphertext such that it decrypts to a different

meaningful plaintext. Pattern detection is not possible because identical plaintext blocks

will not encrypt to identical ciphertext blocks.

Cipher Feedback Mode (CFB)

Figure 10.4: CFB Encryption Mode

CFB, shown in Figure 10.4, is similar in design to OFB. Instead of using x bits from the

block cipher’s output to form the next input to the block cipher, x bits from the ciphertext

(the result of the XOR with the plaintext) are used. This prevents the key stream from being

computed in advance since now x plaintext bits must be XORed with x key stream bits
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before the next x-bit segment of key stream can be computed. In CFB mode it is possible

to start decryption at any point in the ciphertext as long as the necessary ciphertext bits

prior to the starting point are available to enable the key stream to be computed.

If any bit in a x-bit segment of the ciphertext is altered, the corresponding bit in the

plaintext will be altered as well as the next x-bit segment of the plaintext. This makes

a single bit change in the ciphertext more likely to be detected than in OFB, where only

one bit in the plaintext is impacted. If a bit is removed from the ciphertext in CFB, the

number of impacted plaintext blocks depends on x because the values encrypted to produce

the key stream are now altered for however many blocks use the missing ciphertext bit as

input to the encryption function. The ciphertext cannot be rearranged without garbling

the plaintext. Splicing of ciphertext will produce several garbled blocks because the values

encrypted depend on a series of previous ciphertext blocks. Like OFB, pattern detection is

not an issue.

Counter Mode (CTR)

Figure 10.5: CTR Encryption Mode

CTR, shown in Figure 10.5, also creates a stream cipher from the block cipher. An

IV is used as input to the block cipher and the output is used as the key stream. The IV

is repeatedly incremented to form the next input to the block cipher. CTR mode allows

individual ciphertext blocks to be decrypted. Splicing can easily be done if the same IV
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was used to generate the two ciphertexts being spliced together, in which case the ith block

of one ciphertext can replace the ith block of the second ciphertext. However this would

imply the same key stream was used to encrypt different plaintexts. If IV1 + i = IV2 + j for

some i and j when IV1 6= IV2, then the keystreams will match from the ith and jth blocks

onward and splicing is possible. Removing or inserting ciphertext will cause the key stream

and data stream to be out of synch, garbling all subsequent plaintext until the two streams

can be synchronized.

10.3 Elastic Chaining Mode

The first new mode is a method of chaining blocks. It is depicted in Figure 10.6. This

mode is useful in applications where the entity decrypting the ciphertext should or can

decrypt starting at the last block. For example, when decrypting a file or segments of a

database, decryption can start at the last block. This mode would not be applicable to real

time streaming data which has to be decrypted in the order in which it is received. Given

a block cipher that operates on b-bit blocks, the elastic version can be applied to encrypt

(b+ y)-bit blocks, where y bits are taken from the previous ciphertext block and prepended

to the next plaintext block. The output consists of the leftmost b bits from each ciphertext

block for all but the last block and the entire ciphertext of the last block. The first block to

be encrypted can consist of b plaintext bits with a y-bit IV prepended to it, b + y plaintext

bits, or contain only b plaintext bits. Overall, the ciphertext will be at most y bits longer

than the plaintext. If the plaintext is not an integral number of b-bit blocks, the last block

may be shorter than b + y bits. When the plaintext is not an integral number of b-bit

blocks, the mode can be implemented without padding the last block; whereas, using the

non-elastic version of the block cipher would require padding and also produce a ciphertext

longer than the plaintext. The performance of the mode depends on the size of y because

the number of rounds applied per block increases as y increases. For a block cipher with r

rounds, nr rounds are computed to encrypt n b-bit blocks with ECB, CBC or CTR mode.

The number of rounds using elastic chaining will range from n(r + 1) when y = 1 to 2nr

when d ry
b e = r.
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The mode resembles CBC but instead of XORing the ith ciphertext block with the

(i+1)st plaintext block, bits from the ith ciphertext block are concatenated with the (i+1)st

plaintext block. This concatentation creates a stronger binding between the ith and (i+1)st

blocks compared to that created by the XOR used in CBC mode. The stronger binding is

achieved by increasing the work per block from the number of rounds required for b bits to

the number required for b + y bits, while the number of blocks is unchanged.

IV

b bits b bits b bits

b bits

b bitsb bits

b bitsb bits
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Figure 10.6: Elastic Chaining Mode

The ciphertext can be decrypted by decrypting the last block, concatenating the y bits

from the plaintext block with the previous ciphertext block, and then decrypting the next

block. When using an IV with the first block, the IV is not needed for decryption; however,

having it available for decryption provides a type of integrity check in that the first y bits

of the resulting plaintext can be verified against the IV.

The mode allows for variations. These include altering which positions the y bits from

the previous ciphertext block are inserted into the current plaintext block. Instead of

prepending the y bits to the next plaintext block, they could be appended or inserted

amongst the b bits as either y consecutive or nonconsecutive bits. The size of y can also

vary between blocks, possibly based on the key value.
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This mode offers several security benefits because, even if the plaintext is known, an

attacker does not know the actual (b + y)-bit block being encrypted. If y varies per block

based on key material, the attacker does not even know the length of each block being

encrypted. Incorporating the previous ciphertext block into the current plaintext block

when encrypting will hide plaintext patterns. In the way the mode is depicted in Figure

10.6, a single bit toggled in the ciphertext is detectable because it will garble all plaintext

prior to and including the altered block. In order to insert or splice together ciphertext

blocks, the inserted ciphertext block must decrypt to a plaintext which produces the same

leftmost y bits as the original ciphertext block; otherwise, all plaintext blocks prior to this

one will be garbled, resulting in a much more noticeable impact than the single garbled

block produced by a splicing attack on CBC. Block-wise adaptive attacks are prevented

because there is no need for the device performing the encryption to output the last y bits

of each ciphertext block, except for the last block. This prevents the attacker from knowing

the actual block being encrypted because the attacker only gets to choose b bits of the

b + y bit block and block-wise adaptive attacks depend on the attacker knowing the exact

plaintext.

To prepend blocks to the ciphertext, the attacker must be able to insert a ciphertext

block that, when prepended to the leftmost y bits of the original first plaintext block will

decrypt to some meaningful plaintext. Since these y bits are the IV, if the IV is not secret,

the attacker will know what the y bits are and needs to find b bits that can be prepended

to the y bits. However, notice that the attacker does not have a library of (plaintext,

ciphertext) pairs from which to search for a possible b-bit value to prepend to the IV unless

the entire plaintext is one block, in which case the mode is not necessary. The attacker

will not have (b + y)-bit (plaintext, ciphertext) pairs from the (input, output) pairs of data

encrypted with this mode because the leftmost y bits of the ciphertext are not included in

the output except for the last block and the b + y input to the last block is not known.

Appending blocks requires the attacker append blocks of ciphertext which decrypt to a

plaintext whose leftmost y bits are the same as the last y bits of the original ciphertext.

In both cases, the smaller y is, the more likely it is that the attacker can form meaningful

blocks to prepend or append, since there are only 2y values to try. If y or the bit positions



CHAPTER 10. APPLICATION: MODES OF ENCRYPTION 183

used for the y bit vary per block based on the key, an attacker will need to try all values of

y and possible positions for the y bits.

It is not possible to rearrange ciphertext blocks without garbling the plaintext because

y bits from each plaintext block are used to decrypt the previous plaintext block. In order

to swap ciphertext block i with ciphertext block j, the attacker has to find a ciphertext

block in position i which, when prepended to the leftmost y bits from the (j +1)st plaintext

block, will decrypt to a plaintext block whose leftmost y bits are the same as the y bits

appended to the (j − 1)st ciphertext block during decryption. Likewise, the j th block must

be such that when it is prepended to the leftmost y bits from the (i + 1)st plaintext block,

will decrypt to a plaintext block whose leftmost y bits are the same as the y bits appended

to the (i − 1)st ciphertext block during decryption. Furthermore, because the recipient of

the ciphertext does not receive the rightmost y bits of each block except for the last block.

Thus the attacker does not even know all of the ciphertext bits used to decrypt a given block

of plaintext when trying to determine what ciphertext blocks can be rearranged without

garbling the message.

10.4 Elastic ECB Mode

10.4.1 Description

A second new mode is a possible alternative to ECB which offers some protection against

pattern detection in and alterations of the ciphertext. The mode is shown in Figure 10.7.

The data is encrypted as in ECB mode, but the block size varies per block based on the

key. The ith block is of length b + yi where yi is based on key bits. The ith block can

be decrypted without decrypting any other block by determining its starting position and

length from the key. If the key bits are sufficiently random, yi will be uniformly random

within [0, b]. Another option is to use key bits to set the first block’s length then set each

subsequent block size based on bits from the previous ciphertext block, although this will

not allow the block lengths to be set in advance. The ith block can start at any position in

the range b(i−1)+1 and 2b(i−1)+1, with an average of 3b(i−1)+2
2 . For a plaintext pattern

to show up in the ciphertext, the starting position of the block (which is now random) and
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yi would have to match the starting position of the plaintext pattern and its length in the

file. This method does not work for all cases because there are b + 1 possible block sizes

(b to 2b) if all values of y are used and b
8 + 1 possible block sizes if the block size must

be an integral number of bytes. If the file is large enough and has a significant number of

repeated entries, ciphertext repetitions will occur. The degenerate case is a file consisting

entirely of the same byte value repeated, in which case there will be b
8 distinct ciphertext

blocks if y is restricted to being a multiple of 8.

Figure 10.7: Elastic ECB Encryption Mode: Block Size Varies per Block

Replacing individual blocks without garbling the plaintext is possible if the attacker can

determine the start and end position of the individual blocks where the modification will

occur. Any block being replaced will have to be replaced with a block of the same length;

otherwise, the block and all subsequent plaintext blocks will be garbled. The probability

of an attacker determining the start and end of the ith block is 1
b2(i−1)

. (The probability

of guessing the start position of the ith block is 1
b(i−1) and the probability of guessing the

length, yi, of the ith block is 1
b .)

