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SUMMARY

Network infrastructure is an important component of malicious cyber operations. From

novice attacks conducted by script kiddies to highly sophisticated threats backed by nation-

states, network infrastructure is being utilized for command and control, data exfiltration,

malware hosting, and social engineering, among others. Over the years, while there have

been several studies that have focused on detecting, blocking, and characterizing malicious

infrastructure, the temporal dynamics of how this infrastructure changes over time and the

characteristics of the stakeholders interacting with it have often been overlooked. This the-

sis shows that the temporal analysis of malicious infrastructure reveals network attributes

that can characterize the stakeholders that interact with it. The systematic analysis of such

network attributes can aid the accurate discovery of previously unreported malicious in-

frastructure and increase our awareness of the behaviors of the stakeholders that interact

with it.

Through longitudinal empirical studies and novel methodologies, this thesis demon-

strates the importance of accounting for the temporal dynamics of malicious network in-

frastructure. Specifically, it introduces a novel methodology that accurately identifies his-

torically utilized IP infrastructure from domain names of sophisticated threats, which ex-

pands the publicly reported IP knowledge by 3.06 times. It also showcases how the tempo-

ral analysis of malicious network infrastructure can help threat analysts and security prac-

titioners better understand the quantitative distributions of the network interactions of the

stakeholders (i.e., scanners, security vendors, victims, and threat actors). More precisely,

this thesis pinpoints the minimum network log retention window for uncovering at least

90% of the infrastructure of sophisticated attacks down to 25 months and characterizes for

the first time the lifecycle of network requests into malware-related domain names from the

upper DNS hierarchy. These insights have applicable takeaways for log retention policies

for network data and victim and infrastructure analysis studies using DNS datasets.

xvi



CHAPTER 1

INTRODUCTION

1.1 Introduction

Cyberattacks rely heavily on network infrastructure in order to be successful. From the

early days of Back Orifice and Netbus, [1] to the SolarWinds supply chain attack [2], net-

work infrastructure is pivotal to facilitate key objectives of many cyberattacks, such as

remote access, command and control (C2), hosting of malicious and phishing content, and

data exfiltration. Phishing pages [3], malware C2s [4], proxy nodes [5, 6], and reconnais-

sance scanners [7] are common ways that malicious threat actors choose to use network

infrastructure for the conduct of cyberattacks. This network infrastructure is usually com-

prised of servers and computers that are purchased, leased, or even hacked by malicious

threat actors and can span multiple geographies, even in the course of a single attack.

During or after the identification or exposure of cyberattacks, researchers and forensic

analysts conduct investigations in order to understand the breadth and depth of such at-

tacks, to block and sanitize infrastructure, and often in cases of large or targeted attacks,

to identify their source (attribution). Such forensic investigations often uncover new attack

infrastructure [8] or unveil new findings regarding the velocity of such attacks [9] and the

timeliness of the security response against certain threats and types of attacks [10, 11]. The

results of such analyses enable more comprehensive cyberattack responses, offer a better

understanding of the lag and the gaps of the security community, and deduce where more

resources need to be invested.

Despite their usefulness, conducting such analyses and investigations is significantly

challenging. Researchers and analysts often need to have access to historical datasets that

provide sufficient coverage of the threats they are investigating, while at the same time,
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they need to understand the limitations and biases that these datasets introduce in order to

come to accurate conclusions. Additionally, the introduction of new network protocols and

changes to existing policies can reduce the value of previously important methodologies

and datasets (e.g., WHOIS with the adoption of GDPR [12] or below the recursive DNS

visibility with the adoption of DNS over HTTPS (DoH [13])). Furthermore, network ana-

lysts face the additional challenge that the association of network infrastructure with mali-

cious threat actors is often transitory, and further analysis is usually needed to pinpoint the

time window that the threat actors likely used it. Acknowledging these challenges, previous

measurement studies of malicious infrastructure have provided significant insights for the

security community, however, they have mainly focused on studying particular malware

threats [9, 14, 11], certain types of attacks and targets [10, 15, 16], or had visibility into

only certain parts of the infection lifecycle [17]. More importantly, despite the plethora

of prior works, not enough emphasis has been given to understanding the temporal dy-

namics of malicious network infrastructure with the key stakeholders that interact with it

(i.e., malicious threat actors, cyberattack victims, researchers, security professionals, and

scanners). This dissertation characterizes the lifecycle of malicious network infrastructure

through three longitudinal measurement studies, with an emphasis on understanding the

interactions of the malicious threat actors with it and discovering the time window it was

first provisioned and utilized in cyberattacks.

In order to narrow this gap between prior work and the challenges of measuring impor-

tant aspects of malicious infrastructure, in our first work, we conduct the first large-scale

analysis of the malware ecosystem through the lens of an understudied vantage point, that

of Authoritative DNS (AuthDNS) of a popular domain name registrar. This vantage point

exhibits unique advantages that are lacking from other commonly used datasets or previous

studies. AuthDNS features a wide and geographically diverse malware hosting and infec-

tion visibility, a full temporal view of malicious domains from registration to detection and

post-takedown, while retaining DoH and DoT request visibility as it is placed above the
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recursive. Utilizing this vantage point, we observe malware heterogeneity (202 families),

global infrastructure (399,830 IPs in 151 countries), and infection (40,937 querying Au-

tonomous Systems (ASes)) visibility, as well as breadth of temporal coverage (2017–2021).

Our analysis reveals that malware communications are temporally sensitive: over 90% of

ASes first query a malicious domain after public detection, and a median of 38.6% ASes

only query after domain expiration or takedown, highlighting that client infection estima-

tion studies need to account for non-victim traffic on every phase of the malware lifecy-

cle. This highlights that forensic analysts conducting infection estimation tasks need to

be aware of scanners and security vendors, mainly after public detection. To fit AuthDNS

into the broader context of malware research and forensic analysis, we compare AuthDNS

with other vantage points on four qualitative aspects and discuss their advantages and lim-

itations. Ultimately, we establish AuthDNS as a unique and valuable measurement and

analysis perspective that enables a wide-reaching view of historic and emerging threats of

the malware ecosystem.

While the AuthDNS study has provided us with a wide and high-level view of the global

malware infection lifecycle and the interactions of various stakeholders with it, it did not

provide insights into how malicious threat actors interact with their infrastructure through-

out their operations. A more in-depth look at such interactions is critical for both forensic

analysts and researchers because they can lead to insights that could enable more timely

responses and a better understanding of the attacker’s incentives and operations. To answer

such questions, we collaborated with Malbeacon[18], a threat intelligence company, and

analyzed the activities of Password Stealers (Stealers). Stealers is a leading source for

gathering stolen credentials, which are heavily being used in modern cyberattacks [19].

Malbeacon tracks the interactions of cybercriminals with their C2 panels, offering visibil-

ity on the operators’ HTTP requests with their infrastructure. In this work, we conduct the

first longitudinal study of Stealers and their operators spanning over 20 months and 4,500

operator devices. We find that operators heavily use proxies, including traditional VPNs,
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residential proxies, mobile proxies, and the Tor network, when managing their botnet. We

find that on average, public blocklists detect Stealer domains 74 days after the initial regis-

tration, with a median of 11 days, while almost 70% of the operators stop accessing their

panels within a month of the first public detection. This detection gap gives Stealers ample

time to infect and harvest credentials from various networks highlighting that the security

community needs to invest more resources in more promptly addressing such threats as it

has a significant impact on the continuation of their operations.

While the aforementioned works have provided us with unique insights into the tem-

poral behavior of malware communications as well as a deeper understanding of the net-

work modus-operandi of malicious threat actors, they have only partly characterized the

infrastructure lifecycle, as they have mainly focused on communications towards the in-

frastructure servers –targeting– and the interactions of the actors with their servers while

their operations were active on certain threats. As we have previously discussed, one of the

major problems analysts face is that they often have to manually investigate when malicious

infrastructure has been active, which has been regarded as ”a manual and time-consuming

process” in prior work [20]. One of the leading reasons behind this is that Indicators of

Compromise (IoC), among which are malicious infrastructure such as domain names and

IPs, are usually shared in bulk without much or any temporal context and thus require man-

ual inspection. However, this temporal context can enable several capabilities for analysis

such as: identifying how long different actors take to provision infrastructure, identify-

ing unknown historical infrastructure that was not mentioned publicly, and measuring the

security response post-identification of a threat. To this end, we propose Atropos, a novel

supervised learning system that automatically and accurately discovers the actor-controlled

infrastructure and active window of historical domain names based on publicly available

datasets. We apply Atropos, to over 31.000 domains of Advanced Persistent Threat (APT)

attacks, which are particularly hard to detect [21]. Atropos increases our knowledge of the

APT IP infrastructure by 3.06 times, compared to that of public threat reports. We evaluate
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Atropos on two expert-labeled datasets and find it to be highly accurate, with a mean 10-

fold cross-validation accuracy of 98.90%, and robust against practical adversarial attacks.

Utilizing the discovered infrastructure that Atropos provides, we conduct the largest APT

infrastructure characterization study to date, spanning over a decade. We find that APT

actors reuse the same networks across multiple years, they frequently utilize infrastructure

that is close to their targets, and APT attacks take on average 317 days to be reported from

the first day of attack infrastructure provisioning. Finally, we recommend network opera-

tors retain network traffic logs for at least 19 months, to improve to probability of detection

for the majority of an APT infection infrastructure.

Through our longitudinal empirical studies and our proposed methodologies, we demon-

strate the importance of taking into account the temporal dynamics of malicious network

infrastructure. We are the first to present a methodology that accurately identifies histori-

cally utilized IP infrastructure from domain names of sophisticated threats and expands the

publicly reported IP knowledge by 3.06 times. We also showcase how taking the tempo-

ral dynamics of malicious infrastructure into consideration, can help us better understand

the quantitative distributions of the network interactions of the stakeholders (i.e., DNS

scanners, security vendors, victims, and threat actors), which give us important takeaways

regarding how long threat actors utilize their infrastructure, how long before the public

reporting of an attack they provision their IP addresses and how victim analysis utilizing

DNS datasets could be impacted.

1.2 Thesis Statement

The systematic characterization of malicious network infrastructure in historical network

datasets by taking into account its temporal dynamics increases our understanding of the

network communications of the stakeholders that interact with it and enables a more com-

prehensive identification of sophisticated attack infrastructure. Specifically, this thesis

demonstrates (1) a novel methodology that enables the accurate discovery of over 3 times
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more IP addresses that are associated with the activities of sophisticated threat actors com-

pared to those that are publicly reported and (2) pinpoints the minimum network log reten-

tion window for uncovering at least 90% of the infrastructure of sophisticated attacks down

to 25 months.

1.3 Contributions

The first large-scale characterization of the lifecycle and infrastructure of malware-

related domain names from the upper DNS hierarchy. Utilizing a longitudinal dataset

from a popular DNS registrar spanning four years and 12,212 registered domains hosting

202 unique malware families, we measured the lifecycle of the networks that have his-

torically queried these domain names. While malware hosting domain names are mainly

distributed among countries with large hosting providers, the distribution of the clients

querying them is much wider, with 71.3% of the malware families hosted in such domains

being queried by over 100 countries. Our lifecycle analysis unveils that on the median mal-

ware hosting domain name, 54.5% and 62.5% of the unique Autonomous Systems (ASes)

and countries, respectively, will first be observed after its detection. Even more alarmingly,

38.6% of the unique ASes will be first observed after take-down or expiration highlight-

ing the importance of the discovery of DNS scanners and security vendors – interacting

with such domains after detection – towards the accurate estimation of potentially infected

populations querying such domain names.

The first quantification of the lifecycle of the interactions of cybercriminals with

their password-stealing management infrastructure. By collaborating with a security

vendor, we were able to study the lifecycle of the interactions of cybercriminals with their

infrastructure that manages infected victims of password-stealing malware. We find that

cybercriminals provision their infrastructure fast, within two weeks after registration, but it

takes on average 64 days for the security community to detect them. Our lifecycle analysis

indicates that 69.03% of the cybercriminals operators stop accessing their management
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infrastructure within 30 days of detection, highlighting how important such an event is to

curb the operations of cybercriminals. We suggest that the community should frequently

scan known domain names and IPs for the appearance of such infrastructure panels in order

to reduce the 64-day lag of detection.

The first system that accurately identifies and contextualizes new IP infrastructure

associated with sophisticated cyber actors that is not publicly reported. We developed

a new system, which we call Atropos, that combines historical DNS logs and threat report

information to identify new, unreported IP infrastructure of known domain names of Ad-

vanced Persistent Threats (APTs) and contextualizes their lifecycle. We deploy Atropos

on a dataset of 31,398 APT domain names and over 120 million DNS records spanning

over a decade from April 2013 to January 2025. Atropos is able to accurately uncover

3.06 more IP addresses related to known APT domain names, compared to those publicly

shared on APT reports, and achieves an accuracy of over 91.00% in two evaluation datasets.

Additionally, Atropos can characterize and contextualize the lifecycle of three times more

domain names than those that can be characterized only with the infrastructure publicly

provided in threat reports.

The first large-scale characterization of the lifecycle and infrastructure of sophis-

ticated cyber actors. Utilizing the network infrastructure provided in public threat re-

ports and that which our novel system, Atropos, provides, we conduct the largest and most

comprehensive APT infrastructure analysis to date, spanning over a decade and 405 APT

actors. We quantify the time window during which organizations need to keep network

logs to identify the vast majority of the infrastructure of an APT attack. Our results show

that the network logs should be preserved for at least 19 to 25 months. Furthermore, we

find that while APT actors utilize a plethora of different hosting providers, they only re-use

a small portion of them, and that over the years, the use of cloud-fronting has increased

significantly. These findings verify expert knowledge [22] and make network forensics and

attribution harder.
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1.4 Dissertation Overview

The remainder of this dissertation is organized as follows. Chapter 2 presents the back-

ground and foundational previous work that contextualizes the concepts and ideas de-

scribed in the next sections. Chapter 3 presents the characterization of the infrastructure

and lifecycle of malware-hosting domain names. It describes the methodology we utilized

to identify domain names related to malware, exposes the difference between the infras-

tructure that hosts these domain names and the infrastructure querying them, and lastly

characterizes the distribution of the querying networks across the lifecycle of each malware

domain name. In Chapter 4, we describe our empirical analysis and characterization of the

interactions of cybercriminals with the management infrastructure of password-stealing

operations. We detail the HTTP dataset as well as the merging methodology we utilize

to identify operator devices, and we characterize both the infrastructure and the lifecycle

of these operators across a period of 20 months. Chapter 5 details our novel tool, Atro-

pos, which accurately expands the IP infrastructure of known APT actors by a factor of

3.06. Additionally, we present the largest infrastructure characterization study of APT ac-

tors to date, spanning over a decade and 405 APT actors. Lastly, Chapter 6 concludes the

thesis, summarizing the contributions, detailing the limitations of the presented work, and

presenting to the reader the closing remarks.
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CHAPTER 2

BACKGROUND AND PREVIOUS WORK

2.1 Background

2.1.1 Malicious Network Infrastructure

Since the early days of Back Orifice and Netbus, [1], the network has played a pivotal role

in the successful conduct of cyberattacks. Network and Internet access is what enables

remote access tools and malware to be controlled by their operators[23], worms to spread

and infect other computers[24], and distributed denial of service (DDoS) attacks to be

effective in taking down critical infrastructure [9].

The hourglass model design of the Internet emphasizes the role of Internet Protocol

(IP) addresses in network communications, and as such, their importance towards network

security. IP addresses characterize the network infrastructure that malicious threat actors

utilize for a plethora of important tasks, from reconnaissance (e.g., scanning for poten-

tial victims) to command and control (C2) of their infected bots, exfiltration of sensitive

information, hosting social engineering, and luring content, down to simple access to the

Internet. As such, IP addresses have become an important staple of network defense that

is often used to blocklist but also characterize all of the aforementioned kinds of malicious

network infrastructure.

Despite their importance, IP addresses lack dynamicity and human interpretability. The

Domain Name System (DNS), often regarded as the phonebook of the Internet, maps IP

addresses to human-understandable domain names (e.g., google.com), but also offers the

ability to dynamically change the IP addresses that map to a domain name. This capability

has been widely utilized by malicious threat actors who choose to utilize domain names to

dynamically change their pool of IP addresses and make their operations more resistant to
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IP blocklists. Additionally, it has opened new doors of abuse and evasion, with threat actors

depending on the similarity of their utilized domain names with those of popular legitimate

domain names in order to trick unsuspected victims into visiting their malicious infrastruc-

ture and threat analysts to ignore it during investigations. Due to their popularity among

cyber attacks, domain names are also an important and common indicator in network de-

fense that is being used to blocklist and characterize malicious network infrastructure.

The rise of web browsers and web content made even more specific indicators important

for the Internet, but also for cybercriminals. The Uniform Resource Locator (URL) is a key

mechanism that is used to retrieve specific content from IP addresses and domain names.

A URL is a unique indicator that is used to refer to specific content of a network address

(e.g., an image or a script of a website). In cybersecurity, URLs are also major indicators of

malicious network infrastructure that is being used to refer to specific malicious or social

engineering content ”under” a website, with phishing detection and blocklisting usually

heavily relying on URL blocklists. Cybercriminals also usually surgically compromise

and insert malicious content in specific URLs of otherwise benign domain names and web

pages [25, 26], abusing their residual trust.

All three aforementioned indicator types of malicious network infrastructure: IP ad-

dresses, domain names, and URLs, are highly important for daily cybersecurity tasks, such

as blocking malicious traffic in firewalls, identifying and taking down the source of infec-

tions [27], and detecting new sources of abuse. Their importance to network security is also

demonstrated by the fact that they are the three most popular shared network indicators in

malicious threat reports [28], which are frequently being used by security practitioners to

bolster the network defenses and expand our understanding of security threats. This disser-

tation explores and characterizes the malicious network infrastructure utilizing these three

key indicator types.
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Figure 2.1: The hierarchy of the Domain Name System (DNS). The different vantage points
of DNS have often been utilized as measurement planes to study the Internet as well as its
security.

2.1.2 The Domain Name System (DNS) Hierarchy

The domain name system (DNS) [29] is one of the core components of the Internet. DNS

translates semantic domain names that offer more context and are more memorable to In-

ternet users into IP addresses, making it a useful data source for observing Internet commu-

nication. For more details and a broader view of DNS, we refer the reader to [30, 31], and

in this section, we will focus on the DNS hierarchy to provide a background of the DNS

vantage points that have been utilized in this dissertation.