Splicing is even more difficult than replacing individual blocks. If two ciphertexts, C1
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and C2 are being spliced together, the individual block lengths of the result must be the

same as the lengths corresponding to the key. If a block is removed, the block boundaries

for all subsequent blocks will not correspond to the boundaries used in encryption and the

remaining plaintext will be garbled. A block-wise adaptive attack is not applicable because

such an attack requires a constant block size.

Elastic ECB mode is not aimed at applications where one plaintext block is processed

before receiving the next block, but instead aimed at applications where at least two b-bit

blocks are available when encrypting all but the last block so the block size can be varied,

with y set to any value in the range of 0 to b. Elastic ECB mode may require a greater

amount of computation than ECB due to the need to compute the yi’s from the key and

due to varying the block length. Overall encryption time compared to ECB may or may not

increase because the longer block lengths will result in fewer blocks to encrypt. The total

number of rounds required of the elastic ECB mode to encrypt nb bits, for some integer

n > 0, will depend on the n, b and yi values.

10.4.2 Experiments

To illustrate how elastic ECB mode reduces patterns, the number of times two or more

identical blocks occur within a file was determined when using 16-byte blocks and (16+Y)-

byte blocks, where Y is an integer between 0 and 16 that varies per block. These tests

also demonstrate that ECB mode is not likely to produce patterns in the ciphertext when

encrypting files that are not formatted or structured. For example, English text is unlikely

to have repeated phrases that align on 128-bit block boundaries. In contrast, patterns are

likely to appear in the ciphertext in structured files where the format of the content results

in patterns, such as email logs. Three categories of plaintext were tested:

1. Files where 128-bit repetitions in plaintext were not generally expected. These files

consisted of news articles from the NY Times, the text (but not the formatting) of

various research papers, and the content of emails. While repetitions of specific words

occur in the text, for example the word ”the” frequently appears, repeated words or

phrases constituting a single 128-bit block seldom appeared. Each file contained at

least 1600 bytes to allow for a minimum of 100 fixed sized blocks. The largest file
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contained 16,000 bytes.

2. Files where repetitions of plaintext that encompassed one or more blocks were ex-

pected, but were spread relatively far apart and were not necessarily expected to be

on block boundaries. These files consisted of tex files for research papers containing

formatting commands and JAVA programs containing repeated variables and function

calls of at least 16 bytes. For example,

• "\vspace{-16pt} " , " \begin{tabular} ",

• "Section ~\ref{subsec" .

• "new BufferedReader(" and

• "System.err.println("

A space or newline at the end of the vspace and begin commands fills in the 16th

byte. Each file contained at least 1,600 bytes to allow for 100 fixed-sized blocks. The

largest file contained 16,000 bytes.

3. Files where repetitions of plaintext were frequent but not intentionally aligned on 16-

byte boundaries. These files consisted of emails, email logs and a log of visitors (IP

addresses, and related information) to a web site. The email consisted of a unix email

file involving emails between three people. The first 160,000 bytes were used. The

emails were generally short and included forwarded emails. No attached files were

included.

The email log contained the email header information from emails sent to one user.

The following are sample entries:

From owner-cryptography+dcook=cs.columbia.edu@metzdowd.com Mon Mar

28 15:14:58 2005

Subject: Re: NSA warned Bush it needed to monitor networks

Folder: /home/dcook/.mailspool/dcook

From dcook@cs.columbia.edu Sun May 1 00:41:38 2005
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Subject: CVS commit: EBC

Folder: /home/dcook/.mailspool/dcook

From mice@cs.columbia.edu Fri May 6 16:12:11 2005

Subject: Your spring 2005 review

Folder: /home/dcook/.mailspool/dcook

From angelos@cs.columbia.edu Fri Dec 9 00:23:08 2005

Subject: Autoreply... [Re: CVS commit: BOOKCG]

Folder: /home/dcook/.mailspool/dcook

A log of ”visitors”, excluding web crawlers, to my home page was tested. The log

contained minor HTML formatting around the entries. The following are sample

entries:

<br> Server:magnum.cs.columbia.eduAddress:128.59.16.117

Name:cpe-66-108-54-146.nyc.res.rr.comAddress:66.108.54.146

index.shtml 07/02/05 00:24:03 http://nsl.cs.columbia.edu

<br> Server:orion.cs.columbia.eduAddress:128.59.16.21

Name:chatter.cs.Virginia.EDUAddress:128.143.136.192

index.shtml 07/16/05 03:20:24 http://nsl.cs.columbia.edu

<br> Server:lion.cs.columbia.eduAddress:128.59.16.120

Name:vinci2.cs.umass.eduAddress:128.119.246.71

index.shtml 08/01/05 14:10:44

<br> Server:play.cs.columbia.eduAddress:128.59.21.100

Name:nefeli.cs.columbia.eduAddress:128.59.23.88

index.shtml 09/27/05 21:26:59

http://www.cs.columbia.edu/~dcook/dcookres.shtml
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Each log file contained at least 160,000 bytes.

Using 50 files from the first category, each file was divided into 16-byte blocks and

checked for multiple occurences of the same block. The number of blocks per file ranged

from 100 to 1,000. No identical blocks were found. The files were then broken into (16+Y)-

byte blocks where 0 ≤ Y ≤ 16 and each Y was chosen using the SecureRandom function

in JAVA. This corresponds to variable-length blocks adhering to byte boundaries, which is

the most likely way an elastic block cipher would be used on files. No identical blocks were

found.

The same tests were repeated with 50 files from the second category. Again no identical

blocks were found. Even though there were repeated sequences of 16 characters within the

files, they did not align on the block boundaries.

The same tests were repeated on the files from the third category. Matches between

blocks were found. A match means that a block is identical to a previous block.

• Mail file with 10,000 16-byte blocks: The file contained 37 emails, most of which

included forwarded emails and email chains.

The most common patterns were:

– 286 occurrences of "@cs.columbia.edu"

– 151 occurrences of "dcook@cs.columbia.edu"

– 73 occurrences of "angelos@cs.columbia.edu"

– 65 occurrences of "disco.cs.columbia.edu"

– 62 occurrence of "lion.cs.columbia.edu"

– 57 ocurrences of "moti@cs.columbia.edu"

– 48 occurrences of "version=TLSv1/SSLv3, of which 37 were identical for an entire

line with text indicating DES-CBC3 was used and 11 were identical for the rest

of the line with text indicating AES was used.

– 38 occurrences of "MIME-Version: 1.0"



CHAPTER 10. APPLICATION: MODES OF ENCRYPTION 189

– 37 occurrences of "Message-ID: <". Although this string is only 13 bytes, if the

message id number which followed started with the same digits, a match could

occur.

– 33 ocurrences of "Content-Type: TEXT/PLAIN; charset=US-ASCII"

The email addresses were preceded by "From: ", "To: ", "cc:", or "Return-Path:".

In the From, To and cc lines, the name of the user may appear followed by the email

address enclosed in < >.

When using ECB mode with 16-byte blocks, 1362 matches involving 399 blocks

ocurred. Each pattern involved 2 to 28 identical blocks. There were 451 cases with

exactly two identical blocks, 156 cases with 3 identical blocks, 63 cases of 4 identical

blocks, 30 cases of each 5 identical blocks, 11 cases of 6 identical blocks, 8 cases of

7 identical blocks, 1 case each of 8,10,11,17,18,21,23 and 28 identical blocks. There

were 4 cases of 9 identical blocks and 2 cases of 13 identical blocks.

• Mail file with 160,000 bytes and variable block size:

The file was tested 10 times with the block sizes set randomly per block. The number

of blocks ranged from 6792 to 6845. The number of matches found ranged from 36

to 58 across the trials. In all cases, pairs of identical blocks accounted for most of

the matches. Cases of three identical blocks occurred in two trials. The trial with 58

matches had 6845 blocks with 52 pairs of identical blocks and three triples of identical

blocks. The number of matches in the trials were 36, 40, 41, 44, 46, 48, 51, 53, 55 and

58. This corresponds to at least a 96% decrease in the number of matches compared

to using ECB mode with 16-byte blocks.

• Mail log with 10,000 16-byte blocks:

There were 1030 entries in the file. The most common patterns were:

– 834 occurrences of "/home/dcook/.mailspool/dcook",

– 190 occurrences of "/home/dcook/mail/spam".

– 109 occurrences of "From owner-cryptography@metzdowd.com",



CHAPTER 10. APPLICATION: MODES OF ENCRYPTION 190

– 69 occurrences of "From angelos@cs.columbia",

– 34 occurrences of "From moti@cs.columbia.edu",

– 34 occurrences of "From dcook@cs.columbia.edu",

Using ECB mode with 16-byte blocks, there were 3438 matches. For a given pattern,

the number of identical blocks found ranged from 2 to 73. 368 cases involved exactly

two identical blocks, 110 cases involved 3 identical blocks, 52 cases involved 4 identical

blocks, 33 cases involved 5 identical blocks, 21 cases involved 6 identical blocks. There

were 89 other cases involving 7 to 73 identical blocks.

• Mail log with 160,000 bytes and variable block sizes:

When varying the block size, matches still occur, but were significantly reduced. The

maximum number of blocks matching a given pattern was also significantly reduced,

with at most 7 identical blocks ocurring. The file was tested ten times with the block

sizes set randomly per block. Of the ten trials, the one with the most matches had 645

matches in 6814 blocks. Of these 645 matches, 178 cases involved 2 identical blocks,

94 cases involved 3 identical blocks, 51 cases involved 4 identical blocks, 22 cases

involved 5 identical blocks, 4 cases involved 6 identical blocks and 3 cases involved 7

identical blocks. For each trial, there was at least an 81% reduction in the number of

matches compared to ECB mode with 16 byte blocks.

• Web log with 10,000 16 bytes:

There were 986 entries with the HTML command "<br>" appearing before each entry.

The most common patterns were:

– 848 occurrences of ".cs.columbia.edu"

– 295 occurrences of "nsl.cs.columbia.edu"

– 170 occurrences of "http://www.cs.columbia/~dcook"

– 65 occurrences of "disco.cs.columbia.edu"

– 61 occurrences of "play.cs.columbia.edu"

– 41 occurrences of "bear.cs.columbia.edu"



CHAPTER 10. APPLICATION: MODES OF ENCRYPTION 191

When using ECB mode with 16-byte blocks there were 3870 matches. There were

379 cases involving 2 identical blocks, 112 cases involving 3 identical blocks, 69 cases

involving 4 identical blocks, 56 cases involving 5 identical blocks, 42 cases involving 6

identical blocks, 26 cases involving 7 identical blocks and 25 cases involving 8 identical

blocks. There were 92 cases involving 9 to 75 identical blocks. Two cases involved 75

identical blocks.