The structure of the domain name system is hierarchical and can be summarized in the

illustration of Figure Figure 2.1. At the bottom of the hierarchy of DNS(Client Level), we

find endpoints often referred to as clients, which are individual computers and servers that

issue DNS requests in order to get the IP address of a server they want to visit. These clients

can belong to different networks and Internet Service Providers (ISPs) that are distributed

around individual countries and the world. The DNS requests of these clients typically

reach the next level of the hierarchy, which is the DNS recursives. The DNS recursives

are tasked to find and ask the relevant DNS nameservers in order to get an answer for the
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domain names that the clients have asked them. DNS recursives can be grouped into two

categories, as showcased in Figure Figure 2.1. Local recursives are typically DNS recur-

sives that exist either on the same or a nearby network of the clients that issue the DNS

requests (e.g., the DNS recursive of the ISP of the clients). Global or public recursives

typically exist outside of the network of the querying clients and can be set up to be the

preferred recursives of the users or be utilized by specific software (e.g., Google DNS in

Chrome browsers). The visibility of local and global recursives in querying clients is obvi-

ously different, as the local recursives will have a narrower breadth that is limited mainly

to the clients that exist on the same network or ISP, while global and public recursives can

have visibility into any client that chooses to query them. Assuming that DNS recursives

do not know the answer to the DNS question that the querying clients have asked them

(due to DNS caching), they will then ask the root DNS servers that exist at the top of the

hierarchy. The root DNS servers typically will not have the answer for such granular in-

formation and will therefore redirect the DNS recursives to the TLD nameservers. The

TLD nameservers have a narrow scope of knowing the authoritative DNS nameservers of

the zone (i.e., TLD) they serve. Next, the TLD nameservers will again redirect the DNS

recursive to the authoritative DNS server that has the answer for the individual domain

names that the querying clients have asked for. The authoritative DNS nameservers can be

either big nameservers of DNS registrars or DNS management services (e.g., Namecheap

or CloudFlare), or custom nameservers that the owners of the domain names can choose

to provision. Big authoritative nameservers like DNS registrars can have access to all the

domain names of the users that utilize them (e.g., all domain names registered in a DNS

registrar and not moved to another authoritative DNS server), while smaller custom au-

thorities will only have limited visibility to the domain names that exist in their ”zone”.

During this dissertation, we utilize DNS datasets from both the authoritative DNS servers

of a popular DNS registrar (i.e., in chapter 3) and that of a local recursive DNS scanner (i.e.,

ActiveDNS [32] in chapter 5) that scans millions of domain names of over 1,100 gTLDs
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every day. In chapter 3 and chapter 5 we discuss how these different DNS vantage points

offer us adequate and even more comprehensive DNS visibility compared to prior work in

order to study the lifecycle of malicious infrastructure.

2.2 Previous Work

2.2.1 Domain Name Lifecycle and Characterization

Table 2.1: Methodologies and systems characterizing the lifecycle of malicious domain
names. Atropos, presented in chapter 5, is the first methodology to historically identify the
likely attack-utilized IP addresses of known malicious domain names.

Prior Work Is Historically Applicable Characterizes Individual IPs

Lever [33] ✓ -
Affinito [34] ✓ -
LLoyd [35] - ✓

Sebastian [36] - -

Atropos ✓ ✓

Understanding the lifecycle of domain names has been the subject of prior works in the

security and measurement community. Lever et al.[33] offered an alternative to WHOIS

and tried to identify domain ownership changes using Alembic, a lightweight algorithm that

utilized passive DNS data. However, their methodology was aimed at identifying changes

of ownership and not the utilized IP infrastructure of malicious domains. Affinito et al.

[34] studied the lifecycle of domains and malicious domains in blocklists utilizing zone file

data and, similarly to Lever, developed a methodology to bound the lifecycles of domain

names, but not to label their infrastructure. Lloyd et. al. [35] developed a methodology

to classify domain names as ”active”, ”no-IP”, or ”inactive”, with an aim to find domain

names serving content under the registrant’s control. However, this methodology is not ap-

plicable to historically malicious domain names and mainly relies on parking infrastructure

lists that are not sufficient to incorporate unknown parking IPs and sinkhole IPs that some

malicious domain names are usually pointed at after detection. Sebastian et al. developed
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an automated approach to attribute domain names to their most likely owner [36], however,

this work did not classify the IP infrastructure associated with a domain name. In this the-

sis, in chapter 5 we present the first methodology that identifies the IP infrastructure and

the time window in which historically reported malicious domain names of APT attacks

were most likely provisioned and utilized.

2.2.2 Malware and Upper DNS Hierarchy Infrastructure Characterization Studies

Prior works using passive authoritative DNS data have focused on detection and measure-

ment in the upper DNS hierarchy. Antonakakis et. al., [37] proposed Kopis, a supervised

learning system that passively monitors domain names in the upper DNS hierarchy and

detects malware-related domain names. Thomas et al., [38] analyzed the DNS traffic of

several TLD nameservers and identified strongly connected components related to mal-

ware domain names. Hao et. al., [39] studied the initial DNS requests of malicious domain

names and found that most domain names are involved in attacks shortly after registration.

However, none of these studies focused on characterizing the malware infrastructure of

diverse malware across the years.

Other studies have focused on characterizing malware-related domain names and their

network infrastructure, utilizing recursive, sinkhole, and endpoint agent vantage points.

Lever et. al., [40] studied the infrastructure of 26.8 million malware samples and found

malware to re-use IP infrastructure. Kotzias et. al., [41] studied the impact of different

malware on over 28 thousand enterprises for nearly three years. Rezaeirad et. al., [17]

profiled the stakeholders visiting malware infrastructure after sinkholing, and identified

that 99% of the IP addresses are not victim-related. However, none of these works explored

the communications of malware infrastructure in an end-to-end lifecycle perspective from

registration to post-takedown. In chapter 3, we present such an analysis that is not limited

by these shortcomings, and we complement the contributions of all the prior works by

utilizing the perspective of a popular DNS registrar.
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2.2.3 Cybercrime and Threat Actor Characterization Studies

Several studies have analyzed different cybercrime operations and their actors in order

to understand their incentives. These cybercrimes include pharmaceutical spam [42, 43],

spam botnets [44], spam life-cycle [10], targeted attacks [15], click-fraud bots [45], ran-

somware [46], and RATs [14]. Moreover, prior work [47] has explored cybercrime business

relationships and their collaboration. Franklin et al [48] investigated the financial aspect

of cybercrime by analyzing transactions on IRC servers. Studying cybercrime operators

requires various techniques that include honeypots [49], internet-wide scanning [17, 16],

seizing malware infrastructure [50, 44, 51], tracking underground activities [52, 53], ana-

lyzing recovered credentials [54], and a combination of diverse data sources [47, 40]. Other

works relied on honey tokens to study URL shortening services [55], email typosquat-

ting [56], social media manipulation [57], detect intrusions [58, 59], and vet malicious

browser extensions [60]. While these works provide a valuable perspective into cyber-

crime tactics, However, they have not thoroughly investigated how cybercriminals manage

and operate password-stealing campaigns. In chapter 4, we present the first large-scale

characterization of password-stealing operations, emphasizing the temporal dynamics of

the operator’s interactions with their botnet management panels.

2.2.4 APT and Sophisticated Attack Detection and Characterization

In network-based detection systems, network traffic data and domain lifecycle analysis

have also been used as the means of APT detection. Alageel et. al., [20] proposed Hawk-

Eye, an APT command and control domain detection system that utilizes PCAP data. Oprea

et al [61] propose a framework for early-stage APT detection, by modeling the network

communications of the internal hosts of an enterprise with outside hosts and utilizing belief

propagation. Lamprakis et al [62] suggest a system capable of detecting APT commands

and controlling traffic in an unsupervised fashion utilizing host weblogs. Chiba et al pro-

posed a detection system that is based on domain name lifecycle analysis [63]. Other
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studies suggested techniques for the detection of lateral movement that are applicable to

APTs [64, 65, 66, 67], while a large amount of work has focused on provenance detection

and investigation systems [68, 69, 70, 71, 72, 73, 74]. Such studies are orthogonal to our

scope as they are aimed at the detection of APT domains rather than the investigation of

their network infrastructure over the years.

Several measurement studies have analyzed APT actors and sophisticated attacks over

the years. Marczak et al. [16] were among the first to empirically measure and characterize

the modus operandi of nation-state actors. Le Blond et al [15] characterized targeted APT

attacks against NGO members, finding the actors to utilize recently disclosed vulnerabili-

ties in their malware. Urban et. al [75] analyzed 93 APT reports and found that 80% of the

APT actors start their attacks by sending phishing emails. Saha et al., have conducted a user

study utilizing 15 APT expert practitioners and have identified that current tools and prac-

tices in APT analysis feature significant challenges for threat hunting and attribution [22].

In our study in chapter 5, we reinforce the findings of these prior works regarding the dif-

ficulty of the analysis and the sophistication of APT threats by analyzing for the first time

comprehensively the infrastructure of 405 actors.
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CHAPTER 3

UNDERSTANDING MALWARE INFRASTRUCTURE FROM THE UPPER DNS

HIERARCHY

3.1 Motivation

Malware is a pervasive and growing problem [76, 77]. To counter this rising tide, the

security community has performed extensive research into understanding malware and

has devised techniques for detection, mitigation, and prevention. Unfortunately, malware

is extremely diverse—it spans potentially unwanted programs (PUPs), ransomware, and

rootkits—making it difficult to generalize results and defenses based on individual mal-

ware families.

Ecosystem-wide analysis of malware is necessary to understand broad malware char-

acteristics and to enact appropriate high-level protections and policies. For example, Lever

et al. [40] noted heavy malicious usage of popular cloud hosting services which introduced

the need for stricter vetting and policing by providers. As another example, Kotzias et al.

[41] found that different industries have highly variable infection rates (76% versus 16%

for Electrical Equipment compared to Banking), which either suggests targeted attacks by

malware operators or indicates that security policies for some industries are more effective

than others. Macro-level analysis of malware at large can lead to solutions with far-reaching

impact.

Although prior work has explored many aspects of the malware ecosystem, existing

research perspectives only have partial visibility into when and where malware infections

occur. With the exception of peer-to-peer networks, malware sandboxes cannot observe in-

fected hosts in the wild. The visibility of passive recursive DNS [40] is limited to a handful

of collaborating networks. Host-based measurement [41] is often biased or dependent on
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pre-installed software and challenging to scale globally. Sinkholes [78, 17] miss infection

phases prior to infrastructure takedown. Studies focused on individual malware families

(e.g., Mirai [79], ransomware [80]) may have nearly complete visibility, but the lack of

malware heterogeneity precludes broader malware ecosystem insight.

This work explores passively collected authoritative DNS (AuthDNS) server logs as a

new vantage point for characterizing the broader malware ecosystem. The ubiquity of DNS

for network communications and its hierarchical nature creates an opportunity to examine

malware across four dimensions: malware family diversity, full lifecycle time span, and

global visibility into both malware infections and infrastructure. Leveraging data from one

of the twenty largest top-level DNS authority zones1, we study the extent to which AuthDNS

can replicate previous research findings and also further expand our understanding of the

malware ecosystem.

We perform three case studies from the AuthDNS perspective. First, looking at malware

infrastructure, we find substantial overlap in the networks utilized by different malware

families. In the most extreme case, we observe an AS hosting 715 domains associated with

94 distinct malware families. This observation supports prior work [40, 81, 82], which

show malware hosting is often interlaced with legitimate infrastructure. We perform a

detailed comparison to understand the nuances of each measurement perspective.

Second, we examine the breadth of global malware infections. Previous works studying

a wide set of malware have detailed visibility into a specific subset of affected clients (e.g.,

enterprise networks protected by a specific AV vendor [41]). The AuthDNS vantage point

provides a slice of global visibility. After looking at all querying clients, we find that

targeted malware infections are not apparent for most malware families. Instead, we find

that infection rates per country or sector correlate (≥ 0.95 Spearman’s ρ) with overall

network activity. The vast majority of clients fall under the Information & Communication

or Wholesale & Retail Trade (due to how Amazon’s space is classified) industry sectors.

1Undisclosed due to data sharing agreements.
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Third, we examine an under-measured aspect of the malware ecosystem: the full lifecy-

cle of malware communications, from domain registration to blocklisting, and ultimately,

expiration. We find that most malicious domains are set up and detected quickly, within five

days for 50% of new registrations. Furthermore, we observe a multitude of scanners that

emerge after a domain’s detection, as well as a median 38.6% of new client networks first

querying malicious domains after their expiration. Two explanations for this phenomenon

are persistent infections on mobile clients that migrate ASes, or scanners and security pro-

fessionals querying expired domains [17]. Estimating malware infections from a network

perspective after a domain’s expiration should be done with caution.

This study comprises the central pillars of malware epidemiology: the infrastructure

that spreads and controls malware, and the location and timing of client infections. To un-

derstand how AuthDNS supplements existing research, we discuss the advantages and limi-

tations of each vantage point. We then categorize the general types of ecosystem properties

(e.g., malware variants, victim targeting, etc.) and provide guidelines for which perspec-

tives will yield meaningful measurements. Ultimately, this work establishes AuthDNS as a

unique outlook on the malware ecosystem, replicates prior results on malware infrastruc-

ture, expands our understanding of malware epidemiology, and introduces a framework to

contextualize existing and future research.

3.2 Datasets and Methodology

This section details AuthDNS and supporting datasets and describes our methodology.

3.2.1 Datasets

Passive Authoritative DNS (AuthDNS). We collaborate with a domain registrar that col-

lects DNS data at the authoritative DNS nameservers used by the top-level zones that it

serves. Our DNS data spans 2017-02-09 to 2021-06-30 and includes all DNS packets sent

or received by the authority. We extract the IP address of the recursive resolver, the domain
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name resolved, the response from the authority, and the client IP subnet for ECS-enabled

queries.

Malware DNS (MAL). We collect malware domains from a data partner [83] that executes

suspicious Windows binaries in an isolated malware sandbox. The malware executions

span from January 2018 to April 2021 and amount to 30,302,106 executions. We obtain

the communications in PCAP form and extract the DNS traffic.

VirusTotal (VT). We query VirusTotal [84] to collect malware family classification labels

for malware samples in our MAL dataset, and we use AVClass 2 [85] to identify the most

relevant label. While VT offers results from a plethora of antivirus engines, we only use

AV detection results from 17 popular antivirus (AV) vendors that we have found provide

stable labels. Additionally, we utilize VT to extract historical data for malware samples,

malicious domains, and the dates that they were first labeled as malicious.

IP Whois (IPWHOIS). We use the Prefix-to-AS dataset available from CAIDA [86] to

annotate the networks initiating DNS requests. We joined this data with the ASN-to-AS

organization delegations provided by the Regional Internet Registries (RIRs). When dis-

cussing the IPWHOIS dataset, we are referring to the union of these datasets. We utilize

this dataset to map IPs to the organizations (and countries) that announce their prefixes.

Industries (IND). In order to link an IP address to its industry, we use a commercial IP

intelligence dataset. While the dataset is imperfect—a portion of Amazon’s IP space is

labeled as Wholesale and Retail Trade, which is partially accurate since Amazon’s retail

business utilizes its own cloud infrastructure—it represents one of the best labelings avail-

able. Open-source solutions such as ASdb [87] provide AS-level granularity that is too

coarse for our purposes. IND includes organizational property information based on the

“International Standard Industrial Classification of All Economic Activities” (ISIC). The

Statistics Division of the United Nations (UNSD) [88] provides the mappings of ISIC codes

and business categories. We intersect the two datasets to attribute an IP address to a specific

business based on the UN standard. We refer to different industries as sectors through the
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rest of the paper.

3.2.2 Methodology and Validation

This section presents the methodology used to generate and validate our malware domain

dataset. Algorithm 1 summarizes our methodology:

Algorithm 1: Labeling and Validation Methodology of Malware Samples and
Malicious Domains

Input: MAL (malware DNS), AuthDNS (authoritative DNS), VT (VirusTotal)
Output: Labeled malware samples and validated malicious domains

1 Step 1: Generating Malware Domain Dataset;
2 Extract overlapping DNS queries between MAL and AuthDNS;
3 Filter out top-ranked domains using the Tranco list;
4 Extract effective 2LDs (e2LDs)→Dmal;
5 Submit domains to VT to obtain the number of vendors labeling them as malicious;

6 Step 2: Expand Sample Set;
7 foreach d ∈ Dmal do
8 Query VT for additional malware samples;
9 Merge with original MAL samples→ Stotal;

10 Step 3: Malware Sample Labeling;
11 foreach s ∈ Stotal do
12 Query VT for AV labels;
13 Apply AVClass2 to normalize labels;
14 if label is generic or AVs disagree then
15 Label s as SINGLETON;
16 else
17 Assign dominant family label to s;

18 Step 4: Malicious Domain Validation;
19 foreach d ∈ Dmal do
20 Check historical URL reputation in VT;
21 Confirm if the majority of queries are from MAL samples only;

22 Step 5: IP Labeling and Enrichment;
23 foreach client/server IP do
24 Use IPWHOIS to map to ASN and organization;
25 Use IND to map IP to the industry sector;

Generating Malware Dataset. To obtain a set of malware-related domains, we first

find the overlap between our MAL and AuthDNS datasets. Malware samples may query
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benign domains to check for network connectivity. Similar to Lever et al. [40], we filter

out top-ranked domains in the Tranco list [89]. This filtering yielded 12, 212 effective

second-level domains (e2LDs), which capture the registrable portion of a domain name.

For example, in the fully qualified domain name www[.]example[.]co[.]uk the e2LD is

example[.]co[.]uk, while the second level domain name is co[.]uk.

The 12, 212 malicious e2LDs are associated with 174, 112 malware samples from MAL.

We submit them to VT for scanning and find that 98.96% of the samples are known to VT,

and 99.97% of known samples are marked as malicious by five or more AV vendors. Fi-

nally, we expand our dataset by querying VT for all malicious samples communicating with

the 12, 212 malicious domains. This reflection yields an additional 70, 898 samples, for a

total of 245, 010 samples.

Malware Sample Labeling. Different AV vendors offer divergent labels for a malware

sample [90]. We use AVClass2 [85] and a malware encyclopedia [91] to resolve these

aliases (e.g., bladabindi to njrat) when possible. We keep the top malware family label by

AV vendor agreement and disregard generic labels or labels where the AV vendors cannot

agree (SINGLETON). Following this methodology, we discard 81,750 samples (33.63%)

assigned the label SINGLETON. The 161,322 (66.37%) successfully labeled samples rep-

resent 202 distinct malware families. No malware families appear to have an outsized rep-

resentation in our datasets, and we summarize the top 15 malware families by the number

of domains in Table 3.1.

Figure 3.1 shows the cumulative distribution of the number of malware samples and

hosting servers per domain in our dataset. Most domains are associated with only a handful

of malware samples, with 57% of the domains related to less than three samples. A similar

trend holds for the number of servers resolved by a given domain. These distributions are

consistent with those in prior large-scale malware measurement studies [40].

Malicious Domain Validation. To validate the maliciousness of the 12, 212 e2LDs,
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Table 3.1: Top 15 malware families based on the number of malicious domains in our
dataset.

Malware Server Client
Family Domains Samples IPs CC Count CC Sectors

darkkomet 3,578 16,441 175K 140 2,187K 232 20
njrat 1,924 10,596 195K 129 1,970K 229 21
cybergate 1,181 2,546 38K 100 931K 219 19
xtrat 946 2,801 62K 89 1,108K 222 19
bifrose 700 1,432 11K 62 497K 211 18
razy 667 1,139 107K 110 1,508K 225 18
remcos 563 39,279 61K 103 1,028K 221 18
nanocore 501 2,112 72K 116 1,446K 227 19
ponystealer 450 4,891 49K 93 106K 222 17
gamarue 410 761 53K 97 1,523K 225 19
poison 355 1,018 18K 75 692K 212 18
vobfus 282 3,843 36K 89 936K 219 19
nymeria 279 966 39K 101 838K 215 18
zbot 229 24,736 9K 61 945K 220 20
netwire 228 634 34K 82 859K 223 18

we query VT and find that 76.7% of the malicious e2LDs have at least one historical URL

labeled as malicious. 87.5% of the filtered malware samples only queried domains in our

AuthDNS and no additional domains. This combination of factors gives us high confidence

in our malicious domain dataset.

Figure 3.2 shows the aggregate daily query volume of malicious domains, as seen in

AuthDNS. Our vantage point provides a stable view throughout the four years of our study,

except for three dips related to collection issues. On average 17.9% of daily requests are

ECS-enabled, allowing us to learn the clients’ subnets in addition to the IP address of the

recursive. Similar to Kountouras et al. [92], we define a client as the client subnet when

ECS is enabled and the recursive’s IP address when ECS is not enabled. We use this client

definition for our experiments in section 3.4 and section 3.5. Finally, we apply IPWHOIS

and IND to servers and clients in order to identify relevant ASNs, organizations, countries,

and industry sectors.
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Figure 3.1: Distribution of the number of malware samples and servers associated with
each domain in AuthDNS.
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Figure 3.2: Daily Volume AuthDNS for malware domains. ECS-enabled requests (orange)
average 17.9% of daily requests.

3.3 Hosting Infrastructure

The hosting infrastructure used by cybercriminals is an essential aspect of malware commu-

nication. Understanding how malicious actors distribute and coordinate malware enables

the security community to take more effective remediation steps and can focus resources

on areas of frequent abuse. To study this infrastructure, we consider a set of 6,400 domains

representing the intersection of domains with malware family labels and IPWHOIS labels

for the IP addresses resolved by those domains. In aggregate, this set of domains points to

399,830 different IP addresses in 151 countries.

First, we consider where malware is hosted. Figure 3.3a shows a map of all the coun-

tries we can associate with infrastructure resolved by malicious domains, with lighter col-
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Figure 3.3: Geographic distribution of the IP addresses of hosting and clients for malware-
related domains. Darker colors indicate more malware families are associated with the
country through the hosting server (left) or querying client (right).
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Figure 3.4: Distribution of the number of malware families per IP, Prefix, ASN, and coun-
try that have resolved malicious domains in AuthDNS. Most network infrastructure and
targeted networks are not strongly correlated with a single malware family.

ors indicating fewer malware families. Countries home to large hosting providers—like the

United States, France, and Germany—also host large numbers of malware families. Tajal-

izadehkhoob [81] and Mezzour [82] both found that the distribution of C2 infrastructure

on legitimate hosting platforms was strongly correlated with the size of the hosting plat-

form and weakly correlated with their security policies. Our work reiterates that hosting

infrastructure may enable malware communication to hide in plain sight. For example,

Lever [40] showed that PUP software is often long-lived on legitimate, commercial hosting

platforms and found a growing trend of malware samples taking advantage of such hosting.

Zooming in, we examine how infrastructure is reused across different malware families.

Figure 3.4a shows the distribution in the number of malware families hosted per country

(corresponding to Figure 3.3a), ASN, network (BGP Prefix), and IP address. We find
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try Codes

Figure 3.5: Correlation between different measures of hosting infrastructure. Higher num-
bers of samples per malware family correlate with more domains. Higher domain utiliza-
tion correlates with more server IPs and more hosting countries.

that only 102,728 (25.7%) of malware-hosting IP addresses were associated with a single

malware family. Conversely, 26,226 (6.6%) of IP addresses resolved by malware domains

could be tied to ten or more families. In one case, we found that IPs belonging to AS29075

(IELO IELO-LIAZO SERVICES SAS) were pointed to by 715 domains corresponding

to 94 malware families. We believe this to be the result of many malicious actors taking

advantage of a proxy operated within this French ISP, demonstrating widespread reuse.

Finally, malware families often spread their hosting across multiple countries. We

found that only 24 malware families have their hosting contained to a single country. To

help explain the intra-family diversity of hosting, we looked at the correlation between

the number of domains in AuthDNS contacted by each malware family and the number of

samples, hosting server IPs, and hosting server countries. Figure 3.5a shows a strong cor-

relation between the number of domains used by a given malware family and the number

of unique samples in our dataset. Several outliers, such as zbot, for which we observed

very few domains but a large number of files, reduced the Pearson correlation. However,

the Spearman correlation, which is more tolerant of outliers, still showed a strong corre-

lation. Figure 3.5b goes on to show a strong correlation between the number of domains

contacted by each malware family and the number of hosting servers observed. Further,
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Figure 3.5c shows that as the number of domains and hosting IPs increases, so does host

country diversity. As the malware family progresses, using more domains or samples, it

naturally expands. This breadth of hosting infrastructure contributes significantly to the

security community’s challenge of attribution and takedowns.

Takeaway-1: The view of malware-related domain hosting provided by AuthDNS

largely agrees with prior work, which relies upon network data collected at different points

in the DNS hierarchy. Infrastructure is reused across different malware families and is

often intertwined with legitimate hosting services. Within a malware family, it is common

to see many host networks and IPs deployed, often crossing geopolitical boundaries. This

agreement between datasets suggests interchangeability; however, a key factor makes Au-

thDNS data superior when available. Non-global vantage points such as RecursiveDNS

will only yield snapshots of the hosting infrastructure once customers using that recursive

begin querying for a given domain. This may limit visibility during the early stages of a do-

main’s life, particularly before widespread infection by the corresponding malware occurs.

AuthDNS does not suffer from this limitation.

3.4 Malware Clients

AuthDNS provides a unique perspective on potential victims who query for malicious do-

mains. In section 3.3, many of our findings concerning malicious domain hosting agreed

with prior work and could be drawn from other vantage points. The same interchangeabil-

ity is not valid for studying those infected by malware families. The limitations of previous

techniques become apparent when we observe victims through the global perspective of

AuthDNS.

As discussed in Figure 25, authoritative nameservers receive DNS requests from re-

cursives rather than individual hosts. This makes the tradeoff of gaining visibility into all

querying recursives, but gives up visibility into individual endpoints, which recursive DNS

provides for a subset of the population. Thus, for non-ECS queries, we consider the IP
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Figure 3.6: Spearman correlation between different measures of potential victims. Higher
numbers of clients querying for malware family-related domains correlate strongly with a
more diverse set of impacted countries and economic sectors.

address of the recursive to be the client, while for ECS-enabled requests, we use the ECS

netmask.

Our aim with AuthDNS is to study large infected populations as epidemiologists rather

than infected individuals as doctors. Figure 3.3b shows the number of malware families

affecting each country, with darker colors representing more malware families. A signif-

icant portion of malware families plagues nearly every country. These globally expansive

infections contrast with Figure 3.3a, which showed higher concentration levels of malware

family hosting in particular countries. Figure 3.4b zooms in to indicate the number of

malware families that are contacted by each network or client.

Viewed from the opposite direction, Figure 3.6a shows the number of countries each

malware family affected with respect to the total number of clients observed. We found

that only one family, fosniw, had queries to related domains originating from fewer than

ten countries, while 144 (71.3%) of malware families were found to be queried from 100 or

more countries. This agrees with Mezzour et al. [82], which also witnessed near-universal

affliction by malware in developed countries. Additionally, they found that infection rates

correlated strongly with the IT resources of that country. As with the location of host-

ing infrastructure for malware-related domains, the spread of malware across geopolitical
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boundaries complicates the security communities’ task of identifying the targeting of vic-

tims for most malware families. We see that malware families do not generally tend to tar-

get specific networks, but rather, many networks appear to be infected by multiple different

malware families. Furthermore, malware family infections are not commonly confined by

geography as seen from the perspective of AuthDNS.

3.4.1 Industry Sectors

Table 3.2: Unique clients querying malicious domains and the number of malware families
in each industry (ISIC section).

ISIC Section Clients Malware
Families

Information & Communication 3,108,546 202
Wholesale & Retail Trade 567,729 202
Education 29,741 201
Professional, Scientific & Technical Activities 11,576 196
Manufacturing 4,837 192
Government, Defence 4,697 178
Financial & Insurance Activities 3,670 183
Human Health & Social Work Activities 3,785 172
Accommodation & Food Service Activities 2,785 148
Transportation and Storage 624 155
Arts, Entertainment & Recreation 421 140
Electricity, Gas, Steam & A/C Supply 333 127
Administrative and Support Service Activities 199 141
Extraterritorial Organizations and Bodies 164 120
Other Service Activities 149 149
Real Estate Activities 96 86
Construction 74 38
Mining and Quarrying 17 23
Agriculture, Forestry and Fishing 5 18
Water Supply, Sewerage. 5 8

Another way of grouping clients is by the type of network they query from. Kotzias et

al. found evidence that different industries are affected by different amounts of malware

samples [41]. In that study, the authors relied on file reputation logs collected from endpoint

protection software to study malware affecting customers of a large cybersecurity company.
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Table 3.3: Client distribution across sectors for seven-day samples starting 2017-03-01,
2018-03-01, 2019-03-01, and 2020-03-01. All represents the complete AuthDNS dataset
while Mal represents only malicious domains.

ISIC Section 2017 2018 2019 2020
All Mal All Mal All Mal All Mal

Information & Communication 0.85M 68K 1.4M 121K 1.3M 136K 1.3M 117K
Wholesale & Retail Trade 5.2K 1.0K 14K 3.4K 16K 6.8K 29K 10K
Education 19K 1.5K 27K 2K 25K 2.6K 29K 1.9K
Professional, Scientific & Technical 4.6K 402 8.8K 1.1K 6.5K 1.1K 7.7K 1.1K
Manufacturing 2,109 181 3.2K 387 2.9K 383 2.7K 246
Government, Defence 3.1K 215 5.2K 347 4.3K 384 4.5K 310
Human Health & Social Work 2.1K 129 3.5K 213 3.3K 228 3.5K 163
Financial & Insurance 2.7K 157 4.1K 267 3.6K 271 3.7K 214
Accommodation & Food Service 1.5K 69 2.6K 103 2.2k 131 2.3K 75
Transportation & storage 250 34 379 58 317 59 309 25
Arts, Entertainment & Recreation 342 17 554 32 510 29 493 16
Electricity, Gas, Steam & A/C Supply 224 19 316 37 269 39 299 26
8 remaining sections 494 29 771 52 757 56 773 52

Correlation (Spearman): 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.98

They found that specific industries were affected by a disproportionate number of malware,

suggesting targeting by malware families and disparity in security posture across industries.

However, their vantage point was limited to customers of the cybersecurity company, which

they acknowledge introduces bias. We seek to augment this work by studying how malware

families infect industries from a global vantage point.

For this analysis, we use the industries (IND) discussed in subsection 3.2.1. This map-

ping enables us to group clients by ISIC code. ISIC provides a hierarchical classification

of industries that breaks down into 21 sections, 88 divisions, 238 groups, and 419 classes.

We use the ISIC section synonymously with industry sector in the remainder of this work.

We observed around 39.7B requests for malicious domains in our dataset, and were able

to assign an industry label for approximately 28.08B (70.7%) requests. We only consider

requests from clients to whom we can assign an industry label.

Table 3.2 shows the number of clients we observed in each sector as well as the number

of offending malware families. For clarity, we rename some of the ISIC code classifi-

cation labels. We can immediately see that each industry contains clients querying do-
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mains associated with numerous different malware families. In fact, 15 of the ISIC sec-

tions appear to be impacted by over half of the malware families in our dataset. We note

that the Information & Communication ISIC section, as well as Wholesale &

Retail Trade section, contains requests from all the malware families and represents

more clients than any of the remaining industries by several orders of magnitude. From

the more granular ISIC divisions, we see that most queries from the Information &

Communications industry can be attributed to wired and wireless communications due

to the classification Internet Service Providers (ISP) and the Residential

& Business Hosting Infrastructure. A portion of the IP address space con-

trolled by Amazon is labeled as Wholesale & Retail Trade, contributing to an

overestimation of the effects on this population. This also explains why these two sections

contain several orders of magnitude more requests compared to other sections.

To capture the representation of clients querying for malicious domains compared to all

clients in AuthDNS, we sampled a seven-day window for each year in our study. Table 3.3

shows the number of clients from top ISIC sections querying for any (malicious or benign)

domain during this window and the subset querying for malicious domains. The final

row shows the correlation (Spearman) between the sampled datasets and the dataset of

malicious domains that spans the complete four-year study.

The next largest ISIC section by number of unique clients is Education, with roughly

half of the requests in this section coming from institutes of higher education such as

colleges and universities. These institutional networks typically have a wide variety of

users, including students, staff, faculty, and visitors. Many such networks may not have

direct control over the devices on their network. A heterogeneous base of infected de-

vices and research-related activities provides a sensible explanation for why Education,

and higher education in particular, accounts for so many malware-related queries. While

some of the remaining ISIC sections seem like prime candidates for targeted behavior, we

note that even sections associated with the government, defense, finance, and infrastructure
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appear to be impacted by many different malware families.

We find that malware families generally impact multiple ISIC sections, with 72.7% of

the malware families found in more than 10 sectors. Our aggregate analysis with global

visibility cannot draw the same conclusions as Kotzias et al. [41], which found that 1,911

(37%) of the malware families in their study were only seen in one enterprise. Instead, Fig-

ure 3.6b and Figure 3.6c respectively show that the number of industries a malware family

impacts is correlated with the overall number of clients impacted by that malware and the

geographic diversity of those clients. As malware families grow, so does the diversity of

their victims.

Takeaway-2: In aggregate, we do not see malware families solely affecting individ-

ual industries. 72.7% of the malware families in our data are found to affect more than

10 distinct industry sections. While datasets derived from RecursiveDNS or host-based

security products offer a view into the networking behavior of individual end-users, they

can introduce biases by considering customers in a particular geographic region or those

already taking steps to mitigate their online risk. Our study of clients affected by a range

of malware families highlights how AuthDNS’s global vantage point can reduce these bi-

ases and lead us to draw divergent conclusions when studying malware infections from an

epidemiological standpoint. Still, AuthDNS leaves ample room for studies such as Kotzias

et al. [41] that provide greater visibility into individual infected hosts for a subset of the

population once these potential biases are placed in the context of a global view. While

AuthDNS does not provide visibility into end-users, it does offer a complete view of re-

cursives querying domains under that authority. ECS-enabled requests further narrow this

gap when looking at affected clients through the lens of AuthDNS.

3.5 Malware Lifecycle

Utilizing the unique vantage point of AuthDNS, we perform a temporal analysis in order

to understand the lifecycle of malicious domains. We complement the client visibility of

32



Table 3.4: Request characterization for three temporal windows. While most clients and
sectors are observed between malicious domain detection and expiration/takedown, many
client ASNs and countries (ASCCs) first connect after expiration/takedown.

Domains Registration to Detection Detection to Expiration/Takedown Post Expiration/Takedown
ASNs (%) ASCCs (%) Sectors (%) Days ASNs (%) ASCCs (%) Sectors (%) Days ASNs (%) ASCCs (%) Sectors (%) Days

10% 0 (0.00) 0 (0.00) 0 (0.00) 0 19 (11.6) 5 (11.5) 0 (00.0) 1 10 (6.80) 1 (1.02) 0 (0.00) 238
25% 0 (0.00) 0 (0.00) 0 (0.00) 1 59 (36.2) 15 (42.9) 2 (37.5) 23 36 (21.9) 3 (9.09) 0 (0.00) 526
50% 6 (2.63) 3 (7.69) 1 (20.0) 4 101 (54.0) 26 (62.5) 4 (62.5) 30 76 (38.6) 10 (22.7) 1 (16.7) 963
75% 22 (10.0) 9 (21.8) 2 (37.5) 19 164 (70.4) 37 (79.0) 5 (80.0) 100 132 (55.3) 18 (40.0) 2 (30.0) 1,180
90% 54 (23.4) 18 (40.0) 3 (57.1) 79 369 (86.5) 54 (90.4) 7 (100) 419 229 (71.3) 28 (58.6) 3 (50.0) 1,256
max 2,243 (96.6) 136 (100) 14 (100) 1,154 11,650 (100) 187 (100) 15 (100) 1,661 4,644 (100) 95 (100) 10 (100) 1,558

previous studies that observed malicious domains after expiration [17] by considering all

clients querying for a malicious domain name during three phases: registration to detection,

detection to expiration, and post-expiration. We determine the date of detection as the

earliest of the following dates: a malicious URL of the domain is detected by more than

one vendor in VT, a malicious hash communicating with that domain is detected in VT, or

a malicious hash communicating with that domain is seen in our malware DNS dataset. In

order to fully observe the domain lifecycle, we only consider domains that were registered

after the first day of visibility we have in AuthDNS. Further, we restrict our analysis to

domains that have been registered only once in our AuthDNS dataset so that we do not

observe noise from previous or subsequent registrations as domain names get repurposed.