• Web log with 160,000 bytes and variable sized blocks:

Varying the block size significantly reduced the number of patterns. The file was

tested ten times with the block size set randomly per block. In the worst case, 6819

blocks resulted with 511 matches. The number of identical blocks for a given pattern

ranged from 2 to 8. There were 196 cases with 2 identical blocks, 55 cases with 3

identical blocks, 29 cases with 4 identical blocks, 15 cases with 5 identical blocks,

4 cases with 6 identical blocks, 4 cases with 7 identical blocks and 2 cases with 8

identical blocks. In each of the ten trials, there was at least an 87% percent reduction

in the number of matches compared to ECB mode with 16-byte blocks.

10.4.3 Conclusions

The experiments demonstrate that the appearance of patterns in the ciphertext when en-

crypting with ECB mode depends on the type of file and the content. When encrypting

English text, it seems unlikely that repeated phrases will align on 128-bit block boundaries.

As a result, no patterns appeared in the ciphertext when encrypting news articles, and the

content of research papers and emails with both the fixed-length and elastic versions of AES

(or any 16-byte block cipher). Even files with moderate occurrences of repeated strings,

such as tex files, did not have the repeated strings align on block boundaries. In the files

where the structure did result in patterns aligned on block boundaries, varying the block

size signficantly reduced the number of repeated ciphertext blocks.
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10.5 Summary

The ability to encrypt variable-length blocks allows new modes of encryption to be designed.

I described two ways of using variable-length blocks to create new modes. The first mode

involves chaining blocks in a manner such that bits from the ith ciphertext block become

part of the (i +1)st plaintext block. When encrypting a sequence of blocks, y bits from the

previous ciphertext block are prepended to the current plaintext block to form a (b+ y)-bit

block. This mode prevents the block-wise adaptive attacks that CBC is subject to and,

compared to CBC, results in more garbled plaintext blocks when attempting to splice or

otherwise alter ciphertext blocks. The second mode is ECB with the block size varying

across the blocks. Expanded-key bits can be used to set each block’s size. Varying the

block size significantly reduces the probability that patterns are detected, even in highly

repetitious data. Furthermore, insertion, removal or rearrangement of blocks requires de-

termining the start position and length of the blocks. These proposals are intended as

initial concepts to demonstrate additional potential uses of elastic block ciphers and require

further analysis.
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Chapter 11

Conclusions

11.1 Summary

I devised a solution for how to design a variable-length block cipher that is both secure and

computationally efficient. Existing block ciphers used in practice support only one or a few

block sizes. As a result, when encrypting data that is not an integral number of blocks,

the fractional block is padded to a full block. This padding results in computational and

memory overheads that can impact performance in certain applications. While there have

been previous proposals for variable-length block ciphers, each is either computationally

inefficient compared to my scheme or has been proven to be insecure. Previous proposals

fall into two catgeories: black box designs where an existing block cipher is applied multiple

times or ad-hoc designs. A related problem is how to construct variable-length PRPs and

SPRPs, which represent the ideal security for a block cipher. The structure I devised for

creating practical variable-length block ciphers allows for the creation of variable-length

PRPs and variable-length SPRPs.

I defined a method for converting any existing block cipher that works on a fixed-

length, b-bit block into a block cipher that works on any block size in the range of b to

2b bits. The resulting cipher is referred to as an elastic block cipher. The method is a

combination of the black box and design from scratch approaches, with the round function

being treated as a black box instead of the entire original cipher and operations added

between rounds. Elastic block ciphers eliminate space overhead due to padding and allow
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the computational workload of encrypting data to be proportional to the block size. In

contrast, both padding a fractional block to a full block and the use of ciphertext stealing

result in two full applications of a fixed-length block cipher when encrypting b + y bits for

0 < y < b. Relevant applications where space savings is valuable include the encryption of

databases and the encryption of internet traffic.

I created a basic structure, called the elastic network, for building elastic block ciphers.

I proved that the elastic network allows for the creation of variable-length PRPs and SPRPs

in the range of b to 2b bits from independently chosen b-bit PRPs. Three rounds of the

elastic network in the encryption direction and four in the decryption direction are needed

to create a variable-length PRP and five rounds are needed to create a variable-length

SPRP. By using three-round Fiestel networks as the round functions, the variable-length

PRPs and SPRPs can be created from b
2 -bit PRFs. By combining the elastic network with

the CMC encryption mode, 2b-bit to 2mb-bit PRPs and SPRPs can be created from b-bit

PRPs, for an integer m ≥ 2 that is dependent on the b-bit PRPs.

My method for creating elastic block ciphers involves inserting the round function of an

existing block cipher into the elastic network. This results in steps being added between

the rounds of the original block cipher and allows the properties of the round function to

be maintained when creating the elastic version. I demonstrated the method by creating

elastic versions of AES, Camellia, MISTY1 and RC6. The performance benefit of using an

elastic version in place of the original cipher with padding varied across the four examples.

The performance benefit is the most significant for one version of AES where almost twice

the number of 17-byte blocks were encrypted with the elastic version of AES compared to

padding the blocks to 32 bytes each, with the benefit decreasing as the block size approached

two full blocks. The elastic versions of MISTY1 and RC6 both provided faster encryption

rates compared to the original versions with padding for block sizes up to 4 bytes over the

original block size. There was no performance benefit to using the elastic version of AES in

a second representation where the round function is implemented entirely as table lookups

and XORs. There was also no performance benefit to using the elastic version of Camellia

unless the initial and final key dependent permutations are omitted. I illustrated the space

savings an elastic block cipher can provide when encrypting a database by computing the
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amount of padding that can be eliminated when encrypting a sample database storing

customer information for an online bookstore.

The elastic network and the reuse of the round function allows the security of the elastic

version of a cipher to be related directly to the security of the original cipher. By forming

a reduction from the elastic version of a cipher to the original version of a cipher, I proved

that an elastic version of a cipher is secure against round-key recovery attacks if the original

cipher is secure against such attacks. This eliminates the need to analyze an elastic version

of a block cipher against these types of attacks if the original cipher is secure against such

attacks. Independent of this general method, I showed that if linear cryptanalysis (which is

also covered by the result for round-key recovery attacks) is possible on the elastic version

of a cipher then a linear attack also exists on the original cipher. I extended this result

to any attack using algebraic equations relating the plaintext, ciphertext and expanded-

key bits. In order to provide a concrete example of cryptanalysis, I considered differential

cryptanalysis (which is also covered under the round-key recovery attacks) on the elastic

versions of AES and MISTY1. Using a state transition method and the properties of the

round functions, I derived upper bounds on the probability of a differential characteristic

occurring in the elastic versions.

My work also demonstrates the concept of having a generic key schedule. This allows

a single implementation of a key schedule to be in applications supporting multiple block

ciphers, which is a benefit in hardware implementations. I explained why it is advantageous

to produce pseudorandom expanded-key bits. The lack of independence among expanded-

key bits produced by existing key schedules increases the potential for an attack on the

cipher. I used RC4 as the key schedule in the four elastic block ciphers I implemented to

illustrate the concept of a generic key schedule with pseudorandom output.

Finally, I described how the elastic block cipher construction can be used to define new

modes of encryption. I described two potential new modes based on the ability to use

varying block sizes and provided a preliminary analysis for both of the modes. The first

mode is a method of chaining blocks with bits of the ith ciphertext block prepended to the

(i + 1)st plaintext block. The second mode is a variation of ECB mode with variable block

sizes.
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11.2 Future Work

There are aspects of the elastic block cipher work where further analysis can be performed

and possible extensions to the work. Areas for additional research include the following

items.

1. Additional work on potential uses of elastic block ciphers and the elastic network is

of value. One potential use of the elastic network is in the design of a hash function.

2. Additional analysis of the proposed encryption modes is needed. Designing other new

modes of encryption based on the elastic network is also of interest.

3. The current creation of variable-length PRPs and SPRPs from PRFs requires using a

three-round Feistel network as the round function. An open question is if the elastic

network can be used to create PRPs from PRFs without using a Feistel network or

by combining the elastic network and Feistel network in a manner that requires fewer

rounds of either the Feistel network or of the elastic network.

4. PRPs in CMC mode were used as the round functions of the elastic network when

forming 2b to 2mb-bit PRPs and SPRPs. It may be possible to combine the elastic

network and CMC mode more efficiently than this to create a PRP.

5. It may be possible to increase the limit on the number of blocks used in CMC mode

when creating the variable-length PRPs. The current bound corresponds to the case

where CMC mode produces a SPRP; whereas, the round function in the elastic net-

work only has to be a PRP.

6. Further work can be performed on implementations of elastic block ciphers. Opti-

mizations may be possible to the software versions of the elastic block ciphers. While

preliminary analysis indicates the elastic versions of block ciphers can be implemented

in FPGAs, the present work does not include hardware implementations of elastic

block ciphers.

7. The suitability of additional stream ciphers as candidates for a generic key schedule

can be determined.
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In summary, I have created a method for converting existing block ciphers to variable-

length block ciphers and for creating variable-length PRPs and SPRPs. Additional uses of

variable-length block ciphers are being considered, and improvements to the elastic block

ciphers and variable-length PRPs and SPRPs presented are the subject of future work.
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Appendix A

Randomness Test Results

A.1 Overview

There are statistical tests for measuring the randomness within a string of bits. Such tests

can be applied to ciphertext produced by a block cipher to assist in determining if there

are any obvious weaknesses with the cipher. I applied the tests used by NIST on the

AES candidates to the four elastic block ciphers described in Chapter 6. This appendix

contains a brief summary of the tests, and the results for the original and elastic versions

of AES, Camellia, MISTY1 and RC6. In addition, the key stream produced by RC4 was

tested to determine the randomness of the expanded-key bits. The test results for the

elastic versions of all four ciphers indicate no obvious lack of randomness in the ciphertext.

The test results for RC4 indicate RC4 is a feasible option for use as a key schedule that

will generate expanded-key bits that can be considered pseudorandom when compared to

the output of the key schedules of the four ciphers. Refer to NIST’s special publication

800-22 [NIS01a] for a complete description of the tests and to the NIST report entitled

”Randomness Testing of the Advanced Encryption Standard Finalist Candidates” [NIS00]

for a complete description of the data sets. The data sets defined by NIST included the

use of 128, 192 and 256-bit keys. All of the elastic block ciphers use RC4 with a 128-bit

key; therefore, the data descriptions provided below include only 128-bit keys. Due to the

varying block sizes, I was not able to reuse the library available from NIST to conduct the

tests. Instead, my own code and some functions from the GNU gsl scientific library version
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1.5 were used. When testing the elastic versions, every b + y bit block size where y is an

integral of 8 and b < b + y < 2b were tested. I also tested two block sizes that were not an

integral number of bytes. These were 129 and 171 bit blocks for the elastic versions of AES,

Camellia and RC6, and 69 and 75 bit blocks for elastic MISTY1. Each data set required

either an initial set of random plaintexts or random keys. I created these random bit strings

by extracting bits from files of random bits available from random.org [ran].

A.2 Test Descriptions

Sixteen tests were performed on eight sets of data for each cipher. In the following descrip-

tions, ”bit sequence” refers to the entire string of bits tested.

1. Frequency (Monobit): This determines if the proportions of 0’s and 1’s in the bit

sequence are close enough to 1
2 .

2. Frequency within a Block: This is the Frequency test applied to fixed-sized blocks

within the bit sequence. It is the same as the first test when the number of blocks is

1.

3. Runs: The number of runs (a sequence of all 0’s or all 1’s) in the bit sequence is

determined.

4. Longest Run of Ones within a Block: The longest run of 1’s within a block is deter-

mined.

5. Binary Matrix Rank: 32-by-32 matrices are created from the bit sequence and their

ranks computed. This determines if there is any linear dependence among fixed-length

segments of bits within the sequence.

6. Discrete Fourier Transform: This test determines if there are repetitive patterns in

the bit sequence.

7. Non-overlapping Template Matching: This test counts the number of times a m-bit

pattern occurs in the bit sequence using a sliding window. The window slides 1 bit

when a match does not occur and slides m bits when a match occurs so a bit will be
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involved in at most one match for a given pattern. m was set to 9 to be consistent

with the value NIST used and all 9-bit patterns were tested.

8. Overlapping Template Matching: This is the same as the previous test except that

the window always slides 1 bit. Therefore, a bit may be involved in more than one

match for a given pattern.

9. Maurer’s Universal Statistical: This determines if the bit sequence can be compressed

based on the number of bits between occurrences of a pattern.

10. Lempel-Ziv Compression: This determines how much a bit sequence can be com-

pressed based on the number of distinct patterns.

11. Linear Complexity: The Berlekamp-Massey algorithm [MOV] is applied to a 1000

bit sequence to determine a linear feedback shift register (LFSR) that produces the

sequence. The length of the LFRS indicates if the sequence is sufficiently random.

12. Serial: The number of times each 2m bit pattern occurs is determined, for some integer

m.

13. Approximate Entropy: The number of times each 2m and each 2m+1 bit pattern is

determined, for some integer m.

14. Cumulative Sums: The cumulative sum of the bits is computed for each position in

the sequence. The sum is computed by adding -1 for each bit that is 0 and adding 1

for each bit that is 1.

15. Random Excursions: Using cumulative sums, the number of times the sum crosses

zero is determined.

16. Random Excursions Variant: Using cumulative sums, the number of times the sum is

a particular value is determined.

The data sets involved 128-bit keys and (b + y)-bit plaintexts. Unless otherwise stated,

ECB mode is used when encrypting the plaintexts. (Note: these data sets do not apply

when testing RC4’s output. The data used when testing RC4 is described with the RC4
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test results.) In the NIST tests, the last four data sets included additional data formed

by using plaintexts or keys containing exactly two 0’s (low density case) or exactly two 1’s

(high density case). Only single 0’s and single 1’s were used when testing the elastic block

ciphers due to the volume of data and the overall level of randomness illustrated by the

data sets across all the other tests (indicating there was no need to continue testing). The

eight data sets are:

1. Plaintext Avalanche: The key is a fixed random value. Random plaintexts are used.

The data tested is the XOR of the encrypted plaintext and the encryption of the

plaintext with the ith bit flipped. This is repeated for i = 1 to b + y and for all

plaintexts.

2. Key Avalanche: The plaintext consists of all zeroes. Random keys are used. The data

tested is the XOR of the plaintext encrypted with a random key and the plaintext

encrypted with the random key with the ith bit flipped. This is repeated for i = 1 to

128 and for all keys.

3. Plaintext-Ciphertext Correlation: Random keys and random plaintexts were used.

The data tested consisted of the ciphertext XORed with the plaintext, for all plaintexts

and all keys.

4. CBC Mode: Random keys, random plaintexts and an IV of all 0’s are used. For each

key, the plaintexts are encrypted using CBC mode.

5. Low Density Plaintext: Random keys are used. For each key, a plaintext block of all

0’s and every plaintext block containing exactly one 1 are encrypted.

6. Low Density Keys: Random plaintext blocks are used. Each plaintext is encrypted

with a key of all 0’s and every key containing a single 1.

7. High Density Plaintext: This is the same as the low density plaintexts except plain-

texts of all 1’s and plaintexts with a single 0 are used instead of all 0’s and a single

1.
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8. High Density Keys: This is the same as the low density keys except keys of all 1’s and

keys with a single 0 are used instead of all 0’s and a single 1.

A.3 Block Ciphers: Test Results

The test results are summarized in the tables in the remainder of this appendix. In each

test, one or more P-values are calculated. A sample passes the test if the computed P-

value(s) is greater than 0.01. The P-value is the probability of the bit sequence observed in

the sample occurring in a sequence of random bits. The smaller the P-value, the less likely

the sample is random. The results for the four elastic block ciphers are consistent with the

percentage of samples from the AES finalists passing the tests in NIST’s AES competition.

For the elastic versions of the ciphers, the percentage of samples passing were consistent

across all block sizes and data sets; therefore, the range (minimum and maximum percent)

of samples passing across all block sizes and data sets is provided as a summary as opposed

to listing the percentage of samples passing per block size per data set per test. The number

of samples per test ranged from 100 to 300, depending on the amount of data required. The

sample sizes are provided in the tables with the test results. I also tested the original

versions of the ciphers and provide the results for comparison. The sample size used in each

test on the original ciphers is the same as sample size used for the elastic versions. Due

to the smaller number of data set - test combinations (there is only one block size to test

with the original version), I report the results for each data set for each test on the original

versions of the ciphers.

Notes:

1. In cases where a set failed test 5, it was due to the number of matrices having full

rank exceeding what is expected as opposed to matrices of low rank existing within the

data. Thus, the failures were not due to the existence of linear relationships among

the ciphertext bits.

2. The results reported for test 7 is the percent of the 512 9-bit patterns passed by a

sample. For example, if the minimum and maximum values reported are 96.68% and

98.05%, respectively, then each of the 100 samples passed between 495 and 502 of the
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patterns. The total number of cases passing (out of 512 patterns times the number of

samples) exceeds 96.33% for each block size and data set.

3. Test 8 is a template matching test. In the test descriptions provided by NIST, the cri-

teria for passing the test is defined for the 9-bit template of all 1’s [NIS01a]; therefore,

I ran the test with this 9-bit template.

4. Test 15 computes 8 probabilities and test 16 computes 18 probabilities. For both of

these tests, I marked a sample as failing if one or more of the probabilities did not

meet the required threshold as opposed to reporting the percentage that passed out

of all cases over all samples, which exceeds 96.33% for all ciphers tested and all data

sets. In most cases where a sample failed test 15, it was due to exactly one of the 8

values failing. In most cases where a sample failed test 16, it was due to one to three

of the 18 values failing. In both tests, no particular probability was responsible for

the majority of the failures.

5. In the general summary of the test results for the AES finalists, it is stated that

tests which resulted in a pass rate of < 96.33% were subject to further analysis

[NIS00]. Therefore, I consider an elastic version of a block cipher to exhibit sufficient

randomness if at least 96.33% of the samples passed each test. The results I report for

tests 15 and 16 are not covered by the 96.33% threshold because I report the range of

the 8 or 18 cases passed per sample as opposed to over all samples. The results I report

for test 7 also are not covered by the 96.33% threshold because I report the range of

cases out of 512 passing per sample as opposed to the total percent passed over all

samples. Because the results for each of these three tests exceeded the threshold if

the percent passed is counted over all cases over all samples, I choose to report the

minimum and maximum number of cases passing for a single sample to show if every

single sample was passing every case or if there were some samples failing multiple

cases.
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A.4 RC4: Test Results

RC4 was used as the key schedule in each of the elastic block ciphers. The randomness

of RC4’s output using random keys and related keys was tested. In all tests, the first 512

bytes of the key stream were discarded, as was done when using RC4 for the key schedule.

The following three data sets were tested:

1. The RC4 key stream in general was tested using 300 random keys. For each random

key, 1 million bytes of key stream were generated.

2. For each of 300 random keys, the 128 keys corresponding to flipping one bit of the

original key were created. For each key, 10,000 key stream bytes were generated and

XORed with 10,000 bytes generated using the original key (the key prior to flipping

one bit).

3. For each 128 bit key consisting of one 1 and 127 0’s, 1 million key stream bytes were

generated.

4. For each 128 bit key consisting of one 0 and 127 1’s, 1 million key stream bytes were

generated.

The random keys were the same 300 128-bit random keys used when testing the block

ciphers. The related keys (flipping one bit, a single 1 and a single 0) are the same related

keys used in some of the data sets defined for the block cipher. The number of key stream

bytes generated was set to provide enough data for at least 100 samples for each test except

for test 7, which involved 10 samples each tested with 512 different patterns.