This filtering leaves us with 2, 308 domain names, 18.9% of the total domains in our dataset.

Table 3.5: Most popular ASNs first observed in each temporal window. Scanners and AV
vendors appear mostly during and after the detection of a malicious domain, while hosting
networks are most prevalent during the setup of the domain.

Registration to Detection Detection to Expiration/Takedown Post Expiration/Takedown
ASNAME Domains ASNAME Domains ASNAME Domains

AMAZON-AES 772 WINTEK-CORP 1,745 CNNIC-ALIBABA-US-NET-AP Alibaba (US) Technology Co., Ltd. 1,387
CORBINA-AS PJSC ”Vimpelcom” 756 GEORGIA-TECH 1,738 CNIX-AP China Networks Inter-Exchange 1,363
GOOGLE 645 OVH OVH SAS 1,662 CHINATELECOM-TIANJIN Tianjij,300000 1,226
LEVEL3 611 MFENET 1,649 InterConnect ML Consultancy 1,114
AMAZON-02 602 PAN0001 1,641 FSOL-AS F-Solutions Oy 1,084

Table 3.4 summarizes the networks for the lowest 10%, lower quartile, median, upper

quartile, 90%, and max of querying clients during all phases of the domain lifecycle. The

registration to detection window is relatively short, lasting 19 days or less for 75% of do-

mains. Additionally, at the median, only six networks (ASNs) and three countries queried

for domains while they were in this initial phase. By comparison, the second temporal
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window, detection to domain expiration/takedown is significantly longer, with at least 23

days representing the lower quartile. At the median, 54% of ASNs that will ultimately

query for a domain do so for the first time during this window. The same observation holds

for the countries and industry sectors of these clients. Finally, queries continue during the

post-expiration/takedown period, which continues until the end of our four-year AuthDNS

dataset for domains that are not re-registered. Interestingly, in this period, the median do-

main observes more than 76 unique ASNs and ten countries querying it for the first time.

This represents a long tail of unique clients first seen only after a domain has expired or

been taken down.

In order to understand the most popular networks in each lifecycle phase, we look at the

top querying ASNs across domains. Table 3.5 shows the top five unique ASNs as seen by

the number of first occurrences in each temporal window. During the registration to detec-

tion window, we first observe large hosting networks (Amazon), large recursives (Google),

and large telecommunication companies (Vimpelcom and Level3). This window is related

to the setup and testing of the domains by the actors and the first potential victim connec-

tions, resulting in queries from large recursives and telcos. After the domain’s detection,

the most common ASNs to be first observed are large scanners (GEORGIA-TECH [32]),

AV companies (MFENET - McAfee and PAN0001 - PALO ALTO NETWORKS), and

other large hosting networks (WINTEK-CORP and OVH), which can contain other scan-

ners. In this window, AVs, sandboxes, and scanners query malicious domains and map their

IP address space. Lastly, in the final window, post-expiration/takedown, we observe large

Chinese telcos and business networks from other countries. These post-expiration queries

could be due to network mobility of infected clients, new infections, or scanning.

Takeaway-3: The view provided by AuthDNS shows that researchers need to con-

sider a domain’s lifecycle to measure infected populations accurately. Most domains in

our dataset were detected as malicious soon after registration, with the median time being

four days. After detection, domains will receive increased interest from scanners and AV
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vendors, which can artificially inflate infected population counts if proper filtering is not

applied. Notably, there commonly exists a long tail of new client queries after a domains’

expiration or takedown. Existing infections on mobile clients generate queries from new

networks and may persist into this final phase. However, prior studies further suggest that

scanning activity late in the lifecycle of a domain may constitute a significant portion of

queries [17]. Researchers and practitioners using network data, AuthDNS or otherwise,

to estimate client infections, risk obscuring malware behavior when they do not distin-

guish between phases of the domain lifecycle. As a community, there is room for further

improvement in identifying scanners and distinguishing the lifecycle phases for domains

with multiple registrations. Addressing these challenges will allow researchers to better

understand and help infected populations.

3.6 Vantage Point Comparison

Thus far, we have shown AuthDNS’s ability to reproduce previous observations of malware

infrastructure (section 3.3), add a novel perspective on the distribution of malware infec-

tions (section 3.4), and to introduce a full temporal view of the malware domain lifecycle

(section 3.5). In this section, we synthesize these findings and contextualize them in the

broader landscape of malware ecosystem and epidemiology research. We first enumerate

related work and map the relationships between different perspectives. We then compare

the perspectives along four different qualitative characteristics and highlight the appropri-

ate role of each perspective, gaps in existing malware visibility, and avenues for future

research.

3.6.1 Measurement Planes

Broadly speaking, malware utilizes three distinct network planes2 (Figure 3.7), which we

define as a grouping of network components based on their location and functionality

2Unrelated to control/data planes from software-defined networking.
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Figure 3.7: Malware measurement can occur 1) in the global DNS plane, 2) at or near the
local client, or 3) at the malware infrastructure. Each location has specific sub-components
that interact via request (filled arrow) and response (empty arrow) protocols (e.g., DNS, C2
protocols). Existing research has studied many of the depicted components with host-based
(yellow) or network-based (blue) techniques.
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within the network.

Global DNS DNS is the bootstrapping protocol used by most network communication

to map domain names to IP locations; malware uses DNS extensively, as evidenced by

countless domain blocklists and DGA malware. Global DNS refers to upper-hierarchy

authoritative DNS servers (e.g., root, TLD, 2LD) and large public recursives (e.g., Google,

CloudFlare), which share a global perspective on domain lookups. Global DNS servers

can receive DNS requests from a universal set of clients and have worldwide visibility into

domain usage. Prior work [37, 39, 38] utilizing global DNS authorities within the realm

of malware has focused on detection, spam measurements, and one work [93] performed a

case study on stalkerware based on probing of large public recursives.

Local Client The local client plane consists of malware-infected clients and the local

networks in which they reside. In contrast to global DNS, which only has network-based

techniques, the local client plane contains both host-based and network-based approaches.

Host-based approaches include any measurements that directly observe partial or full exe-

cution of malware: interactive honeypots, malware sandboxes, and in-the-wild infections.

Existing malware research has skewed heavily toward host-based analysis of the client

plane. As a brief example amongst a profusion of works, sandboxes and honeypots have

been used to study general Windows malware [94, 95], malware downloaders [96], An-

droid applications [97], malware protocol reverse engineering [98, 99], exploit sites [100,

101], C2 hosting [81, 102, 103], and DDoS [104]. Two works have utilized host-based

local client techniques to shed light on the broader malware ecosystem. Kotzias et al. [41]

applied host-based infection measurement across 28K enterprises in 67 industries to de-

termine enterprise malware trends. Messour et al. [82] conducted an empirical analysis

of Symantec’s telemetry data to observe the distribution of different malware types across

countries.

The primary network-based approach within the local client plane is the collection of
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DNS data from local recursives that handle a network’s DNS traffic and are often set by

default via Dynamic Host Configuration Protocol (DHCP). Alrawi et al. [11] used recursive

passive DNS data to estimate infections by IoT malware, while Lever et al. [40] focused on

more general malware, including PUPs.

Malware Infrastructure Malware relies on infrastructure most commonly for command

and control (C2), but can also use separate infrastructure for hosting, data exfiltration, or

other functions. Measurement of malware infrastructure IP addresses can occur from global

DNS and local client planes, but to collect communication data between infections and

malware infrastructure, researchers have developed sinkholes. Sinkholes allow a researcher

to operate or imitate malware infrastructure and collect richer data about connecting clients.

Several works have utilized sinkholes to study specific phenomena (e.g., remote-access

trojans (RAT) [17], botnets [50]); one prior work by Alowaisheq et al. [78] studied sinkhole

domain behavior across all types of malware, but did not operate any sinkholes, since they

require malware-specific configuration.

3.6.2 Comparison

Infection Visibility Infection visibility is the capability of a vantage point to assess all in-

fections of a threat globally and temporally. This work shows AuthDNS datasets yield high

global infection visibility as they provide access to all DNS requests made to a malicious

domain, across all locations and time. Datasets that are not based on network infrastruc-

ture are limited in infection visibility as they can only observe a subset of clients based on

data source (e.g., AV vendors, ISP clients, recursive clients, email clients). Domain sink-

holes provide global location visibility, but partial temporal visibility, as they are limited

to the post-expiration period of a domain. Infrastructure takeover can provide global and

temporal infection visibility guarantees; however, this is difficult to execute and scale.
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Infection Precision Infection precision is the capability of the dataset to accurately es-

timate the validity and type of infections. Passive DNS datasets contain noisy infection

data that is muddled with traffic from scanners, malware sandboxes, or security profession-

als. Thus, users of passive DNS datasets should filter clients based on their behavior and

network origin when estimating infections. Additionally, many different malware samples

and families can be hosted on the same domain name, and the type of infection per client

cannot be guaranteed. Client-side antivirus datasets provide higher infection precision for

the type of client and the existence of a specific malware sample; infrastructure takeover

datasets can provide the highest precision by looking at the collected infected system data.

Lastly, domain sinkholing initially provides partial visibility, since a domain will continue

to receive queries after its detection period, but sinkholing data can be enhanced for a better

infection estimation as shown by Rezaeirand et al. [17]. Email datasets provide the lowest

precision as they observe the targeting aspect of an attack rather than the infection.

Client Granularity Client granularity is the capability of the dataset to trace the infec-

tions down to single clients or users. Authoritative pDNS datasets are limited in this regard

since clients are obscured by recursive DNS servers and caching. However, as shown in

this study, researchers can use the ECS field of an ECS-enabled request to obtain higher

precision client granularity. Recursive pDNS datasets yield even higher client granular-

ity as they can observe all the clients under the recursive making requests for a malicious

domain. Client-side AV datasets, infrastructure takedown datasets, ISP network logs, and

email datasets provide high guarantees of client granularity as they can observe a unique

client or user.

Malicious Infrastructure Visibility Malicious infrastructure visibility is the capability

of the dataset to observe what infrastructure the malware actors have used to perform their

campaign. AuthDNS is, by definition, the authoritative source of the mapping of domains

to IPs for a malicious domain. DNS rewriting, for the profit of the recursive operator [105],
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or for the protection of customers, may limit the hosting infrastructure visibility provided

by a RecursiveDNS dataset. Infrastructure takedowns provide the highest guarantees as

they provide direct access to infrastructure; however, it is not scalable. Infrastructure visi-

bility via recursive DNS and ISP network logs depends on the volume and consistency of

communications by infected clients within the measured networks. The remaining datasets

cannot provide any insights regarding the infrastructure used by the malicious actors.

Takeaway-4: AuthDNS has several advantages and disadvantages when compared to

the vantage points used in previously published research. We find global, temporal, and

infrastructure visibility to be the biggest advantages of our dataset. Thus, we position our

measurements along these advantages and we study each aspect in depth in section 3.3,

section 3.4, and section 3.5 and report our most insightful results. AuthDNS has limited

client granularity and limited infection precision. Future work can be aimed at addressing

this issue.

3.7 Summary

Understanding malware lifecycles is vital in the fight against Internet threats. This work

presents a longitudinal study analyzing the network communication of 202 different mal-

ware families from the perspective of a popular authoritative DNS server. We observed

billions of resolutions over four years at our authoritative collection point, enabling tempo-

rally complete and global visibility into malicious domain usage. AuthDNS simultaneously

solidifies prior findings while also shedding new light on the epidemiology of malware.

First, different malware families often reuse the same network infrastructure, so threat in-

telligence needs to label malicious infrastructure cautiously. Second, malware families,

when analyzed in aggregate from an AuthDNS vantage point, do not appear to target spe-

cific networks or industries. Instead, they spread to many different industries with high

regularity over time. Third, our temporal analysis shows that newly registered malicious
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domains are set up and detected quickly. Due to network noise from scanners and AV

vendors, both the temporal and organizational properties of network clients should be con-

sidered when estimating malware infections from a network perspective. Finally, we intro-

duce a brief taxonomy of malware measurement perspectives and discuss the advantages

and disadvantages across four primary measurement goals. By broadening our understand-

ing of global malware infections, this work serves as a stepping stone to making malware

characterization more accurate and, ultimately, to making mitigation more effective.
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CHAPTER 4

UNDERSTANDING THE INTERACTION OF MALICIOUS ACTORS WITH

THEIR INFRASTRUCTURE THROUGH AN EMPIRICAL ANALYSIS OF

PASSWORD STEALERS

4.1 Motivation

In chapter 3, by utilizing the AuthDNS dataset and its end-to-end temporal visibility in the

lifecycle of malware-hosting domain names, we have explored the network interactions

(i.e., DNS requests) all the stakeholders that communicate with these domain names, from

victims to security vendors and DNS scanners and identified key takeaways towards the

quantitative aspects of the network interactions throughout the domain name lifecycles and

the qualitative aspects of the visibility that the AuthDNS dataset provides. Despite that,

a major perspective that was not explored but has a significant impact on understanding

the lifecycle of malicious network infrastructure is that of the interactions of the malicious

threat actors with their own infrastructure.

Throughout the lifecycle of a malicious domain name, many different stakeholders

interact with it in the form of DNS requests, from DNS scanners like the ActiveDNS

project [32] to security vendors and, more importantly, victims. While the distribution of

new and unique networks first querying the domain names is skewed towards the end of the

lifecycle, there are many requests distributed through the lifecycle that are hard to charac-

terize for the stakeholder responsible for them. This is particularly difficult when seeking

to characterize the interactions of the malicious threat actors that utilize these malicious

domain names in order to understand how long they operate, which networks they oper-

ate from, and what impact detection has on their operations. The utilization of public and

large DNS recursives, VPNs, and proxies makes the interactions of the threat actors blend
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in with DNS scanners, security vendors, and victim traffic, making it almost impossible to

characterize them utilizing this vantage point alone.

In this chapter, we characterize the interactions of malicious threat actors with the in-

frastructure they utilize for managing and performing their cyber attacks, with the goal

of understanding: 1) the lifecycle of their interactions, 2) the network infrastructure they

utilize, and 3) the impact that malicious detection has on their operations. To do so, we

partnered with MalBeacon, a threat intelligence company, and we studied the activities of

4,586 Stealer operators through their devices, over a period spanning 20 months (Apr 2019

- Dec 2020). Stealers are specialized commodity malware that harvest credentials from

infected hosts. Stealers utilize many attack vectors, including drive-by download, applica-

tion repackaging, remote exploitation, social engineering, and phishing. Stolen credentials

– the main goal of Stealers operations – are the primary way for cybercriminals to gain

initial access to a network and their utilization has risen five times since 2021 [19, 106].

Given the importance of stolen credentials to cybercriminals and the breadth of unique

Stealers devices in our studied dataset, we believe that our study can offer valuable in-

sights into how malicious cyber threat actors utilize network infrastructure to manage their

operations.

The rest of this chapter is organized as follows: section 4.2 describes the datasets and

methodology we utilized in this work in order to label and identify unique operator de-

vices, section 4.3 describes the ethical considerations of this work and section 4.4 presents

the results of this work answering the research questions we have posed in this section.

In section 4.5, we discuss the practical takeaways of this work. Finally, section 4.6 summa-

rizes the main findings of this chapter. Our work accompanies six months of the Stealers

dataset and the implementation code to foster reproducibility and transparency1.

1https://github.com/Astrolavos/stealer-sec23
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Table 4.1: A list of data sources used in this study.

Dataset Description Source

Stealers Stealer tracker MalBeacon

Active DNS Domain reg./resolution ActiveDNS Project [32]

Passive DNS
Recursive and authority
domain lookups

US ISP, Global Recursives,
Nameserver Authority, TLD Authority

Threat Intelligence Malware and domain intel.
URLScan [107], VirusTotal [84]
IP Reg. [108], bot tracker [109, 110, 111]
residential and mobile proxies [6, 112]

4.2 Data and Methodology

In collaboration with MalBeacon, we had initially set out to answer our research questions

and gain insights that can help researchers develop better defenses (detection and preven-

tion) and aid law enforcement in pursuing cybercriminals more effectively (deterrence).

Unfortunately, the Stealer dataset alone does not allow us to explore these questions thor-

oughly; therefore, we must augment the dataset with external data sources. We rely on

DNS and threat intelligence. The DNS dataset characterizes DNS records, volumetrics,

and client resolutions. The threat intelligence datasets enrich, validate, and identify addi-

tional artifacts of malicious infrastructure. Table 4.1 summarizes our data sources.

Scope. Our work investigates the harvesting phase of the credential theft lifecycle. The

resale and distribution of the credentials throughout the underground forums or other illicit

markets are out of scope. Specifically, this work studies one harvesting channel, namely

Stealer malware, their Stealer operators, and the service providers. Readers can refer to

prior works [113, 10, 53, 44, 48, 52] on credential theft profits.

4.2.1 Data Sources

Stealers Dataset. MalBeacon, a threat intelligence company, provided us access to

their commercially available Stealers dataset. MalBeacon tracks many Stealer families,
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Table 4.2: A list of top password stealers found in our dataset.

Family First Price Leaked Panels Hosts
Sold (N = 5, 295) (N = 2, 602)

LokiBot [114] 2015 $80-$300 ✓ 3,613 (68.23%) 1,952 (75.01%)
Formbook [115] 2016 $29-$299 1,195 (16.62%) 285 (5.32%)
Amadey [116] 2018 $600 ✓ 56 (1.05%) 44 (1.70%)
Baldr [117] 2019 $100-$150 32 (0.6%) 32 (1.22%)
Blacknet [118] 2019 Open Source 12 (0.22%) 12 (0.46%)
AZORult [119] 2016 $100 ✓ 8 (0.15%) 8 (0.31%)
Neutrino [120] 2013 $200-$500 ✓ 9 (0.17%) 8 (0.31%)
Agent Tesla [121] 2014 $12-$69 5 (0.09%) 5 (0.19%)
Nexus [122] 2020 $100 5 (0.09%) 5 (0.19%)
KPOT [123] 2018 $85 2 (0.03%) 2 (0.08%)

which are listed in Table 4.2. In our initial analysis, we noticed a skewness in the dataset

that can potentially be attributed to the malware’s (Lokibot, Formbook, AZORult) popular-

ity in the wild [124, 115, 119], limitation of the data collection process, or a combination

of both. MalBeacon uses a proprietary pixel-tracking technique, similar to email market-

ing, embedded into artificial credentials, documents, and other sensitive information that

Stealers target. When the operator views the stolen information, the browser will request

the embedded pixel from MalBeacon’s server and reveal information about their device

(IP address and user-agent).