For the first data set, each case that failed test 15 or test 16 was due to one pattern

failing and there was no individual pattern that caused the failures. For data sets 2, 3 and

4, most failures in tests 15 and 16 were caused by a sample failing a single pattern. No

individual pattern was causing the failures. A few samples failed multiple patterns: for data

set 2, test 16: four samples failed two patterns each. For data set 3, test 15, one sample

failed 2 patterns. For data set 3, test 16, two samples failed 4 patterns and one sample

failed 3 patterns. For data set 4, test 15: two samples failed 2 patterns and one sample

failed 3 patterns. For data set 4, test 16: three samples failed 2 patterns, and there was
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one case each where a sample failed 4,6 and 8 patterns. While no individual pattern was

responsible for the failures, in the cases of the 6 and 8 patterns failing, these were the last

6 and first 8 patterns that failed.



APPENDIX A. RANDOMNESS TEST RESULTS 213

Data Set

Test 1 2 3 4 5 6 7 8

1 99.33 98.00 99.00 99.67 98.33 99.33 99.00 99.67

2 100 97.00 98.33 98.67 99.00 99.00 99.00 98.33

3 98.33 99.33 100 98.67 99.00 99.67 97.33 98.67

4 99.00 99.67 99.67 98.33 98.67 99.33 99.67 100

5 99.00 100 99.00 99.00 97.00 98.00 98.00 96.00

6 100 100 100 100 100 100 100 100

7 min 95.31 94.92 94.33 94.92 96.09 94.92 94.72 96.87

max 96.67 97.65 97.46 97.26 97.26 97.65 96.87 97.07

8 100 100 100 100 100 100 100 100

9 100 100 100 100 95 100 100 100

10 100 100 100 100 100 100 100 100

11 100 100 100 100 100 100 100 100

12 98.33 96.67 98.67 99.00 98.33 98.33 99.67 98.33

13 98.00 99.00 98.67 100 98.67 98.33 99.33 99.00

14 100 100 100 100 95 100 100 100

15 80.00 100 80.00 100 80.00 80.00 60.00 100

16 80.00 100 100 100 80.00 100 100 100

Table A.1: AES with 128-bit Block Size: Percent of Samples Passing Tests

Refer to the notes in Section A.3 for the meaning of the results for tests 7,15 and 16.
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Test Min Max Notes

1 97.33 99.67 300 samples

2 97.33 100 300 samples

3 97.33 100 300 samples

4 97.00 100 300 samples

5 95.00 100 100 samples of 38 matrices

6 100 100 300 samples

7 93.35 98.43 100 samples, 512 9-bit patterns

8 100 100 100 samples

9 97.00 100 100 samples of 2,068,400 bits

10 100 100 100 samples of 200,000 bits

11 100 100 100 samples

12 96.33 100 300 samples of 10,000 bits, 3 bit patterns

13 97.00 100 300 samples of 10,000 bits, 3 bit patterns

14 100 100 100 samples of 100 bits

15 40.00 100 100 samples of 1 million bits, 8 cases

16 60.00 100 100 samples of 1 million bits, 18 cases

Table A.2: Elastic AES: Percent of Samples Passing Over All Data Sets and Tests

Refer to the notes in Section A.3 for the meaning of the results for tests 7,15 and 16.
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Data Set

Test 1 2 3 4 5 6 7 8

1 99.33 98.33 99.67 98.33 99.67 99.00 98.67 99.00

2 99.33 99.67 98.00 99.67 100 98.67 99.33 98.33

3 99.00 100 98.33 100 99.33 98.67 98.67 98.67

4 98.00 99.00 99.33 99.67 99.00 99.00 100 98.67

5 99.00 99.00 99.00 100 100 100 100 100

6 100 100 99.67 100 100 100 100 100

7 min 95.50 94.92 96.48 96.67 96.48 96.09 95.31 97.07

max 97.26 96.87 97.26 98.04 96.67 96.87 96.87 97.65

8 100 100 100 100 100 100 100 100

9 100 100 100 100 100 100 100 100

10 100 100 100 100 100 100 100 100

11 100 100 100 100 100 100 100 100

12 99.33 98.00 98.33 99.33 99.33 99.00 98.33 98.33

13 99.00 99.67 99.33 99.67 99.67 98.67 99.00 100

14 100 100 100 100 95 100 100 100

15 80.00 100 100 100 100 80.00 100 100

16 60.00 100 100 100 100 100 80.00 100

Table A.3: Camellia with 128-bit Block Size: Percent of Samples Passing Tests

Refer to the notes in Section A.3 for the meaning of the results for tests 7,15 and 16.
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Test Min Max Notes

1 95.00 100 300 samples

2 96.00 100 300 samples

3 97.00 100 300 samples

4 98.00 100 300 samples

5 97.00 100 100 samples of 38 matrices

6 100 100 300 samples

7 93.94 98.05 100 samples, 512 9-bit patterns

8 100 100 100 samples

9 97.00 100 100 samples of 2,068,400 bits

10 100 100 100 samples of 200,000 bits

11 100 100 100 samples

12 97.00 100 300 samples of 10,000 bits, 3 bit patterns

13 97.33 100 300 samples of 10,000 bits, 3 bit patterns

14 100 100 100 samples of 100 bits

15 40.00 100 100 samples of 1 million bits, 8 cases

16 40.00 100 100 samples of 1 million bits, 18 cases

Table A.4: Elastic Camellia: Percent of Samples Passing Over All Data Sets and Tests

Refer to the notes in Section A.3 for the meaning of the results for tests 7,15 and 16.
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Data Set

Test 1 2 3 4 5 6 7 8

1 99.00 99.00 99.00 98.00 99.00 98.00 99.00 99.00

2 100 100 99.00 100 99.00 97.00 100 100

3 99.00 100 98.00 99.00 99.00 100 98.00 99.00

4 100 100 100 98.00 98.00 100 100 100

5 100 100 100 96.67 100 96.67 100 100

6 100 100 100 100 95 100 100 100

7 min 96.29 96.48 96.28 96.09 97.65 95.31 95.51 97.66

max 97.46 98.43 98.05 97.66 98.43 97.65 97.65 98.05

8 100 100 100 100 100 100 100 100

9 97.00 98.00 100 100 98.00 100 97.00 100

10 100 100 100 100 100 100 100 100

11 100 100 100 100 100 100 100 100

12 100 98.00 99.00 97.00 97.00 97.00 97.00 98.00

13 100 100 100 97.00 98.00 99.00 97.00 99.00

14 100 100 100 100 95.00 100 100 100

15 80 100 100 100 95.00 100 100 100

16 100 100 50.00 50.00 100 100 100 100

Table A.5: MISTY1 with 64-bit Block Size: Percent of Samples Passing Tests

Refer to the notes in Section A.3 for the meaning of the results for tests 7,15 and 16.
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Test Min Max Notes

1 97.00 99.67 300 samples

2 98.33 100 300 samples

3 97.67 100 300 samples

4 97.67 100 300 samples

5 97.00 100 100 samples

6 99.67 100 300 samples

7 98.04 98.43 100 samples, 512 9-bit patterns

8 100 100 100 samples

9 98.00 100 100 samples of 2,068,400 bits

10 100 100 100 samples of 200,000 bits

11 100 100 100 samples

12 96.00 100 150 samples of 10,000 bits, 3 bit patterns

13 98.00 100 150 samples of 10,000 bits, 3 bit patterns

14 100 100 100 samples of 100 bits

15 50.00 100 100 samples of 1 million bits, 8 cases

16 50.00 100 100 samples of 1 million bits, 18 cases

Table A.6: Elastic MISTY1: Percent of Samples Passing Over All Data Sets and Tests

Refer to the notes in Section A.3 for the meaning of the results for tests 7,15 and 16.
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Data Set

Test 1 2 3 4 5 6 7 8

1 99.67 99.67 98.33 98.33 99.33 99.33 99.33 99.00

2 99.33 99.00 99.00 98.67 99.67 99.00 99.33 99.00

3 98.33 98.33 99.33 99.33 99.33 100 99.33 99.67

4 99.67 99.00 99.00 99.33 99.00 99.67 99.00 99.00

5 100 100 98.00 100 98.00 98.00 98.00 99.00

6 100 100 100 100 100 100 100 100

7 min 95.70 96.09 95.51 96.09 97.66 95.11 97.66 95.51

max 97.27 97.46 97.66 96.48 97.66 97.27 97.66 97.27

8 100 100 100 100 95 100 100 100

9 98.00 100 100 100 100 100 100 100

10 100 100 100 100 100 100 100 100

11 100 100 100 100 100 100 100 100

12 98.33 99.67 97.33 98.00 98.33 98.33 98.33 98.67

13 98.33 99.00 99.33 99.00 99.00 99.00 99.00 99.33

14 100 100 100 100 100 100 100 100

15 100 80.00 80.00 100 100 80.00 100 60.00

16 100 100 60.00 100 80.00 80.00 80.00 60.00

Table A.7: RC6 with 128-bit Block Size: Percent of Samples Passing Tests

Refer to the notes in Section A.3 for the meaning of the results for tests 7,15 and 16.
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Test Min Max Notes

1 97.00 100 300 samples

2 95.00 100 300 samples

3 96.00 100 300 samples

4 98.00 100 300 samples

5 96.00 100 100 samples of 38 matrices

6 100 100 300 samples

7 92.58 98.05 100 samples, 512 9-bit patterns

8 100 100 100 samples

9 98.00 100 100 samples of 2,068,400 bits

10 100 100 100 samples of 200,000 bits

11 100 100 100 samples

12 96.67 100 300 samples of 10,000 bits, 3 bit patterns

13 97.67 100 300 samples of 10,000 bits, 3 bit patterns

14 100 100 100 samples of 100 bits

15 40.00 100 100 samples of 1 million bits, 8 cases

16 60.00 100 100 samples of 1 million bits, 18 cases

Table A.8: Elastic RC6: Percent of Samples Passing Over All Data Sets and Tests

Refer to the notes in Section A.3 for the meaning of the results for tests 7,15 and 16.
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Data Set