Figure 4.1 is an overview of how MalBeacon collects the Stealer dataset. Step ❶ the

Stealer infects a system and sends stolen artificial data with the embedded pixel (❷) to the

C&C server, which is committed to the backend storage (❸). Next, when the operators use

their device (❹) to connect to the C&C server (❺), they log in to the management panel

(❻), where the embedded pixel gets rendered (❼). Before the pixel can render, the oper-

ator’s browser will connect to the pixel server (❽) to retrieve the pixel. The pixel server

logs the HTTP request from the operator’s browser into an activity log database and gen-

erates a unique random long-lived cookie ID that is sent back in the response header. Any

subsequent requests by the operator would include the cookie ID, which enables tracking
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Figure 4.1: An overview of Stealer data collection.

operators across different panels. Table 5.2 summarizes the dataset fields and their counts.

MalBeacon did not disclose the proprietary implementation details for their system,

but we demonstrate how to collect a similar dataset using the approach found in Nachum

et al. [125]. In brief, Nachum et al. modify stolen system artifacts by inserting an HTML

image tag alongside the original in the following format: Original Value + Image Tag, i.e.,

“DESKTOP-UU1KCDG¡img/src=//domain.tld/name.gif¿.” When the stolen artifacts are

rendered in the HTTP panel interface (C&C), the operator’s browser will callback to the

image hosting server, and the hosting server will log the IP address, user-agent, and HTTP

headers. To test this hypothesis, we implemented the system found in Nachum et al. and

tested five Stealer malware families (Amadey, Azorult, BlackNet, LokiBot, and Neutrino)

for the following browsers: Chrome 96.0.4664.45, Firefox 94.0.2, and Edge 95.0.1020.44.
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Table 4.3: Stealer dataset fields summary.

Field Name Description Unique

Timestamp
The time a tracking event was
observed. 202,538

IP Address
IP address used by the operator
to access the panel server. 21,812

User-Agent
User-agent string associated
with the operator’s device. 1,484

Cookie ID
A session identifier set by the
tracker for the operator’s browser. 5,552

Panel Web
Address

The referrer field sent to the
tracker. 27,823

We collected the same fields (IP address, user-agent, HTTP header) by using a Windows 10

virtual machine and hooked system calls to modify values such as the IP address (Amadey,

Neutrino), Computer Name (Azorult, BlackNet), Global Unique Identifier (Lokibot), and

Bot Name (Neutrino).

We can utilize additional fields to insert the pixel code, but we leave that for future

work. We induced a pixel callback and cookie ID persistence for all families across all

three browsers. When testing with private browsing, we observe that the cookie IDs are

cleared after each session. Our testing found that privacy features on modern browsers

trim the entire referrer field. Specifically, we observed that starting with Firefox 87 and

Chrome 89, the path and the query string information of the referrer field are missing [126].

The privacy feature impacts the future collection of similar datasets and limits our cookie

merging and malware labeling methodology. However, this work collected the Stealers

dataset before the browser privacy change (March 2021).

DNS Datasets. We use the aDNS from the ActiveDNSProject [32]. The project resolves

over 1,100 zones and includes resolutions for Alexa’s Top 1M and public blocklists. Each

domain is resolved twice during 24 hours. We use aDNS to investigate the Stealer infras-
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tructure by enumerating relationships between observed IPs and domains. Furthermore, we

use three passive DNS (pDNS) datasets from a US-based internet service provider (ISP),

geographically distributed local and global DNS resolvers, and an authoritative nameserver

responsible for several zones and a top-level domain (TLD) authority. The pDNS datasets

are anonymized to exclude any customer-related information. We use pDNS to amplify

the coverage of the stealer domain resolutions and estimate potentially infected networks

resolving the stealer domains. Combining these datasets, we get global visibility from over

80 million internet-connected devices.

Threat Intelligence Datasets. We use eight threat intelligence sources, namely URLScan

[107], VirusTotal [84], IP Registry [108], residential and mobile proxy dataset [6, 112],

and botnet trackers [109, 110, 111]. URLScan implements a website scanning engine to

analyze JavaScript, HTML, and embedded content to detect malicious code. VirusTotal

(VT) is a threat-sharing platform used by hundreds of commercial companies and thou-

sands of security researchers to share malicious indicators. IP Registry is an IP intelligence

service that collects and correlates data from partner networks and public sources like BGP

tables, regional internet registry databases, internet service provider data, geofeeds, and

latency measurements. The data covers 99.9% of the IPv4 space but excludes loopback,

link-local, multicast, private, site-local, and wildcard IPs. The botnet trackers use open-

source threat intelligence to track C&C servers. The residential and mobile proxy datasets

are sourced from an academic study [6, 112] that includes 6.42M residential IPs collected

between May 2017 and February 2018 and 8M mobile proxy IPs collected between April

and August 2019.

4.2.2 Data Validation

The raw pixel server logs contain HTTP request records where each record has a timestamp,

the source IP address, and the HTTP header. MalBeacon processes the HTTP headers

into three fields: user-agent (UA), cookie ID, and referer field. The final dataset format is
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a JSON file that contains the fields in Table 5.2. Our initial analysis of the Stealer dataset

aims at validating the dataset by inspecting the consistency of user agents, the persistence

of cookie IDs, the identification of C&C instances, and the labeling by malware families.

User-Agent Validation. We analyze the number of unique browsers and operating sys-

tems per cookie ID to investigate if the UA strings are potentially spoofed. If UA spoofing

were present, the browser and operating system of the UA per cookie ID would change.

We found six (0.01%) cookie IDs with more than one unique browser and 25 (0.45%) with

more than one operating system. Manual inspection of those records reveals six cookie IDs

with multiple versions of the Windows OS, four cookie IDs with multiple versions of ma-

cOS, and 12 cookie IDs with other operating systems (Linux and Android), which suggests

potential UA spoofing.

On the other hand, 99.55% of the cookie IDs have only one operating system and

browser, with 73.23% having only one browser version. The rest change their browser

version, but they are consistent with the release of browser updates. For example, 50% of

the devices update their browser within 21 days or sooner, and 75% update their browser

version within 41 days or sooner. However, a set of records from Firefox has versions be-

fore the update release, which can indicate spoofing or beta/early testing. Those UAs were

associated with 145 cookie IDs and 6, 068 records. In total, the potentially spoofed UAs

account for 6, 243 (3.0%) records associated with 170 (3.0%) cookie IDs. We discard those

records when we perform operator device measurements.

Lastly, we analyze the top 10 UAs in the dataset and present the results in Table 4.4. We

group by OS and browser and count the associated cookie IDs, C&C, and the average days

between a browser update release and a UA change. The most popular OS is Windows, and

the most popular browsers are Chrome and Firefox. The most popular UAs appear to follow

a uniform distribution with respect to the associated cookie ID count, which implies that

those UAs are not spoofed. We found, on average, 1.25 cookie IDs are associated per C&C,

while 75% of the C&C instances are associated with a single cookie ID. Although these
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Table 4.4: Top 10 user agents and related statistics.

OS Browser Cookie IDs C&C Update (Days)

Windows 7 Chrome 75.0.3770.100 116 119 22.50
Windows 10 Chrome 79.0.3945.130 112 110 24.15
Windows 10 Firefox 68.0 112 140 36.32
Windows 10 Firefox 69.0 111 113 47.23
Windows 10 Chrome 75.0.3770.142 109 120 53.54
Windows 10 Chrome 75.0.3770.100 108 122 21.74
Windows 10 Chrome 73.0.3683.103 95 88 28.57
Windows 10 Chrome 74.0.3729.169 88 109 22.31
Windows 10 Firefox 70.0 82 96 24.95

Windows 7 Chrome 75.0.3770.142 80 72 17.46

statistics imply that the overwhelming majority of the UAs are not spoofed, an operator can

still spoof the most popular UAs to masquerade their actual device fingerprint. This is an

artifact limitation that we can not verify from the dataset. Realistically, an operator must

know the most popular UAs in use with a particular C&C panel to spoof a popular UA.

Cookie ID Persistence. The cookie IDs associated with each request may not be persistent

if operators clear their browsing history or use private browsing sessions. We refer to the

ephemeral cookie IDs as cookie churn, where a device is assigned multiple cookie IDs

over time because they are not persistent. We find the ratio of cookie IDs per C&C panel

to be, on average, 1.59 with a median of one and a maximum of 67, which implies that

cookie churn is present in a subset of the dataset. We address the cookie churn problem

by applying a similar technique to the work of Dasgupta et al. [127]. Briefly, Dasgupta et

al. address cookie churn for user-modeling and reach-frequency in the context of online

advertisement. User-modeling refers to estimating how many users visit a particular site

(users per C&C panel), whereas reach-frequency refers to how often an individual user

visits a particular site. Our study focuses on user modeling to address the cookie churn

problem.

We use the OS, browser, and panel URL as device profiles. In addition, we use two
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cannot-link constraints, namely cookie lifespan overlap and browser version. Cannot-link

constraints are logical constraints that can disambiguate distinct but similar device profiles.

For example, the cookie ID’s lifespan interval (last seen - first seen) cannot overlap. If two

device profiles use Windows 10 and the Chrome browser, but the lifespan of their cookie

IDs overlaps, then we assume that they are distinct since they access the same C&C from

similar devices but use different cookies. The browser version constraint merges cookie

IDs if and only if the browser version in later records is greater than or equal to the browser

versions in earlier records per C&C panel.

We design and implement algorithm 2 to analyze and reconcile multiple cookie IDs

belonging to the same device. The input takes a set of C&C panels and retrieves a set of

devices that access the panels (line 2). A device is a tuple of UA string and cookie ID, where

the UA is parsed for the OS, browser, and browser version. Once we have a set of devices

(D), we group the records by the OS and browser and sort them by the first seen date (lines

3 and 4). For each group (g), we iterate through the cookie IDs and either allocate a new

cluster (line 9) or merge on the profile features and cannot-link constraints (line 16). Since

we lack the ground truth to evaluate the accuracy of Algorithm algorithm 2, we define an

error metric called ambiguous merge error to quantify missed merges. Our merge policy

coalesces cookie ID candidates with the earliest cluster (first seen), and therefore, the metric

captures how many other clusters the candidate cookie ID could have merged with.

We calculate the ambiguous merge error (AME) using the following formula: AME =

|collision|
|gi.GetClusters()| . Specifically, we calculate the AME per group (gi) since the merge error

can only occur when the profile features and cannot-link constraints are met for more than

one cluster per group. We found 872 groups with at least two cookie IDs. We skip groups

with one cookie ID since they cannot be merged. Out of the 872, we detected merge misses

in only 29 groups. Furthermore, 19 out of the 29 groups with merge misses are in the

top 100 largest groups. The largest AME value is 1.22, which indicates that the merge

is ineffective, i.e., merge error over 100%. This merge error belongs to the 89th largest
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Algorithm 2: Merge device’s cookie IDs.
Input: A set of unique C&C (C2)
Result: Merged Cookie ID Clusters

1 Merged← {}
2 D ← GetAssociatedDevices(C2)
3 G← Group(D , by=[OS ,Browser])
4 for g in G.sortAsc(firstSeen) do
5 for i=0 to g.size do
6 if gi in Merged then
7 continue
8 Merged.addNewCluster(gi)
9 for j=i+ 1 to g.size do

10 for c in Merged.GetClusters() do
11 if gj .lifespan not overlap c.lifespans
12 and |gj .C2 ∩ c.C2| ≥ 1
13 and gj .browser ver ≥ c.browser ver then
14 MergeWithCluster(c , gj)

15 return Merged

group, which had nine unique cookie IDs and 11 possible merge combinations (ambiguous

merges).

We discard groups with large AME values (more than 0.20) for the analysis. We

summarize the distribution of AME for the largest top 10, 100, and all groups in Figure 4.2.

Eight out of the ten largest groups have less than 0.1 AME rate. Additionally, five out of

the ten largest groups have a 0.0 AME rate, which gives us confidence in the results since

these groups have many cookie ID nodes. For example, group two has 68 unique cookie

IDs and a merge collision count of 0. Beyond the AME metric, we manually inspected the

top 100 groups to ensure that Algorithm algorithm 2 correctly coalesced cookie IDs and

accounted for merge misses.

C&C Instance Identification and Labeling. The Stealer dataset does not contain any

malware family labels or panel instance distinction, which makes our analysis challenging.

Identifying and labeling the panel instances is essential for us to discern between different

malware families and hosting infrastructure. We perform three labeling tasks: identification

of panel instances, panel malware families, and panel dynamic DNS domains. A single host

can serve multiple panels. We define a panel instance (Π) by the domain or IP address (δ)

and URL path (ρ). More formally, Π = {δ, ρ} where the δ can be a domain or an IP
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Figure 4.2: Distribution of AME per top largest group.

address and ρ is the URL path starting from the domain/IP to file name and extension (γ).

For example, the following illustrates the components of a panel URL address:

http://domain.tld/path/file.ext?param=1

δ

ρ

γ

We label records that do not contain URL paths as unknown and exclude them. Next,

we assign a malware family label to the panel instances. We rely on the panel’s URL com-

ponents, such as the path (ρ), file name, and extension (γ), and parameters. We manually

create Stealer family label signatures based on leaked source codes and panel tracker ser-

vices [111, 109, 110]. Figure 4.3 presents our labeling process. In step one (❶), we extract

URL patterns and labels from our source code and panel trackers. Next (❷), we use the

strings and their order to generate a fingerprint for each Stealer family. In step three (❸),

we store the signatures and the family labels in the database. Finally, in step four (❹), we

label the panel instances based on the derived signatures. The signatures are in the form of

regular expressions. From the 202, 538 records in the Stealers dataset, 15, 237 (7.5%) are
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Figure 4.3: Panel signature generation and identification.
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associated with 357 (6.7%) panel instances with unknown labels. We attempted to use the

AV labels from the malware files associated with each panel instance; however, we found

them unreliable and noisy [90]. For Effective Second-Level (E2L) Dynamic DNS domains

(DDNS), we manually verify them to ensure there are no false positives, and we use pDNS

to identify domains with 50 or more subdomains.

4.3 Ethical Considerations

We take our ethical and legal responsibility seriously and ensure our study does not violate

widely accepted norms. Our institute reviewed our request for an IRB and concluded that

we do not require an IRB review. We also presented our study to the institute’s Office of

Cybersecurity for compliance, and they had no concerns. This study uses data collected by

MalBeacon, a US-based commercial company that operates and adheres to the Computer

Fraud and Abuse Act (CFAA). The collection technique does not actively scan, exploit, or

social engineer the malware operators in any way, and an external legal review commit-

tee reviewed MalBeacon’s tracking method and deemed it compliant with the Computer

Fraud and Abuse Act (CFAA) and the Directive on attacks against information systems.

The approach relies on honey tokens that many prior works use [55, 56, 128, 58, 59, 60,

57], which date back to 2004. Moreover, our dataset analysis follows the precedence of

prior works that study malware operator activities [54, 50, 43].

Research of criminal activity often involves deception or clandestine research activ-

ity [129, 130], so requests for waivers of both informed consent and post-hoc debriefing

may be relatively common as compared with research studies of non-criminal activity. Sup-

port for such waivers is recommended when the research involves no more than minimal

risk to the subjects, and the research could not be carried out without the waiver. Deception

is necessary for the Stealers dataset to obtain data that characterizes the Stealer ecosys-

tem. Such studies are considered permissible when (1) the research addresses important

questions of public concern, (2) the research cannot be conducted if the subjects must pro-
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vide consent, and (3) involving subjects in the research without their permission does not

significantly compromise their autonomy. This study meets all three criteria, and the scope

follows well-established Menlo guidelines. Furthermore, our study analyzes a commercial

dataset (passive observations) and does not directly implicate any malware operators or

cause direct harm.

Finally, the data contains no personally identifiable information (PII). The IP address

can be considered PII with additional auxiliary data, but not by itself. From a law-enforcement

perspective, an IP address can be subpoenaed by the ISP to get PII information about the

person leasing the IP address at a given time. We do not have legal authority or access to

auxiliary information to identify individuals. Despite well-established guidelines on de-

ceptive studies and issues regarding PII, we note that computer security research is more

like behavioral research because the risks typically are not physical and can be challenging

to quantify. Although evidence indicates that harm resulting from deceptive experiments

is minimal and transient, it is still incumbent upon us to identify and minimize potential

harm. We reiterate that we take the responsibility seriously and ensure our study does not

violate ethical norms.

4.4 Analysis Results

To answer our research questions, we study how Stealers use internet infrastructure and

analyze how Stealer operators administer their botnets by characterizing their devices,

networks, and activities.

4.4.1 Stealers on the Internet

Our analysis of the Stealers public code shows that Stealers require minimal hosting

infrastructure. We further seek to characterize Stealer hosting on the internet. Specifically,

we characterize the domains and hosting networks of Stealers, quantify the detection delay

between infrastructure setup and blocklist detection, and assess the potential infections
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Figure 4.4: Distribution of panels and associated malware.

indirectly through the DNS dataset.

Internet Infrastructure. The Stealers dataset contains 2, 187 registered domains, out

of which 78 are DDNS and web hosting domains, and 281 panel hosting IP addresses for

a total of 2, 468 unique panel servers (hosts). This count excludes the two bogon panel IP

addresses and three popular non-malicious domains in the Alexa top 100K [131]. Table 4.5

summarizes the top 10 top-level domains (TLD) count for effective second-level domains

(E2LD)s of the C&C panels. For the panel domains, 41.4% use the COM TLD, followed

by 19.0% that use free country code domains (ccTLDs) like TK, ML, CF, and GA. Free

ccTLDs are known to be heavily abused by malware [132]. The right side of Table 4.5

summarizes the top ten network names for the C&C panels, which account for 70% of the

hosts. About 30.9% use US-based hosting (Cloudflare, Namecheap, and Unified Layer),

15.8% use Russian-based hosting (Reg.ru, SelecTel, Mail.Ru, The First, and IHOR-AS),

and 12.2% use Chinese-based hosting (Alibaba Cloud and Tencent).

In Figure 4.4, we present the distribution of panels and associated malware files per host
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Figure 4.5: Distribution of domain events and detection.

and panel, respectively. Note that we differentiate between the host and the panel since a

host can serve multiple panel instances. We observe that 64% of the hosts serve a single

panel, 26% of the hosts serve between two and four panels, and 9.8% of the hosts serve

five or more panels; the largest host has 71 panel instances. We find that 61.5% of the hosts

have 10 or fewer malicious files associated with them. The number of malware files per

panel and host has a maximum value of 43 and 249, respectively.

Table 4.5: Top 10 TLDs and hosting networks for panel hosting server domains.

TLD Domain (%) Type Reg. Cost Network Domain (%)

COM 874 (41.5%) Commercial $8.38 CLOUDFLARENET 308 (14.1%)
GA 107 (5.0%) Country Code $0 NAMECHEAP-NET 263 (12.0%)
XYZ 105 (4.9%) General $0.99 CNNIC-ALIBABA-US-NET-AP 197 (9.0%)
ML 97 (4.6%) Country Code $0 UNIFIEDLAYER-AS-1 105 (4.8%)
INFO 94 (4.4%) Information $2.99 SELECTEL OOO 86 (3.9%)
TK 79 (3.7%) Country Code $0 AS-REGRU 79 (3.6%)
ICU 73 (3.5%) Business $1.99 TENCENT-NET-AP-CN 71 (3.2%)
CF 66 (3.1%) Country Code $0 Mail.Ru LLC 64 (2.9%)
TOP 61 (2.9%) General $0.99 THEFIRST-AS JSC The First 61 (2.8%)
GQ 56 (2.6%) Country Code $0 IHOR-AS Ihor Hosting 57 (2.6%)

Detection of Stealer Hosting. Next, we want to assess if public blocklists detect Stealer
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Figure 4.6: Distribution of the time delta for events and detection.

infrastructure, and if they do, what is the time delta between the domain setup and detection.

The time delta can inform us of the current defense efficacy against Stealers and identify

limitations researchers can address. We find that 95% of the Stealer hosts appear on the

VT historical blocklist. Surprisingly, 123 hosts do not appear on public blocklists. We

investigated the 123 hosts and found no notable difference from the detected domains.

Figure 4.5 quantifies the detection timeline for 52.58% of the newly registered Stealer

domains with no prior DNS history (first-time registration). The plot shows the distribution

of the events for new DNS records (solid blue line), malicious detection (dotted orange

line), and the first operator activities in the Stealers dataset (dashed green line).

The average and median time for the first observed DNS record is 15 and two days,

respectively. The pDNS data shows that operators set the DNS records within the first

week after registration for 77% of the domains. We find the average and median time

for detection is 74 and 11 days, respectively. Notably, the operators continue to access the

Stealer hosts even after detection for an average of 74 days. On the other hand, 53.26% and

69.03% of the Stealer hosts stop operating 14 and 30 days after appearing on blocklists,
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Table 4.6: Networks resolving stealer domains by country for residential, business, and
government networks.

Client Networks Residential Networks Business Networks Government Networks
Type Count (%) Countries Count (%) Vol. Days Vol/Day Countries Count (%) Vol. Days Vol/Day Countries Count (%) Vol. Days Vol/Day

Hosting 67,958 (40.5) China 4,187 (14.1) 607,282 473 1,283 United States 25,315 (92.8) 1,441,020 500 2,882 United States 113 (54.6) 40,161 328 122
ISP/Telco 37,463 (22.3) Morocco 3,313 (11.2) 47,854 351 136 Vietnam 619 (2.2) 2,004,091 348 5,758 Canada 14 (6.7) 405 25 16
Residential 29,595 (17.6) India 2,556 (8.6) 135,815 466 291 United Kingdom 309 (1.1) 1,652,777 420 3,935 China 8 (3.8) 604 139 4
Business 27,269 (16.1) United States 2,293 (7.7) 195,714 481 406 S. Korea 152 (0.5) 18,798 276 68 Italy 6 (2.9) 265 60 4
Education 5,143 (3.0) Iran 1,479 (5.0) 16,929 429 39 India 117 (0.4) 5,399 287 19 Indonesia 5 (2.4) 7 6 1
Government 207 (0.1) Mexico 1,410 (4.7) 75,469 403 187 Nigeria 108 (0.4) 7,615 212 36 Israel 4 (1.9) 235 57 4
Health 188 (0.1) Indonesia 1,360 (4.6) 48,557 352 137 China 69 (0.2) 182,895 361 506 India 4 (1.9) 4,264 80 53

respectively. For 43% and 28% of the newly registered panel domains, we find that they

are detected within one week and after two months, respectively. The remaining Stealer

domains go undetected for an average of 64 days and a median of six days after their first

DNS resolution. Within the undetected domains, 33% remains undetected for over a month.

We observe, on average, 87 days between registration and first appearance in the Stealers

dataset, with a median of 20 days. MalBeacon integrates with VT to share samples, which

may correlate with the median time to detection (20 days). Additionally, Figure 4.6 shows

the time window distribution for the first and last seen activity from the Stealers dataset

centered around the first malicious detection of a panel host observed in VT. Almost 70%

of the panel hosts appear in the Stealers dataset within seven days or less after their first

detection. In summary, operators provision Stealer hosts within two weeks. They appear

on blocklists within 74 days on average. Operators continue to access the Stealer hosts for

an average of 74 days after their detection.

Assessing Victim Targeting.

We estimate the number of targeted victims to understand the impact of Stealers. To

get an accurate estimate, we would require direct access to the C&C server, which we do

not have. Instead, we use the pDNS dataset to estimate the number of potential infections

by analyzing the DNS resolutions. We quantify the number of DNS resolutions by network

types and countries during the active time frame of each domain in the Stealers dataset.

We define a network by the EDNS Client Subnet (ECS) [92, 133] found in the DNS re-

source records for clients resolving domains above the recursive, where the DNS recursive

query the upper DNS hierarchy (i.e., TLDs and authoritative name servers). It is important
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to note that the results are associated with subnets, not IP addresses, which can underes-

timate the number of targeted victims. Moreover, we base the analysis on potential, not

confirmed, infections.

We observe a total of 255, 925 unique networks, but we can only label 167, 989 (65.6%)

of them. Table 4.6 presents the results. The table has four parts, namely the Client Net-

works, Residential Networks, Business Networks, and Government Networks. The Client

Networks is a breakdown of all 167, 989 labeled networks. The Residential Networks cate-

gory is a breakdown of the networks that belong to residential subnets grouped by country.

The Business Networks is a breakdown of the labeled business subnets grouped by coun-

try. The Government Networks category is a breakdown of the labeled government subnets

grouped by country. For each network label, we show the network count (Count), lookup

volume (Vol), days queried (Days), and lookup volume rate (Vol/Day).

Table 4.7: Top 10 hosting networks querying stealer domains.

Hosting AS Networks

AMAZON-AES 30,705
AMAZON-02 12,515
CLOUDFLARENET 5,890
MICROSOFT-CORP-MSN-AS-BLOCK 4,708
OVH OVH SAS 1,623
DIGITALOCEAN-ASN 728
MAXIHOST 543
M247 M247 Ltd 536
SOFTLAYER 461
UK2NET-AS UK-2 Limited 332

We find that 40.5% of the resolutions originate from Hosting networks. These networks

appear to be associated with virtual private server (VPS) providers, cloud providers (i.e.,

AWS, OVH, Azure), and content delivery networks (CDNs), as shown in Table 4.7. The

rDNS records show that VPS and cloud networks account for virtual private network (VPN)
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services. Moreover, a portion of cloud networks and most of the CDNs appear to be internet

scanners or security tools. These observations align with prior works on malicious domain

sinkhole analysis [17]. However, many hosting networks are unlikely to be infected clients.

We observe ISP/Telco as the second and Residential as the third most popular networks.

The residential networks are more likely to be victims since ISPs designate the space for

home users. For the Residential Networks, we observe that Chinese clients make up 14.1%

of the potential infections, followed by Morocco (11.2%), India (8.6%), and the United

States (7.7%). Notably, we find 207 government networks resolving Stealer domains. We

took a closer look at the 113 U.S. government networks and found a mix of federal (24),

state (32), and local (58) government networks. At the federal level, we found high-profile

government networks like the U.S. Social Security Administration (4), the U.S. House of

Representatives (2), and the U.S. Senate (2).

Investigating further, we found a total of 107 DNS responses for 27 different Stealer

domains from August 2019 to November 2020. More specifically, for the U.S. Senate net-

work, we observe a total of 12 distinct resolutions for nine domains from January 2020

to July 2020. These DNS resolutions originate from what appear to be the DNS recur-

sive servers for the U.S. Senate network. These resolutions suggest that there may be

more infections because the DNS resolutions are typically cached. Nevertheless, the sen-

sitivity of these government networks, including the U.S. Social Security Administration,

demonstrates the wide reach and impact of Stealers. Finally, the infection period for all

28 domains extends over a year, giving operators ample time to execute other capabilities

(e.g., keylogging, dropping malware, and reverse shell).

Takeaway: We find Stealer infrastructure requires minimal hosting resources and

abuse services such as free ccTLDs and cloud-fronting. Moreover, on average, public

blocklists detect Stealer domains 74 days after the initial registration with a median of 11

days. This detection gap gives Stealers ample time to infect and harvest credentials from

various networks. Their long-lived activities may be problematic, as they allow operators
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time to exercise other malware capabilities (i.e., install ransomware [134]).

4.4.2 Characterization of Operators

The Stealers dataset provides a unique vantage point to characterize how Stealer oper-

ators manage their botnet using the C&C panels. We take a closer look at how operators

interact with the C&C panels through their devices and shed light on their tactics.

Device and Network Characteristics. Characterization of the device and network associ-

ation can inform researchers about common patterns cybercriminals use. These character-

istics can help build heuristic-based defenses that profile device and network properties to

flag suspicious and unauthorized access. On average, operator devices access panels using

6.66 IP addresses that belong to 1.95 autonomous systems (ASNs). The largest number of

IP addresses associated with an operator device is 230, belonging to nine ASNs. Moreover,

the standard deviation for operator device IP addresses is almost double the average (12.7).

When looking at how operators access their C&C panels, we find, on average, operator

devices access 1.62 unique panel instances, 1.51 unique domains, and manage 1.04 mal-

ware families. The operator device with the most panel instances accesses 57 unique panels

hosted on 42 distinct domains. We take a closer look at this particular example and find

that the 42 distinct domains use algorithmically generated domains (DGA).

After applying the cookie merging algorithm (Algorithm algorithm 2), we find oper-

ator devices associated with 1.17 cookie IDs on average. The operator device with the

most cookies has 55 unique cookie IDs. For over a month, this device used the same

operating system, browser, and browser version to access the same panel with 55 unique

non-overlapping cookies, suggesting cookie churn.

In the entire Stealers dataset, 465 (10.14%) operator devices have more than one

cookie ID. We find, on average, 5.7 more IP address associations for these devices. Cookie

merging (Algorithm algorithm 2) helped us build a complete profile for these operator de-

vices and uncover related IP addresses and ASN associations that we would have missed
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otherwise. Cookie churn fragments access patterns, and we must address the churn to build

a more accurate device profile. Additionally, operator device profiles are diverse and can

help distinguish between operators.

Operator Devices Types. Next, we take a look at the type of devices used by operators to

understand the type of devices they utilize. Table 4.8 summarizes the overall statistics for

the operators’ devices. There are 4, 586 unique operator devices associated with two types

(desktop and mobile), 19 different device vendors, 70 different device models, eight differ-

ent operating systems, and 8 different browsers. We find 4, 467 (97.40%) of the operator

devices are personal computers (PCs), while the rest 2.6% are mobile devices. Among the

PC operator devices, 4, 282 (95.85%) use a version of Microsoft Windows, 135 (3.02%) use

a version of Apple’s macOS, and 50 (1.12%) use a Linux/Unix system. Among the mobile

operator devices, 95 (91.34%) are Android while the rest 9 are iOS. In terms of browsers,

3, 232 (70.47%) operator devices use a version of Google Chrome, 1, 293 (28.19%) use a

version of Mozilla Firefox, while the remaining 40 use other browsers. These results sug-

gest that most Stealer operators conduct their work from personal computers (desktops or

laptops) using popular browsers, but they are utilizing 3 times more the Mozilla Firefox

browser compared to the average user[135].

Table 4.8: Top panel operator device types and operating systems.

Desktop Mobile
OS Ver. Count (%) OS Ver. Count (%)

Windows
10 2,148 (46.84)

Android

9 22 (0.48)
7 1,112 (24.25) 8.1 18 (0.39)

8.1 893 (19.47) 7 17 (0.37)

MacOS
10.14 47 (1.02) 8 9 (0.19)
10.15 29 (0.63) 10 9 (0.19)
10.13 26 (0.56) 6 6 (0.13)

Linux All 50 (1.10) iOS 12 8 (0.17)

Networks Access Patterns. We analyze the network types, the use of proxies, and the
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Figure 4.7: The diurnal analysis for the top 20 countries of operator device activity (dark
more active and light less active).

localized diurnal access times to investigate the access patterns. In total, operator net-

works originate from 135 different countries with different network classifications. The

network classifications include ISP (11.55%), ISP-Mobile (55.14%), and hosting networks

(31.71%). Interestingly, over half of the operator networks are classified as ISP-Mobile.

The bar graph in Figure 4.7 presents the top 20 countries for operator device networks.

Most ISP (80.32%) and ISP-Mobile (84.72%) networks are located in Nigeria. Revealingly,

99% of the internet broadband in Nigeria relies on mobile wireless connections [136]. Us-

ing the residential and mobile proxy dataset [6, 112], we intersect the timestamp and IP ad-

dress of each operator device and find 882 (4.04%) mobile proxy records matching against

the operator IP addresses. However, omitting the timestamp field to only match against the

IP, we find 1, 785 (8.43%) and 5, 667 (26.76%) matches for residential and mobile proxies,

respectively.

Furthermore, we analyze the number of Tor exit nodes associated with the operator

networks and present the overlap per country in Table 4.9. Nigerian IP addresses make up
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Table 4.9: Top 10 countries of operator IP addresses and their proxy and tor networks.

Country IPs Mobile Proxy (%) Residential Proxy (%) Tor Exit Node (%)

Nigeria 11,375 4,326 (38.03%) 1,181 (10.38%) 0 (0%)
United States 1,936 161 (8.32%) 36 (1.86%) 15 (0.77%)
Great Britain 908 153 (16.85%) 65 (7.16%) 7 (0.77%)
South Korea 812 170 (20.93%) 14 (1.72%) 0 (0%)
Germany 496 40 (8.06%) 47 (9.47%) 10 (2.01%)
Netherlands 418 33 (7.90%) 31 (7.41%) 5 (1.20%)
Turkey 291 19 (6.52%) 16 (5.50%) 0 (0%)
Canada 279 23 (8.24%) 24 (8.60%) 3 (1.07%)
France 231 28 (12.12%) 21 (9.09%) 2 (0.86%)
Norway 222 4 (1.80%) 4 (1.80%) 0 (0%)

about 53.73% of the operator networks, and 42.55% were observed as proxy networks. Ad-

ditionally, the top networks classified as hosting are also strongly associated with VPN ser-

vices. For example, we find most hosting networks to be located in the US, Great Britain,

Germany, and the Netherlands, and the top 3 ASNs are: AS9009 M247 Ltd, AS198605

AVAST Software s.r.o. and AS205016 HERN Labs belong to VPN services [137, 138,

139]. We cross-checked the hosting networks with IP intelligence feeds and found that

IPRegistry [108] labels them as VPN networks. These findings suggest that Stealer oper-

ators use proxy networks like residential, mobile, Tor, and traditional VPN services when

accessing the management panel. These findings demonstrate that operator profiling can

be involved and naively using the operator networks to attribute cybercriminals can be in-

accurate.

Operator Device Diurnality. Diurnal analysis can provide another perspective on the

nature of operator device access. We can use the analysis as an additional confluence

signal for the geographical location. We quantify the access frequency for only ISP-based

IP addresses not found on the proxy lists. The time zones for the diurnal analysis are

localized to the geographical region associated with the operator’s IP address. Figure 4.7

presents the diurnal access patterns for ISP-based (Mobile and Landline) operators. We

present the top 20 countries, which account for 95.60% of the ISP-based operator device

IP addresses in the dataset, and make up 63.70% of the IP addresses of the entire dataset.
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The time zone localization shows higher activity on weekdays than the weekends for most

countries. For example, the Nigerian diurnal profiles have double the weekday activity

compared to the weekends.

The results suggest that most operator devices are more active on weekdays, regardless

of the potential victim connections. Those diurnal activities can imply that operators man-

age Stealer as a full-time job as they are mostly connecting during weekdays. The higher

activities observed on the weekend for some regions (Russia, Spain, Namibia) can suggest

that these operators use proxy networks and do not necessarily reside there. More impor-

tantly, when combined with other signals (device fingerprint, network, and access profiles),

these observations can provide higher confidence in the operator device profiles.

Takeaway: Operators use proxy services ranging from traditional VPNs to mobile and

residential proxies to Tor networks. In particular, the mobile and residential proxies can

cause misdirection when characterizing operator profiles. The cookie IDs are reasonably

persistent with the majority of the devices in the dataset, but for some operators, private

browsing results in ephemeral cookie IDs. The diurnal analysis suggests that operators

administer their botnet as a full-time job.

4.5 Discussion

During this chapter, we investigated how malicious threat actors conducting Stealers op-

erations utilized network infrastructure. Our findings have several practical applications

that could be utilized by network analysts and law enforcement.

Actionable Insights. How can researchers and law enforcement act on these insights?

For researchers, we empirically document that Stealers have defensive tactics to prevent

active scanning and identification of C&C panels. Researchers can incorporate this infor-

mation to build a tailored internet-wide scanning system to find C&C panels. For example,

a scanner can scan a target host twice, once to trigger a block and a second time to check

if the connection is blocked. This approach turns the Stealer defense system against itself
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and allows researchers to detect possible C&C panel hosts. Additional insights, such as

geographical distribution of infrastructure, ASN association, and infrastructure character-

istics, can inform researchers to design and evaluate adequate active Stealer infrastructure

detectors.