Test 1 2 3 4

1 100 100 100 100

2 100.00 99.00 100 100

3 98.00 98.00 99.00 95.00

4 99.00 99.00 99.00 99.00

5 99.00 100 99.00 99.00

6 100 100 100 100

7 96.09 to 97.66 95.70 to 97.27 95.31 to 97.66 96.09 to 98.05

8 100 100 100 100

9 99.00 94.00 100 99.00

10 100 100 100 100

11 100 100 100 100

12 98.00 98.00 98.00 98.00

13 98.00 98.00 98.00 99.00

14 100.00 100 100 100

15 93.00 94.00 90.00 90.00

16 97.00 91.00 94.00 92.00

Table A.9: Expanded-Key Bytes from RC4: Percent of Samples Passing Tests

Refer to the notes in Section A.3 for the meaning of the results for tests 7,15 and 16.
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Appendix B

Performance Results

The tables contained within this appendix summarize the performance results for the elastic

versions of AES, Camellia, MISTY1 and RC6. These are the values used to generate the

graphs in Chapter 6.
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Number of Number of Number of Blocks Number of Blocks Number of Blocks

Bytes Rounds Encrypted Encrypted Encrypted

Case 1 Case 2 Case 3

17 11 190 186 97

18 12 182 169 80

19 12 154 158 75

20 13 153 142 59

21 14 143 128 49

22 14 125 125 46

23 15 125 114 40

24 15 122 111 37

25 16 121 101 32

26 17 106 93 28

27 17 101 90 27

28 18 101 84 23

29 19 100 78 21

30 19 88 76 20

31 20 88 71 18

32 20 83 69 17

Table B.1: Normalized Number of Blocks Encrypted by Elastic AES in Unit Time (Regular

AES = 100)
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Number Number of Number of Blocks Number of Blocks

of Bytes Rounds Encrypted Encrypted

Case 1 Case 2

17 10 95 161

18 11 82 137

19 11 72 108

20 12 62 95

21 12 58 89

22 13 49 81

23 13 45 61

24 14 41 55

25 15 34 48

26 15 32 42

27 16 29 38

28 16 27 34

29 17 25 31

30 17 24 27

31 18 21 24

32 18 21 23

Table B.2: Normalized Number of Blocks Encrypted by Elastic Camellia in Unit Time

(Regular Camellia = 100)
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Number of Number of Number of Blocks Number of Blocks

Bytes Rounds Encrypted Case 1 Encrypted Case 2

9 5 129 185

10 5 122 143

11 6 104 130

12 6 101 120

13 7 76 86

14 7 76 86

15 8 68 75

16 8 66 75

Table B.3: Normalized Number of Blocks Encrypted by Elastic MISTY1 In Unit Time

(Regular MISTY1 = 100)
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Number of Number of Number of Blocks

Bytes Rounds Encrypted

17 6 125

18 6 114

19 6 105

20 7 102

21 7 90

22 7 78

23 8 77

24 8 71

25 8 70

26 9 59

27 9 54

28 9 53

29 10 53

30 10 45

31 10 44

32 10 43

Table B.4: Normalized Number of Blocks Encrypted by Elastic RC6 in Unit Time (Regular

RC6 = 100)
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Appendix C

AES

C.1 Encryption and Decryption

The following is a description of the AES block cipher for 128-bit blocks and 128-bit keys

as described in FIPS 197 [NIS01b]. The steps described in FIPS 197 can be rearranged

and combined to produce a representation in which the round function consists entirely of

table lookups and XORs. This later version results in significantly faster encryption and

decryption rates compared to the an implementation following the steps in FIPS 197, but

requires additional memory to store the tables.

For 128-bit blocks and 128-bit keys, the AES round function for encryption is typically

described with data represented as a 4x4-byte matrix, A, with each entry containing one

byte.

A =
















a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

















The round function is applied ten times. The data is XORed with key bits prior to the first

round. A round of encryption consists of the following steps:
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(I) SubBytes (S-Box applied to each entry)

ShiftRows (bytes within each row of A are shifted 0 to 3 columns)

MixColumns (a matrix multiplication; absent in the last round)

AddRoundKey (A is XORed with a round key)

The round function for decryption applies AddRoundKey then the inverse functions for

MixColumns, ShiftRows and SubBytes.

Encryption is defined as follows:

AddRoundKey

for (i=1; i < 10; ++i) {

SubBytes

ShiftRows

MixColumns

AddRoundKey

}

SubBytes

ShiftRows

AddRoundKey

In the SubBytes step, each byte is used as in index into a table and the byte is replaced

with the table entry. In block ciphers, tables used for such substiutions are referred to as

S-Boxes. Tables C.1 and C.2 contain the S-Boxes for AES encryption and decryption,

respectively. The table lookup is performed by viewing the byte as two 4-bit values, with

the leftmost 4 bits used as the row index and the rightmost 4 bits used as the column index.

For example, 0x29 uses the row corresponding to 2 and column corresponding to 9. 0x29 is

replaced with 0xa5 when encrypting and 0x4c when decrypting.

In the ShiftRows step, the entries in the ith row of the matrix A are rotated i positions

to the left, for i = 0 to 3, when encrypting. Specifically, the matrix A
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0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Table C.1: AES’s S-Box for Encryption

















a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

















becomes

















a00 a01 a02 a03

a11 a12 a13 a10

a22 a23 a20 a21

a33 a30 a31 a32
















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0 1 2 3 4 5 6 7 8 9 a b c d e f

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb

2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4

c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f

d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef

e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

Table C.2: AES’s S-Box for Decryption

When decrypting, the rotation is reversed.

The MixColumns step consists of the matrix multiplication Me ∗ A when encrypting

where Me is the constant matrix:

Me =
















02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02



















APPENDIX C. AES 231

MixColumns uses the inverse of Me when decrypting and consists of the matrix multiplica-

tion Md ∗A where Md is the constant matrix:

Md =
















0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E

















A faster implementation for environments with sufficient memory operates on 32-bit words

and reduces the AES round function described in (I) to four table lookups and four XORs.

If A denotes a 4x4 matrix input to the round, ai,j denotes the ith row and jth column of A,

j − x is computed modulo 4, and Tk are tables with 256 32-bit entries, the round function

is reduced to the form:

(II) A′
j = T0[a0,j ]⊕ T1[a1,j−1]⊕ T2[a2,j−2] ⊕T3[a3,j−3]⊕RoundKey

where A′
j denotes the jth column of the round’s output. Refer to pages 58–59 of The Design

of Rijndael [DR02] for a complete description and the derivation of this version. The entries

in the tables in (II) are concatenations of 1, 2, and 3 times the S-Box entries. This version

is due to the fact that the order of the SubBytes and ShiftRows steps can be switched and

the MixColumn step can be viewed as the linear combination of four column vectors, which

is actually a linear combination of the S-Box entries.

C.2 Key Schedule

AES’s key schedule expands the key to eleven 128-bit round keys used for the AddRoundKey

steps (10 rounds plus the initial AddRoundKey). Each round key is viewed as four 32-bit

words. The key schedule creates the eleven round keys as an array of forty-four 32-bit

words. The 128-bit key is split into four 32-bit words to form the first four array entries.

Each remaining word is formed by XORing two previous words or by performing an S-Box

lookup on a previous word then XORing it with a constant and a previous word. The

following is pseudo code for the key schedule when using 128-bit keys. Refer to FIPS 197
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[NIS01b] for a general description of the key schedule that processes 128, 196 and 256-bit

keys.

• EK is the array of 32-bit words containing the expanded key.

• x is a word

• concat(a,b,c,d) indicates the concatenation of the inputs to form a single bit-string of

abcd.

• x <<< 8 means to rotate x to the left by 8 bits

• C is an array of constants.

• SubWord(x) applies the S-Box used in round function to each byte of the word x.

• C = [0x01000000,0x02000000,0x04000000,0x08000000,0x10000000,

0x20000000,0x40000000,0x80000000,0x1b000000,0x36000000]

/* Place the 128-bit key in the first 4 entries of EK */

for (i=0; i < 4; ++i) {

EK[i] = concat(K[4*i] K[4*i+1] K[4*i+2] K[4*i+3])

}

/* The first word of each remaining round key is formed from the XOR

of a S-Box entry, a constant and a previous word.

The second to fourth words of each remaining round key is the XOR

of two previous words. */

for (i=4; i < 44; ++i) {

x = EK[i-1]

if (i mod 4 == 0) {

x = SubWord((x <<< 8)) XOR C[i/4]

}

EK[i] = EK[i-4] XOR x

}
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Appendix D

Camellia

D.1 Encryption and Decryption

The following summarizes the Camellia block cipher [AIK+00]. The cipher is a Feistel

network with the addition of a function applied to each half of the data after every six

rounds, excluding the last round (thus the function is applied after the 6th and 12th rounds).

Eighteen rounds are used. The block size is 128 bits. There is initial and final whitening

(XOR with key bits).

Notation:

• Li and Ri denote the left and right halves of output, respectively, of the ith round.

i = 0 denotes the input to round 1.

• FL(x, kl) is a function taking input x and key material kl.

• FL−1(x, kl) is the inverse of FL.

• F (x, k) is a function taking 64 bits bit string x and 64 bits of key material k.

• k and kl denote subkeys from the expanded key material, with a subscript of i denoting

the ith component.

• ∪ is the bitwise OR operator.

• ∩ is the bitwise AND operator.
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• When a string of bytes is divided into individual bytes, the bytes are numbered from

left to right.

• <<< z is a left rotation by z bits.

• << z and >> z are shifts to the left and right, respectively, by z bits.

All rounds except for rounds 6 and 12 are defined by:

Li = Ri−1 ⊕ F (Li−1, ki)

Ri = Li−1

The input to round 1 has whitening applied first. The output of round 18 has whitening

applied.

The outputs of rounds 6 and 12 is defined by creating Li and Ri as in the other rounds

then applying the function FL to each:

Li = FL(Ri−1 ⊕ F (Li−1, ki), kl(2i/6)−1).

Ri = FL−1(Li−1, kl2i/6).