Law enforcement can apply our operator device profiling techniques to characterize

cybercriminals accurately. We show operators use private browsing and diverse proxy

services to masquerade their fingerprints. However, law enforcement can build a more

accurate device timeline and C&C panel access as forensic evidence using our cookie

churn merging algorithm and diurnal analysis. Moreover, the affiliation analysis can iden-

tify cybercriminal groups and pinpoint their top active participants, which can help law

enforcement efficiently go after influential operators. Similarly, our findings can help re-

searchers to identify active Stealer infrastructure and prioritize their cleanup. For example,

researchers and law enforcement can collaborate to takedown domains with large clusters

of operator activities. Lastly, our infection analysis can lead law enforcement to investigate

sensitive networks with potential Stealer infections.

Operator Attribution Attribution can be of two types, namely, virtual or physical. Physi-

cal attribution requires jurisdiction and legal access to private information. Additionally, an

ethical aspect of physical attribution must adhere to some acceptable policies and norms.

This work focuses on virtual attribution to identify operator affiliation, albeit these tech-

niques are meant to complement and enhance existing methods instead of being used in-

dependently. Virtual attribution deals with identifying and tracking different threat groups

based on indicators of compromise (IoC). However, we caution the reader that attributing to

a specific group is complex, and we avoid making speculative judgments. For instance, our

dataset shows that a significant number of activities come from Nigeria, but this can be mis-

leading for a forensic analyst because it does not represent the whole picture. Although this

observation is suggestive, we observe that many Nigerian operator networks are mobile or

residential proxies. Enigmatically, these proxies appear to be part of anonymity networks
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(similar to Tor), where participants may be willingly or unknowingly tunneling traffic [6,

112]. Nevertheless, law enforcement could incorporate our techniques to improve virtual

and physical attribution.

4.6 Summary

Our empirical analysis of Stealers sheds light on the infrastructure and the lifecycle of

the interactions of cybercriminals with it. We found that operators quickly provision their

C2 infrastructure within 14 days after registration to their domain names and much of the

Stealers infrastructure to be long undetected, with public blocklists detecting Stealer do-

mains on average 74 days after initial domain registration, which gives operators plenty of

time to infect more victims. Stealers operators conduct their campaigns utilizing minimal

hosting resources and abuse services such as free ccTLDs and cloud-fronting. Operators

use proxy services ranging from traditional VPNs to mobile and residential proxies to Tor

networks, and the mobile and residential proxies they utilize can cause misdirection when

characterizing their profile; thus, law enforcement and security analysts have to be careful

in their attributions. The diurnal analysis of the operators suggests that they administer

their botnet as a full-time job. Last, we find that 69.03% of the operators stop utilizing

their panels within 30 days of a detection event, suggesting that while they do not imme-

diately abandon their operations after detection, the detection event is critical to curb their

operations. Future works need to invest more resources in more prompt detection of such

management panels and counter the anti-scanning defenses that operators place in order to

avoid being easily identified.

While so far, chapter 3 and chapter 4 have provided us with unique insights into the

temporal behavior of malware communications as well as a deeper understanding of the

network modus-operandi of cybercriminals, they have only partly characterized the infras-

tructure lifecycle, as they have mainly focused on communications towards the infrastruc-

ture servers –targeting– and the interactions of the cybercriminals with their servers while
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their operations were active. In the next chapter, we focus on studying the temporal dy-

namics of malicious domain names by identifying when they have been historically active

without the need for proprietary techniques as showcased in this chapter, and demonstrate

how that can enable network and security analysts to get a more comprehensive view of the

IP infrastructure of historical cyber attacks.
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CHAPTER 5

UNDERSTANDING THE LIFECYCLE AND INFRASTRUCTURE OF APT

DOMAIN NAMES

5.1 Motivation

In this chapter, we focus on characterizing the temporal dynamics of malicious domain

names and propose a novel methodology for the accurate discovery of historically utilized

IP infrastructure. Since prior work [10] and our takeaways from chapter 3 and chapter 4,

point out that less sophisticated and commodity threats register and utilize domain names

rapidly, we focus our scope for this work on sophisticated threats. Such threats have been

demonstrated to strategically age their domain names [140, 141] in order to bypass common

detection systems [142] that focus on features such as the age of the domain name [143,

144]. Although sophisticated threats do not exclusively utilize strategically aged domain

names, given their sophistication, they are more likely to do so, thus their infrastructure

is a more applicable target for historical and temporal characterization relative to common

threats that rapidly utilize domain names after detection.

Advanced Persistent Threats (APTs) are attacks conducted by well-organized, well-

funded, and technically sophisticated actors [145]. The term APT, likely coined in 2006 by

analysts of the United States Air Force [146], is used to differentiate commodity and low-

sophistication operations (e.g., script kiddies) from those that are more complex and often

backed by nation-states and sophisticated crime syndicates. The sophisticated and unique

modus operandi of these actors—as captured by MITRE’s cyber kill chain [147]—has led

to specialized mechanisms for APT detection and investigation [68, 69, 70, 71, 72]. Despite

active APT research, recent attacks have continued to cause widespread damage, such as

the SolarWinds supply chain attack that forced more than 18,000 customers (including the
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US government) to install malicious code [148] or the 2025 Bybit hack [149] that stole $1.5

billion worth of digital tokens.

Prior work on APTs has been mainly focused on detection and investigation systems [68,

69, 70, 71, 72, 73, 74] either aiming at identifying APT attacks in real-time or aiding with

forensic investigations. Measurement studies have focused on understanding the attack

surfaces of organizations targeted by APT actors [75], the vulnerabilities they use [150],

or the tactics, techniques, and procedures (TTPs) they employ [151], or sophisticated at-

tacks against specific targets [15] and regions [16]. Despite the prior work to understand

and combat APT attacks, APT investigations still remain a highly manual effort done by ex-

perts [22]. Among the top challenges expert APT analysts currently face is that the “lack of

automation and validation in data ingestion impacts the use of historical threat data [22].”

While these challenges are evident across different signals of APT investigations, such as

TTPs and malware, they also pose a major problem in the utilization of Indicators of Com-

promise (IoCs), such as domain names and IPs, which remain the primary signals for APT

attribution [22]. Aside from aiding expert APT analysts in investigation and attribution ef-

forts, characterizing and contextualizing the network infrastructure (i.e., domains and IPs)

of APTs, which has been demonstrated to be lacking from public reports and threat intelli-

gence [152, 153], can help us answer and quantify research questions that are still largely

unanswered. For instance, the network infrastructure comprehensiveness of public threat

reports, the longevity of APT infrastructure before disclosure, and the infrastructure utiliza-

tion trends and similarities of APT groups over the years are still open research questions.

Answering these questions can help the community devise more comprehensive defensive

strategies, develop more effective attribution systems by utilizing network attributes, and

understand how long organizations need to keep network logs in order to detect whether

they have been a victim of an APT attack, considering that APTs are particularly persistent

compared to commodity threats, thus requiring higher log retention windows.

One of the main challenges in trying to answer the aforementioned research questions
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Figure 5.1: Lifecycle of an actor-controlled domain name. Multiple owners and infrastruc-
ture types complicate forensics.

is the fact that the relationship between the network infrastructure used to orchestrate an

attack and the APT actors is transitory, as is evident in their domain names [33, 34] and as

shown in Figure 5.1. For instance, an APT actor can register a previously expired domain

name, park it at parking infrastructure, point it to their attack infrastructure for a few days,

and then let it expire or be taken down. Another challenge is the fact that APT attacks can

persist for years, and the actors can dynamically change the IP addresses utilized by their

domain names. Thus, to comprehensively and accurately identify the network infrastruc-

ture associated with an APT domain and its lifetime, a forensic analyst needs access to a

dataset that is capable of witnessing the historical IP changes, has to filter out unrelated

and noisy infrastructure (e.g., parking and sinkhole, etc.), and finally pinpoint the infras-

tructure and period of time in which each domain name was ”active”. These challenges

diminish the usefulness of networks IoCs just as they are extracted from threat reports, and

require analysts to invest manual effort to enrich, contextualize, and validate them, which

is time-consuming [20], and is typically conducted on a per-incident basis [154].

In this work, we reduce the knowledge gap in the network infrastructure of APT attacks

by performing the first longitudinal study of APT infrastructure used by 405 APT actors

over a period spanning a decade. We focus on measuring and expanding the comprehen-

siveness of the publicly known IP infrastructure of APT attacks, by enriching known, high-

confidence APT domain names appearing across 2,188 APT reports with historical DNS

data. To this end, and considering the measurement challenges we discussed, we utilize
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two historic DNS datasets [155, 32] that witness changes to over 1,100 generic top-level

domains (gTLDs) daily, and a novel measurement methodology that automatically and ac-

curately characterizes historic APT infrastructure. Our novel measurement methodology,

called Atropos, filters and labels domain-to-IP mappings – Resource Records – related to

known domains of APT actors, while discarding IP addresses that are unrelated to APT

attacks (i.e. parking, sinkholes, etc.), providing needed automation that expands, validates

and contextualizes historical threat data, which has been recently characterized as a major

challenge by APT experts [22]. Our contributions are as follows:

• A novel measurement methodology that expands and contextualizes the network in-

frastructure of known APT domain names offering three times the IP visibility and

domain contextualization than that of public threat reports. We will make the code

of Atropos available.

• The largest and most comprehensive APT infrastructure analysis to date, spanning

over a decade and 405 APT actors.

• We quantify the time window during which organizations need to keep network logs

to identify the vast majority of the infrastructure of an APT attack. Our results show

that the network logs should be preserved for at least 19 to 25 months.

• We find that while APT actors utilize a plethora of different hosting providers, they

only re-use a small portion of them, and that over the years, the use of cloud-fronting

has increased significantly. These findings verify expert knowledge [22] and make

network forensics and attribution harder.

5.2 Challenges in Domain Lifecycle Analysis

APT network forensic investigations are often conducted as more of an art than a science.

Among the many challenges that network forensic investigators must address, identifying

the period of time in which the APT attack was active has traditionally been a highly
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manual process. In the following, we outline the main challenges investigators face in

temporally bounding the active period of the APT attack ( subsection 5.2.1), then put these

challenges into perspective using the SolarWinds attack as a case study ( subsection 5.2.2)

and finally outline the scope and requirements we need to measure the lifecycle of APT

domains ( subsection 5.2.3).
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Actor Utilized (1)

Parking (8)

Unrelated (3) IP Type (Count)
Unrelated (3)
Parking (8)
Actor Utilized (1)
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deftsecurity[.]com Historical Domain and IP Type Lifecycle

Namecheap Registration
Namesilo Registration

Report Publication
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Enom Registration
Namecheap Registration

Report Publication

Figure 5.2: Domain and IP lifecycle of deftsecurity[.]com and incomeupdate[.]com sun-
burst domain names initially reported in [2]. In this work, we seek to automatically iden-
tify the actor-utilized IPs (colored in green). The numbers inside the parentheses reflect the
number of unique IPs of each category.

5.2.1 Challenges

We focus on the challenges related to identifying the network infrastructure provisioned

for APT domains. There are two major classes of such domains: newly registered domains

and re-registered domains (previously owned). It is fairly typical that after registration, a

domain could point to its registrar’s default parking infrastructure for a period of hours,

days, or months [156]. The actors also may choose to park the domain at a benign IP

outside their control (e.g., an IP with a positive Internet reputation) for “aging” reasons and

to establish network reputation, since newly registered domains with no network history

are often more suspicious than long-lived ones [142]. Other actors may choose to point

and periodically move the domain to arbitrary infrastructure in order to inject deliberate

noise in passive and active DNS repositories. In either case, however, when a domain name
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is effectively used in an attack (i.e., to deliver exploits, as a social engineering domain,

command and control, or exfiltration point), it must point to the actor-utilized infrastructure

for the attack to be effective.

After detection or disclosure, an APT domain could be taken down, sinkholed, or left

to expire until it is re-registered by some other legitimate or malicious entity [157]. While

some or all of these events may occur, there is no definitive lifecycle of an APT domain. As

a forensic investigator tries to piece together the timeline of the APT attack, we can assume

that they will uncover a combination of the actor-utilized hosting infrastructure used in the

attack, infrastructure belonging to previous owners of the domain, parking infrastructure,

sinkholes, and even deliberate noise added by the actors.

Considering the aforementioned challenges, it is clear that extracting the actor-utilized

hosting infrastructure of a domain name is no easy task. To make matters worse, it is also

particularly hard to collect a clean and complete picture of the infrastructure to conduct

further analyses, as APT domain names are usually utilized by nation-states and high-

profile adversaries that do not — obviously — share any information about their operations.

This work aims to address the problem of discovering unknown actor-utilized APT attack

infrastructure in a rigorous and automated fashion by temporally bounding the active period

of the APT attack.

Next, we summarize four main challenges that network forensic investigators face as

they analyze APT attacks. Across all these challenges, we use the term “domain lifetime”

to reflect all observable time periods in which a domain name existed.

Non-Actor Ownership. This is the period in the domain lifetime in which an actor does

not own a domain due to it belonging to a different owner. As illustrated in Figure 5.1,

this can occur either before the actor registers the domain, or after the domain expires or is

taken down.

Sinkholing. This is the period in which the domain points to sinkhole infrastructure.

Sinkholing occurs after domain detection and results in a malicious domain pointing to
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infrastructure controlled by security companies and professionals, registrars, and law en-

forcement agencies [157].

Various Forms of Parking. This is the period in which the domain points to various

forms of parking infrastructure. This infrastructure may be placeholder registrar-controlled

parking infrastructure shortly after the domain name is registered, or parking infrastructure

where the actors can point their domain names to age them until they use them for their

operation.

Deliberate Noise Injection. Actors can point their domain to infrastructure that is not

under their control to gain a positive (benign) reputation before they use the domain in

an attack. Such an action could easily inject noise in passive and active DNS reposito-

ries, effectively making the network forensic investigation of the APT attack significantly

harder.

5.2.2 Placing The Challenges In Context: The SolarWinds Attack

Next, we put the four major classes of challenges into perspective using the attack against

SolarWinds as an example. Figure 5.2 showcases the historical life-cycles of two domains

used in the SolarWinds attack, deftsecurity[.]com and incomeupdate[.]com. It also depicts

the corresponding IP infrastructure that can be discovered from publicly available Active

DNS datasets [32]. For this example, these IP addresses were labeled taking into account

the public reporting of the attack [2, 158] and manual threat analysis from multiple analysts.

Although the two domains were used in the same attack, their lifecycles differ in registrar,

IP infrastructure, and pre-registration activity. These differences alone make the analysis of

the two APT domains used in the same attack and controlled by the same actor non-trivial.

Starting with the domain registration patterns, APT actors re-registered domains from

two different registrars that had completely different hosting history (possibly because of

their previous domain owners). By just utilizing WHOIS data and manually trying to pin-

point the most likely window of actor registration, a forensic analyst would not be able to

77



identify which IPs were the ones utilized by the adversaries and used in the attack. That

is because there are multiple parking and other unknown IPs in the historical DNS data —

even in the period where the actors likely re-registered these two domains. Thus, to identify

the actor-utilized IPs, an analyst would need more than just a temporal window of interest.

One solution to filter out the non-actor-utilized IPs would be to use publicly available

lists of various parking IPs and DNS nameserver infrastructure [35]. By doing so, utilizing

the IP and DNS nameserver data from [156], manually inspecting the DNS nameservers,

and identifying various parking infrastructure, we could only additionally remove a subset

of the publicly known parking infrastructure (colored in orange).

While this methodology has reduced the amount of infrastructure to inspect, it is still

not sufficient, as the domain names have been pointing to cloud infrastructure (Amazon

and Unified Layer, colored in blue after their latest registration in Figure 5.2) which has

not been attributed to the SolarWinds attack due to its big temporal distance (many months

before the attack took place). An analyst, knowing the timeline of the attack and manually

inspecting the properties of this unknown cloud infrastructure, would filter out these IPs

as likely parking and inactive infrastructure and yield only the actor-utilized IPs as they

have been publicly reported [159, 2]. The practice of registering domain names years

before their utilization and strategically aging them to infrastructure other than the attack

infrastructure has been documented in prior reports [141, 140]. Evidently, filtering out all

of these non-attack-related IPs is a non-trivial and labor-heavy process, often left to expert

analysts. In this work, we seek to automatically identify the actor-utilized IPs of historical

APT domain names in a transparent way and with a low false positive rate.

5.2.3 Observations and Takeaways

By taking into consideration the challenges and the lessons learned from the SolarWinds

campaign, we arrive at the following three observations: first, APT domains feature unique

lifecycles that can differ even within the same campaign, second, these lifecycles can last
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multiple years, and domain registrations, and third, in time they can be associated with a

diverse set of infrastructure (e.g., parking, sinkhole, etc.) that is often not associated with

the actor-utilized IPs. Thus, measuring the lifecycle of APT domains requires:

• A historical dataset that observes and logs the infrastructure changes in APT domains

across the years.

• A methodology that filters and labels the IP infrastructure associated with the APT

domains and considers the diverse infrastructure types we discussed.

• A methodology that is applicable on a per-domain basis.

To satisfy the aforementioned requirements we take the following steps: first, we utilize

two historical DNS datasets that span a decade and capture the changes in DNS resolutions

of 405 APT actors and second, we develop a novel system that filters and labels these

historical DNS resolutions taking into account the diverse infrastructure we encountered

on our case study and operates on a per domain basis with high accuracy. Next, we discuss

the datasets and measurement methodology in more detail.

5.3 Datasets and Methodology

This section introduces the OSINT datasets ( subsection 5.3.1) we use to study 405 APT

groups as outlined by our visibility in Table 5.3. Then we proceed by diving deep into

Atropos ( subsection 5.3.3), its modules, and how these modules enable Atropos to reliably

and accurately identify actor-utilized infrastructure.