F Function:

The round funtion, F , is defined as: F (x, k) = P (S(x ⊕ k)), where S is a S-Box. P is

a function that XORs bytes of its 8-byte input to form an 8-byte output. The bytes of the

output are formed by XORing the following bytes of input:

Output Byte Input Bytes XORed

1 1,3,4,6,7,8

2 1,2,4,5,7,8

3 1,2,3,5,6,8

4 2,3,4,5,6,7

5 1,2,6,7,8

6 2,3,5,7,8

7 3,4,5,6,8

8 1,4,5,6,7

Table D.1: Camellia’s P Function



APPENDIX D. CAMELLIA 235

The substitution performed by S is done by viewing the data as 8 bytes and using one

of four S-Boxes, (S1, S2, S3, S4), on each byte. Bytes 1 and 8 have S1 applied, bytes 2 and

5 have S2 applied, bytes 3 and 6 have S3 applied, and bytes 4 and 7 have S4 applied. The

four S-Boxes are created from one S-Box as follows:

S =

[112,130, 44,236,179, 39,192,229,228,133, 87, 53,234, 12,174, 65,

35,239,107,147, 69, 25,165, 33,237, 14, 79, 78, 29,101,146,189,

134,184,175,143,124,235, 31,206, 62, 48,220, 95, 94,197, 11, 26,

166,225, 57,202,213, 71, 93, 61,217, 1, 90,214, 81, 86,108, 77,

139, 13,154,102,251,204,176, 45,116, 18, 43, 32,240,177,132,153,

223, 76,203,194, 52,126,118, 5,109,183,169, 49,209, 23, 4,215,

20, 88, 58, 97,222, 27, 17, 28, 50, 15,156, 22, 83, 24,242, 34,

254, 68,207,178,195,181,122,145, 36, 8,232,168, 96,252,105, 80,

170,208,160,125,161,137, 98,151, 84, 91, 30,149,224,255,100,210,

16,196, 0, 72,163,247,117,219,138, 3,230,218, 9, 63,221,148,

135, 92,131, 2,205, 74,144, 51,115,103,246,243,157,127,191,226,

82,155,216, 38,200, 55,198, 59,129,150,111, 75, 19,190, 99, 46,

233,121,167,140,159,110,188,142, 41,245,249,182, 47,253,180, 89,

120,152, 6,106,231, 70,113,186,212, 37,171, 66,136,162,141,250,

114, 7,185, 85,248,238,172, 10, 54, 73, 42,104, 60, 56,241,164,

64, 40,211,123,187,201, 67,193, 21,227,173,244,119,199,128,158]

For i = 0 to 255:

S1[i] = S[i]

S2[i] = (S[i] >> 7 XOR S[i] << 1) & 0xff

S3[i] = (S[i] >> 1 XOR S[i] << 7) & 0xff

S4[i] = S[((i) << 1 XOR i >> 7) & 0xff]

FL Function:

The FL function takes a 64-bit input and 64 bits of expanded-key bits. Let XL and
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XR denote the left and right halves of the input, respectively and YL and YR denote the

left and right halves of the output, respectively. Let klL and klR denote the left and right

halves of the 64 key bits.

FL is defined as:

YR = ((XL ∩ klL) <<< 1)⊕XR

YL = (YR ∪ klR)⊕XL

FL−1 is:

XL = (YR ∪ klR)⊕ YL

XR = ((XL ∩KLL) <<< 1)⊕ YR

D.2 Key Schedule

Camellia’s key schedule is defined as follows for 128-bit keys. Camellia also supports 192-bit

and 256-bit keys. Refer to Camellia’s specifications [AIK+00] for a full description. Let K

be the original 128-bit key. Encrypt K with two rounds of Camellia using constants as the

key. The first two constants are from Table D.2. XOR the result with K and encrypt it

two rounds using the third and fourth constants from the table. Call the result KA. The

constants values used for the round keys are:

Number Value

1 0xA09E667F3BCC908B

2 0xB67AE8584CAA73B2

3 0xC6EF372FE94F82BE

4 0x54FF53A5F1D36F1C

Table D.2: Camellia’s Constants Used in the Key Expansion for 128-bit Keys

The subkeys for the rounds and whitening are then created from K and KA as shown

in Table D.3. A subscript of L or R indicates the left or right 64 bits of a 128-bit value.

The number after ’F’ indicates the round.
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Key Value

initial whitening K

F 1 KAL

F 2 KAR

F 3 (K <<< 15)L

F 4 (K <<< 15)R

F 5 (KA <<< 15)L

F 6 (KA <<< 15)R

FL (KA <<< 30)L

FL−1 (KA <<< 30)R

F 7 (K <<< 45)L

F 8 (K <<< 45)R

F 9 (KA <<< 45)L

F 10 (K <<< 60)R

F 11 (KA <<< 60)L

F 12 (KA <<< 60)R

FL (K <<< 77)L

FL−1 (K <<< 77)R

F 13 (K <<< 94)L

F 14 (K <<< 94)R

F 15 (KA <<< 94)L

F 16 (KA <<< 94)R

F 17 (K <<< 111L

F 18 (K <<< 111)R

final whitening KA <<< 111

Table D.3: Camellia’s Key Expansion
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Appendix E

MISTY1

E.1 Encryption and Decryption

The following summarizes the MISTY1 block cipher [Mat97, Mat00a]. The cipher is a

Feistel network with the addition of a function applied to each half of the data at the

start of the odd numbered rounds, thus the round function differs between even and odd

numbered rounds. While the number of rounds is not fixed, eight rounds are recommended

[NES03]. The block size is 64 bits.

Notation:

• Li and Ri denote the left and right halves of output, respectively, of the ith round

after the halves are switched with i = 0 denoting the input to round 1.

• FL(x,KL) and F0(x,K0,KI) are functions taking bit string x and key material

KL,K0,KI.

• FLi and F0i denote the ith occurrence of FL and F0, respectively.

• KL,KI and K0 denote subkeys from the expanded-key material, with a subscript of

i denoting the ith component.

• ∪ is the bitwise OR operator.

• ∩ is the bitwise AND operator.
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The output of odd numbered rounds is defined by:

Ri = FLi(Li−1,KLi)

Li = FLi+1(Ri−1,KLi+1)⊕ F0i(Ri,K0i,KIi)

The output of even numbered rounds is defined by:

Ri = Li−1

Li = Ri−1 ⊕ F0i(Ri,K0i,KIi)

FL Function:

The FL function takes a 32-bit input and 32 bits of expanded-key bits. Let XL and XR

denote the left and right halves of the input, respectively. Let KLiL and KLiR denote the

left and right halves of the 32 key bits. The index i refers to the component.

YR = (XL ∩KLiL)⊕XR

YL = (YR ∪KLiR)⊕XL

The 32-bit output is YL||YR.

The inverse of FL is used in decryption and is defined by

XL = (YR ∪KLiR)⊕ YL

XR = (XL ∩KLiL)⊕ YR

The 32-bit output is XL||XR.

F0 Function:

The F0 function takes a 32-bit input, a 64-bit key and a 48-bit key (the keys are from

the expanded key bits). Let L0 and R0 denote the left and right halves of the input,

respectively. Let KOi be the 64-bit key and KIi be the 48-bit key. KOi and KIi are each

divided into 16-bit segments. KOij and KIij denote the jth 16-bit segment of KOi and

KIi, respectively.

For (j = 1; j <= 3;+ + j) {

Rj = FI(Lj−1 ⊕KOij ,KIij)⊕Rj−1

Lj = Rj−1

}

The value (L3 ⊕KOi4)||R3 is returned.
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FI Function:

The FI function is defined as follows:

It takes a 16-bit input, Xj , and a 16-bit key, KIij . Xj = L0(9)||R0(7) where (9) and (7)

indicates 9 and 7 bits, respectively. KIij = KIijL(7)||KIijR(9).

S7 and S9 are two S-Boxes mapping 7 and 9-bit inputs to 7 and 9-bit outputs, respec-

tively.

ZE(x) is a function that takes a 7-bit input, x and adds two 0’s as the most significant

bits.

TR(x) is a function that takes a 9-bit input, x, and discards the two most significant

bits.

L1(7) = R0(7)

R1(9) = S9(L0(9) ⊕ ZE(R0(7))

L2(9) = R1(9) ⊕KIijR(9)

R2(7) = S7(L1(7))⊕ TR(R1(9))⊕KIijL(7)

L3(7) = R2(7)

R3(9) = S9(L2(9))⊕ ZE(R2(7))

FI returns L3(7)||R3(9).

S-Boxes:

S7:

[

0x1b,0x32,0x33,0x5a,0x3b,0x10,0x17,0x54,0x5b,0x1a,0x72,0x73,0x6b,0x2c,

0x66,0x49,

0x1f,0x24,0x13,0x6c,0x37,0x2e,0x3f,0x4a,0x5d,0x0f,0x40,0x56,0x25,0x51,

0x1c,0x04,

0x0b,0x46,0x20,0x0d,0x7b,0x35,0x44,0x42,0x2b,0x1e,0x41,0x14,0x4b,0x79,

0x15,0x6f,

0x0e,0x55,0x09,0x36,0x74,0x0c,0x67,0x53,0x28,0x0a,0x7e,0x38,0x02,0x07,

0x60,0x29,

0x19,0x12,0x65,0x2f,0x30,0x39,0x08,0x68,0x5f,0x78,0x2a,0x4c,0x64,0x45,

0x75,0x3d,
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0x59,0x48,0x03,0x57,0x7c,0x4f,0x62,0x3c,0x1d,0x21,0x5e,0x27,0x6a,0x70,

0x4d,0x3a,

0x01,0x6d,0x6e,0x63,0x18,0x77,0x23,0x05,0x26,0x76,0x00,0x31,0x2d,0x7a,

0x7f,0x61,

0x50,0x22,0x11,0x06,0x47,0x16,0x52,0x4e,0x71,0x3e,0x69,0x43,0x34,0x5c,

0x58,0x7d]

S9:

[

0x1c3,0x0cb,0x153,0x19f,0x1e3,0x0e9,0x0fb,0x035,0x181,0x0b9,0x117,0x1eb,

0x133,0x009,0x02d,0x0d3,

0x0c7,0x14a,0x037,0x07e,0x0eb,0x164,0x193,0x1d8,0x0a3,0x11e,0x055,0x02c,

0x01d, 0x1a2, 0x163, 0x118,

0x14b,0x152,0x1d2,0x00f,0x02b,0x030,0x13a,0x0e5,0x111,0x138,0x18e,0x063,

0x0e3,0x0c8,0x1f4,0x01b,

0x001,0x09d,0x0f8,0x1a0,0x16d,0x1f3,0x01c,0x146,0x07d,0x0d1,0x082,0x1ea,

0x183,0x12d,0x0f4,0x19e,

0x1d3,0x0dd,0x1e2,0x128,0x1e0,0x0ec,0x059,0x091,0x011,0x12f,0x026,0x0dc,

0x0b0,0x18c,0x10f,0x1f7,

0x0e7,0x16c,0x0b6,0x0f9,0x0d8,0x151,0x101,0x14c,0x103,0x0b8,0x154,0x12b,

0x1ae,0x017,0x071,0x00c,

0x047,0x058,0x07f,0x1a4,0x134,0x129,0x084,0x15d,0x19d,0x1b2,0x1a3,0x048,

0x07c,0x051,0x1ca,0x023,

0x13d,0x1a7,0x165,0x03b,0x042,0x0da,0x192,0x0ce,0x0c1,0x06b,0x09f,0x1f1,

0x12c,0x184,0x0fa,0x196,

0x1e1,0x169,0x17d,0x031,0x180,0x10a,0x094,0x1da,0x186,0x13e,0x11c,0x060,

0x175,0x1cf,0x067,0x119,

0x065,0x068,0x099,0x150,0x008,0x007,0x17c,0x0b7,0x024,0x019,0x0de,0x127,

0x0db,0x0e4,0x1a9,0x052,

0x109,0x090,0x19c,0x1c1,0x028,0x1b3,0x135,0x16a,0x176,0x0df,0x1e5,0x188,

0x0c5,0x16e,0x1de,0x1b1,
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0x0c3,0x1df,0x036,0x0ee,0x1ee,0x0f0,0x093,0x049,0x09a,0x1b6,0x069,0x081,

0x125,0x00b,0x05e,0x0b4,

0x149,0x1c7,0x174,0x03e,0x13b,0x1b7,0x08e,0x1c6,0x0ae,0x010,0x095,0x1ef,

0x04e,0x0f2,0x1fd,0x085,

0x0fd,0x0f6,0x0a0,0x16f,0x083,0x08a,0x156,0x09b,0x13c,0x107,0x167,0x098,

0x1d0,0x1e9,0x003,0x1fe,

0x0bd,0x122,0x089,0x0d2,0x18f,0x012,0x033,0x06a,0x142,0x0ed,0x170,0x11b,

0x0e2,0x14f,0x158,0x131,

0x147,0x05d,0x113,0x1cd,0x079,0x161,0x1a5,0x179,0x09e,0x1b4,0x0cc,0x022,

0x132,0x01a,0x0e8,0x004,

0x187,0x1ed,0x197,0x039,0x1bf,0x1d7,0x027,0x18b,0x0c6,0x09c,0x0d0,0x14e,

0x06c,0x034,0x1f2,0x06e,

0x0ca,0x025,0x0ba,0x191,0x0fe,0x013,0x106,0x02f,0x1ad,0x172,0x1db,0x0c0,

0x10b,0x1d6,0x0f5,0x1ec,

0x10d,0x076,0x114,0x1ab,0x075,0x10c,0x1e4,0x159,0x054,0x11f,0x04b,0x0c4,

0x1be,0x0f7,0x029,0x0a4,

0x00e,0x1f0,0x077,0x04d,0x17a,0x086,0x08b,0x0b3,0x171,0x0bf,0x10e,0x104,

0x097,0x15b,0x160,0x168,

0x0d7,0x0bb,0x066,0x1ce,0x0fc,0x092,0x1c5,0x06f,0x016,0x04a,0x0a1,0x139,

0x0af,0x0f1,0x190,0x00a,

0x1aa,0x143,0x17b,0x056,0x18d,0x166,0x0d4,0x1fb,0x14d,0x194,0x19a,0x087,

0x1f8,0x123,0x0a7,0x1b8,

0x141,0x03c,0x1f9,0x140,0x02a,0x155,0x11a,0x1a1,0x198,0x0d5,0x126,0x1af,

0x061,0x12e,0x157,0x1dc,

0x072,0x18a,0x0aa,0x096,0x115,0x0ef,0x045,0x07b,0x08d,0x145,0x053,0x05f,

0x178,0x0b2,0x02e,0x020,

0x1d5,0x03f,0x1c9,0x1e7,0x1ac,0x044,0x038,0x014,0x0b1,0x16b,0x0ab,0x0b5,

0x05a,0x182,0x1c8,0x1d4,

0x018,0x177,0x064,0x0cf,0x06d,0x100,0x199,0x130,0x15a,0x005,0x120,0x1bb,

0x1bd,0x0e0,0x04f,0x0d6,
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0x13f,0x1c4,0x12a,0x015,0x006,0x0ff,0x19b,0x0a6,0x043,0x088,0x050,0x15f,

0x1e8,0x121,0x073,0x17e,

0x0bc,0x0c2,0x0c9,0x173,0x189,0x1f5,0x074,0x1cc,0x1e6,0x1a8,0x195,0x01f,

0x041,0x00d,0x1ba,0x032,

0x03d,0x1d1,0x080,0x0a8,0x057,0x1b9,0x162,0x148,0x0d9,0x105,0x062,0x07a,

0x021,0x1ff,0x112,0x108,

0x1c0,0x0a9,0x11d,0x1b0,0x1a6,0x0cd,0x0f3,0x05c,0x102,0x05b,0x1d9,0x144,

0x1f6,0x0ad,0x0a5,0x03a,

0x1cb,0x136,0x17f,0x046,0x0e1,0x01e,0x1dd,0x0e6,0x137,0x1fa,0x185,0x08c,

0x08f,0x040,0x1b5,0x0be,

0x078,0x000,0x0ac,0x110,0x15e,0x124,0x002,0x1bc,0x0a2,0x0ea,0x070,0x1fc,

0x116,0x15c,0x04c,0x1c2]

E.2 Key Schedule

MISTY1’s key schedule is defined as follows:

One 128-bit key is divided into eight 16-bit values. Let Ki be the ith 16-bit portion. In

the following, i = i − 8 for i > 8. Create eight 16-bit values using the Ki’s and the FI

function: K ′
i = FI(Ki,Ki+1) with K8+1 set to K1.

KOi1 = Ki

KOi2 = Ki+2

KOi3 = Ki+7

KOi4 = Ki+4

KIi1 = K ′
i+5

KIi2 = K ′
i+1

KIi3 = K ′
i+3

KLiL = K(i+1)/2 when i is odd and K ′
i/2+2 when i is even.

KLiR = K ′
(i+1)/2+6 when i is odd and Ki/2+4 when i is even.
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Appendix F

RC6

F.1 Encryption and Decryption

RC6 [RRSY98] is defined to operate on blocks of size 4w where w is the word size, and

where the key size and number of rounds are parameters. The following is a description

of RC6’s encryption function when operating on 128-bit blocks (w = 32) and 128-bit keys

with 20 rounds. The 128-bit block of data is broken into four 32-bit words. These will be

referred to as A,B,C and D. The number of rounds is indicated by r. The array, S, contains

the expanded key. Each entry is a 32-bit word. x <<< y means to rotate x to the left by y.

The rotation amount is log2(w), which is 5 for 128-bit blocks. All arithmetic is performed

modulo 2w unless otherwise noted.

When encrypting, the B and D portions have key material added to them. They are

then used to create the values t and u, which are XORed with the A and C portions, and

as the amount to rotate A and C. The new A and C values then have key material added

to them. At the end of the round, the A,C portions are swapped with the B, D portions

by rotating the entire block one word. After the last round, the A and C portions have key

material added to them. Decryption reverses the operations of the encryption function.

RC6’s Encryption Function:

B = B + S[0]

D = D + S[1]
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for (i=0; i < 20; ++i) {

t = (B * (2*B+1)) <<< 5

u = (D * (2*D+1)) <<< 5

A = ((A XOR t) <<< u) + S[2i]

C = ((C XOR u) <<< t) + S[2i+1]

(A,B,C,D) = (B,C,D,A)

}

A = A + S[2r+2]

C = C + S[2r+3]

RC6’s Decryption Function:

A = A - S[2r+3]

C = C - S[2r+2]

for (i=0; i < 20; ++i) {

(A,B,C,D) = (D,A,B,C)

t = (B * (2*B+1)) <<< 5

u = (D * (2*D+1)) <<< 5

A = ((A - S[2i]) >>> u) XOR t

C = ((C - S[2i+1]) >>> t) XOR u

}

B = B - S[0]

D = D - S[1]

F.2 Key Schedule

When using 32-bit words, a 4c-byte key is loaded into an array of words, L[0, ... c-1]. The

32-bit round keys are placed in the array S[0, ... 2r+3], where r is the number of rounds

and is set to 20 within the scope of this work.

For w = 32, Pw = B7E15163 and Qw = 9E3779B9
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S[0] = Pw

for (i=0; i <= 2r+3; ++i) {

S[i] = S[i-1] + Qw

}

a = b = i = j = 0

v = 3*max{c,2r+4}

for (s = 0; s <= v; ++s) {

S[i] = (S[i] + a + b) <<< 3

a = S[i]

L[j] = (L[j] + a + b) <<< (a+b)

b = L[j]

i = (i+1) mod (2r+4)

j = (j+1) mod c

}

Note: The Pw and Qw values are described as ”somewhat arbitrary, and other values

could be chosen to given ’custom’ or proprietary versions of RC6” in the specification of

RC6 [RRSY98].
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Appendix G

RC4

The following is pseudo code for RC4 [Riv96]. The secret key is contained in the 256-byte

array K. S is a 256-byte array initialized with values 0 to 255. len is the number of key

stream bytes needed.

/* Initialize S */

for (i=0; i < 256; ++i) {

S[i] = i

}

/* Incorporate K into S */

j = 0

for (i = 0; i < 256; ++i) {

j = (j + S[i] + K[i]) mod 256

swap(S[i],S[j])

}

/* Generate the key stream */

i = 0

j = 0

cnt = 0

while (cnt < len) {
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i = (i + 1) mod 256

j = (j + S[i]) mod 256

swap(S[i],S[j])

/* output a byte to the key stream */

output(S[(S[i] + S[j]) mod 256])

cnt = cnt + 1

}