5.3.1 OSINT Datasets

Threat Report Data. Threat reports have been highly utilized in prior works to gather

IoC datasets related to APT threats [160]. In this work, we utilize two major threat re-

port datasets to gather APT domain names. The first data source we employ is AlienVault
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Open Threat Exchange (OTX) [161]. AlienVault OTX is a large open threat intelligence

community that has released more than 19 million IoCs to date. In our study, we only con-

sider APT IoCs that are vetted by AlienVault’s internal threat research team. These APT

IoCs are extracted from threat reports that leading security vendors release and disclosures

from reputable threat researchers. The second APT data source we employ is CyberMoni-

tor [162]. CyberMonitor is an aggregation of popular APT threat reports and datasets such

as APTnotes and others, that have been heavily used in former works [163, 164, 160]. We

manually parse threat reports from this data source that were published between 2007 to

June 2019 with the intent to extract four attributes: APT domains, APT IPs, publication

date of the report, and name of the APT actor that is associated with the domain names and

IPs. For both datasets, we filter out any report that does not involve a threat actor found

in Malpedia [91]. Malpedia maintains an up-to-date collection of APT groups and sophis-

ticated actors that reflects the APT threat actor grouping done by the MISP project [165]

and is more comprehensive than that of MITRE [166]. Utilizing this classification, we map

any alias of the same actor to the standard domain name used by Malpedia and remove

reports containing multiple actors. The final dataset consists of 2,188 APT reports, larger

than previous APT studies [20, 75].

Table 5.1 shows the top 10 publishers in terms of the IoCs we utilize in this study. It

is important to note that most of our indicators come from reputable security vendors, and

we do not consider IoCs that come without a published report in order to minimize poten-

tial noise in our APT datasets from unreliable sources as random users in the AlienVault

community [167].

Historical Active DNS. We use historical DNS resource records for all of the APT domain

names in our dataset that are provided to us by the Active DNS [32] project. The Active

DNS project daily scans millions of domain names from over 1,100 gTLDs and has been

utilized in many prior measurement works [9, 172, 6]. The historical DNS records span

from January 2016 to January 2025 and include A, AAAA, NS, NX, MX, and SOA query
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Table 5.1: Coverage of IOCs for the top 10 publishers in terms of reports. Overall, we
utilize a total of 2,188 APT reports.

No. of No. of No. of IOCs
Publisher Reports APTs Domain e2LD IP

Palo Alto Networks 133 81 3024 2738 706
Kaspersky Lab 126 81 2574 1803 392
Trend Micro 90 63 1386 960 441
ESET 80 51 679 607 459
FireEye 65 50 1373 1228 151
Symantec 63 50 972 903 241
Proofpoint 57 45 1091 622 105
Talos 52 38 1906 1680 211
SentinelOne 40 32 940 835 159
Tencent 37 25 308 262 41

Table 5.2: Datasets utilized in the study.

Dataset Time Span Number of Records

[168, 161] APT Domains 2013-04-13 to 2025-03-01 31,398
[169] Compromised Domains 2013-03-20 to 2025-04-08 132,210
[156, 157, 170] Parking and Sinkholes 2007-07-18 to 2024-03-13 85,509
[32] Historical Active DNS 2016-01-01 to 2025-01-31 119,959,784
[171] Historical Virus Total DNS 2013-04-01 to 2025-03-06 480,093
[168, 161] Threat Report IoCs and Data 2013-04-13 to 2025-03-01 144,239

responses.

Virus Total (VT). To complement the coverage of ActiveDNS, we use a premium Virus-

Total API access to gather historical DNS resource records for all of our APT domain

names. Additionally, we query Virus Total to gather other domain and IP-related data in

order to generate features for Atropos’ feature extraction module, which we detail in sub-

section 5.3.3.

Parking and Sinkholes. We utilize parking IPs and DNS nameservers from both an

academic publication and Maltrail [156, 170], as well as manually labeling the DNS name-
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Table 5.3: A and AAAA resource record visibility after enriching the known APT domain
names with our DNS data sources. APT IPs appearing on threat reports can only charac-
terize 23.52% of APT FQDNs in popular DNS datasets.

Visibility Threat Active DNS Report IPs Matched
Metrics Reports and VT on Active DNS and VT

Timespan
2013-04 2013-04 2013-04
2025-03 2025-03 2025-03

FQDNs 31,398 28,524 (90.84%) 7,386 (23.52%)
E2lds 22,691 20,975 (92.43%) 5,392 (23.76%)
APT Actors 413 405 (98.06%) 278 (67.31%)
RRs N/A 1,004,614 51,891

servers of APT records to identify parking ones. Additionally, we utilize sinkhole IPs and

DNS nameservers from an academic publication and a public list [157, 170], as well as

manually labeling the DNS name servers of APT records to identify sinkholes.

Compromised Domain List. To filter out compromised domain names, we remove the

APT domains that were mentioned to be compromised in the reports they were published in

from the CyberMonitor [162] source. Additionally, we also filter out compromised domain

names based on an aggregation of compromised domain lists [169], which includes various

reputable sources such as abuse.ch and SANS.

5.3.2 DNS Datasets and Threat Reports IP Visibility

So far we have demonstrated the challenges that analysts face when studying domain lifecy-

cles and introduced the datasets we will utilize in the study. Since we are mainly interested

in identifying actor-utilized IPs in order to study the infrastructure they utilize, we can just

gather the high-confidence domain names and IPs that appear in our 2,188 APT reports and

utilize our DNS datasets to match them. This way, we will only utilize known domains and

IPs that threat analysts in reputable reports have identified. Table 5.3 presents the visibility

of our DNS data sources on the reports FQDNs, E2lds(i.e., the registrable portion of a do-
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main name), APT actors, and resource records (RRs) after removing NX records and bogon

IPs [173] (e.g., unroutable, private, loopback networks). As we can see, both these DNS

sources together can provide at least one IP for 90.84% of the APT FQDNs and 98.06%

of the APT actors, showcasing that our DNS datasets have a significant IP coverage on the

APT domain names.

With this DNS visibility, we can now match the APT domains and IPs that get shared

on APT reports and see what percentage of domain names threat reports can characterize

with an IP. When we do so, we can see that only 23.52% of the FQDNs and 67.31% of the

APT actors can be characterized as demonstrated in Table 5.3. Clearly, if we just utilize

the reported domain and IPs, we can only characterize less than a quarter of the histori-

cal APT domains, even with DNS data sources that have over 90% APT domain coverage.

Evidently, there are legitimate reasons why the IoCs shared on APT reports are not compre-

hensive. For example, report authors may not have IP-level visibility of the domain names

they have identified during their analyses or may choose not to share all the IPs they have

identified. For example, the IPs that the APT actors utilized may belong to virtual hosting

or cloudfronting IPs and serve both benign and malicious domains at the same time, and

report authors want to avoid readers blacklisting such IPs and causing harm. Additionally,

threat report authors may lack the historical DNS datasets to identify the active IPs of the

operation. We find that the percentage of APT reports that both share domains and IPs is

only 44.22% of all reports that share at least one domain. The size imbalance has also been

demonstrated in prior work [28]. Despite all the legitimate reasons that inhibit threat report

authors from identifying or sharing comprehensively the IP addresses related to the domain

name IoCs, answering the research questions regarding the longevity of APT network in-

frastructure cannot be done thoroughly just by utilizing threat report information.

Takeaways: Simply matching known APT domains to known APT IPs from APT

reports using popular DNS data can only characterize 23.52% of the APT domains. We

find that only 44.22% of the APT reports sharing domains also share IPs, which further
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substantiates the coverage concerns of threat intelligence that have been raised in prior

works [64, 152].

5.3.3 Measurement Methodology

Considering the lack of comprehensive OSINT visibility in domain-to-IP mappings and

infrastructure coverage, we need to develop a measurement methodology in order to ex-

pand the APT infrastructure coverage and conduct a representative measurement study.

However, as we have described in section 5.2, identifying the actor-utilized IPs on an APT

domain is challenging. Previous works have tried to address similar problems [34, 35, 33],

but they suffer from specific shortcomings, which we demonstrated with the Solarwinds

case study subsection 5.2.2, as they are largely not applicable to address all the challenges

we have showcased in a historical timeframe. To address these shortcomings and character-

ize more domains than those that simply APT reports can, we develop a supervised model

that we call Atropos. Atropos automatically filters historical DNS records and identifies

actor-utilized IP addresses of known APT domains. More specifically, Atropos ingests

domain-to-IP mappings (i.e., DNS Resource Records — RRs) from DNS data, only for

domains that appear in APT reports, and identifies which RRs correspond to infrastructure

likely used by the APT actors. Atropos uses a combination of different OSINT datasets

and three inline analytical modules, which are described below.

Enrichment and Filtering Module

To discover new APT infrastructure, we need to use a dataset that provides both historical

and wide visibility among many different actors across different geographies. The initial

step of our methodology is to enrich the APT domains in OSINT reports with historical

DNS data [32, 155]. As different APT domains have been utilized in different time periods

and are often registered by multiple Internet users (e.g., in the event of re-registration), this

module aims to gather all the related historical IP infrastructure of the APT domains in our
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Figure 5.3: An overview of Atropos. Atropos utilizes OSINT datasets and historical DNS
data to label and filter APT infrastructure in a 3-step process.

datasets.

In this module, Atropos will filter out all known compromised domains as well as bogon

IPs [173] and non-existent domains (NXDOMAIN). This filtering is necessary as these

records will not be related to infrastructure provisioned by the APT actors for an attack

campaign. Additionally, we filter all domain names related to DNS fast-fluxing. Fast-

fluxing is the process that involves the frequent change of the RRs of a domain name to

many different IPs that can span hundreds or even thousands [174]. We consider such

domain names out-of-scope of Atropos, as during development we found that the tactics

and techniques of some fast-fluxing actors make them feature different lifecycles than those

of typical APT domains, as discussed in section 5.2 and thus require dedicated models. For

example, the gamaredon group has been demonstrated to keep utilizing the same detected

and reported domain names, long after the reporting of its attacks, thus having malicious

activity after its detection [175, 176]. We leave the development of dedicated systems

for such lifecycles to future work. To remove such domains from our dataset, inspired

by [174], we count the number of distinct IPs per domain and filter out the top 5% of the

domain names in our dataset. This methodology filters out 1,497 domains with 544 IPs on
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Table 5.4: The features of Atropos. Atropos utilizes 22 features from four distinct classes.

#f Feature Class #f Feature Class

f1 Detection and IP Fseen Delta Temporal f12 IP Reputation OSINT
f2 Detection and IP Lseen Delta Temporal f13 Number of Malicious Votes OSINT
f3 IP Lifetime Temporal f14 Number of Harmless Votes OSINT
f4 Number of Historic Domains on IP Infra. f15 Number of Malicious Analyses OSINT
f5 Mean Concurrent Domains on IP Infra. f16 Number of Suspicious Analyses OSINT
f6 Median Concurrent Domains on IP Infra. f17 Number of Undetected Analyses OSINT
f7 Number of IP Communicating Files Infra. f18 Number of Harmless Analyses OSINT
f8 IP is Known Parking OSINT f19 Num. of Domain Communicating Files Domain
f9 Nameserver is Known Parking OSINT f20 Num. of Files Downloaded From Domain Domain
f10 IP is Known Sinkhole OSINT f21 Number of Domain Subdomains Domain
f11 Nameserver is Known Sinkhole OSINT f22 Number of Domain Certificates Domain

average per domain, with 82.69% of the domain names belonging to the gamaredon group,

which, as we have described, is known for fast fluxing activities [175, 176]. Since only 5%

of the domains have been filtered, we do not consider the impact of this filtering significant

for the generalization of our methodology, as we will showcase later.

Table 5.3 illustrates that the system’s visibility in the APT Fully Qualified Domain

Names (FQDNs), APT effective Second Level Domains (e2LDs) [177], number of APT

actors, and RRs that Atropos gathers after the DNS filtering and enrichment is significant.

After all enrichment and filtering, our DNS visibility spans over a decade, with at least one

resource record for 26,615 (84.76%) of the FQDNs and 402 (97.33%) of the APT actors in

all the reports published between April 2013 and March 2025.

Feature Extraction Module

The next step of our methodology is to extract the features needed in order to train our

models. Table 5.4 illustrates the features of Atropos. We utilize a total of 22 features from

four classes, namely temporal, infrastructure, OSINT, and domain name features. We pick

our features based on historical forensic experience and argue about their utility. We outline

the four main classes of our features as well as the intuitions behind them.

Temporal Class (3 features):

• (f1) Domain Detection and IP First Seen Date Delta: The time delta (in days)

86



between the first day the domain name was reported in a threat report and the first

day that the domain first pointed to the IP. This feature aims to identify the IPs close

to the detection of the domain that are more likely to be associated with the actor and

remove older or newer IPs that are likely associated with previous or future owners

of the domain name.

• (f2) Domain Detection and IP Last Seen Date Delta: The time delta (in days)

between the first day the domain name was reported in a threat report and the last

day the domain first pointed to the IP. Since the disclosure of the APT domains to the

public does not always happen right after their detection or sinkholing, this feature is

meant to identify sinkhole and parking infrastructure that an APT domain has been

pointed to before its detection and persisted months or even years after its public

disclosure.

• (f3) IP Lifetime: The number of days that the domain pointed to the IP address.

This feature can help differentiate between short-lived placeholder and testing IPs

and longer-lived APT-controlled IPs and parking. For example, in Figure 5.2, the

domains pointed to placeholder parking IPs [156] for a median of 41 days compared

to 314 and 366 days for the actor-controlled IPs.

Infrastructure Class (4 features):

• (f4) Number of Historical Domains Pointed to the IP: The total number of histor-

ical domains ever pointed to the given IP according to the DNS data source. Similar

to our example, this feature is meant to find parking and sinkhole IPs.

• (f5, f6) Mean/Median of Concurrent Domains Pointed to the IP: The mean and

median number of other domains pointed to the IP during the period that the given

domain is pointed to the IP. Since IP addresses are volatile over time, these features

are meant to capture the infrastructure behavior of a given IP only at the time when

the domain was pointed to it.
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• (f7) Number of Historical Files communicating with the IP: The total number of

historical files that have been communicating with the given IP according to VirusTo-

tal. In our example ( Figure 5.2), sinkhole IPs have a median number of 83,128 com-

municating files on VirusTotal compared to a median of zero for the APT-controlled

IP and parking infrastructure. This usually happens because malware dynamic exe-

cution will occur after a domain has been sinkholed and VirusTotal will only see the

sinkhole IP.

OSINT Class (11 features):

• Parking Features. (f8) Known Parking IP: Whether the IP appears on known park-

ing lists. (f9) Known Parking Nameserver IP Overlap: Whether the domain is served

by a known parking nameserver at the same time as the domain points to the IP for

at least 70% of the time (a percentage we manually pick after multiple tests).

• Sinkhole Features. (f10) Known Sinkhole IP: Whether the IP appears on known

sinkhole lists. In our example, this time period is illustrated by the red-colored in-

frastructure (Figure 5.2). (f11) Known Sinkhole Nameserver IP Overlap: Whether

a known sinkhole nameserver is serving a domain at the same time as the domain

points to the IP for at least 70% of the time.

• IP Reputation: These features (f12: IP Reputation, f13: IP Votes Malicious and f14:

IP Votes Harmless) take into account the publicly known reputation of an IP based

on the votes from the VirusTotal community [155]. Despite these scores not being

perfect, they do help in some instances to identify benign IPs that malware actors can

point their domain names to gain residual trust.

• IP Analyses: These features (f15: IP Analyses Malicious, f16: IP Analyses Suspi-

cious, f17: IP Analyses Undetected, and f18: IP Analyses Harmless), compute the

number of URL scanners in VirusTotal that have flagged an IP with the given label.
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Domain Name Class (4 features).

• (f19) Number of Communicating Files: The number of files that VirusTotal has

found to have communicated with the domain.

• (f20) Number of Downloaded Files: The number of files that were available to be

downloaded by the given domain name according to Virus Total.

• (f21) Number of Subdomains: The number of subdomains that were seen according

to VirusTotal under the given domain name.

• (f22) Number of Certificates: The number of SSL certificates that have been asso-

ciated with the domain name at some point in time according to VirusTotal.

Classification Module

The final step in our methodology is to feed the feature vectors to our model. The classifi-

cation module consists of a binary classifier that ingests the 22 features we have described

and classifies each resource record as actor-utilized (True) or non-actor-utilized (False).

During the development of Atropos, we experimented with various machine learning meth-

ods, including heuristics, Decision Trees, Support Vector Machines, Random Forests, XG-

BOOST [178], and Multi-Layer Perceptrons. During our experimental analysis, while

other models had a great performance, we found the Random Forest classifier to offer

the best ROC AUC performance across datasets while offering decision interpretability;

thus, we picked this model over the rest. During its development, we trained and fine-tuned

the hyperparameters only utilizing our training dataset – to prevent data snooping [179] –

described in subsection 5.4.1, optimizing for ROC AUC with grid search. To showcase gen-

eralization, we tested Atropos on two out-of-distribution datasets. Finally, to demonstrate

transferability across different DNS datasets, we train and test Atropos utilizing different

models on each DNS dataset (ActiveDNS and VirusTotal) and show that accuracy is simi-

lar.
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5.4 Evaluation

In this section, we discuss the training and performance evaluation of Atropos. Atropos

is trained and fine-tuned on a training dataset based on the public knowledge of public

threat reports, which we call the Public Reports Dataset (PR). After Atropos is trained

and fine-tuned, it is tested on two different test datasets that were not considered during

development, with the aim of evaluating our methodology against potential sampling bias

and overfitting. Atropos achieves 10-fold cross-validation accuracy scores of 98.16% and

98.90% on Active DNS and VirusTotal DNS datasets, respectively, demonstrating trans-

ferability, and accuracy scores of 91.39% and 96.00% when evaluated on the test datasets

(EA) and (FR), respectively, demonstrating generalization.

5.4.1 Training and Evaluation Datasets

Collecting ground truth regarding the infrastructure of APT actors is very challenging. Two

of the main reasons that contribute to this are that APT actors will not share their attack

playbooks with the public and the fact that APT attacks are, by definition, sophisticated.

Thus, in order to create our training and evaluation datasets, we take two steps. First,

we utilize the public knowledge of domains and IPs existing in public threat reports, and

second, we utilize three analysts for manual labeling. These analysts consist of two PhD

students with seven and four years of experience in APT network forensics (JA1 and JA2

respectively), and one senior APT network analyst with over 20 years of experience (SA).

The instructions given to the analysts were the following:

• You are given DNS resource records (RRs) of historical APT domains.

• Your task is to label these RRs as actor-utilized (True) or non-actor-utilized (False).

• An RR is actor-utilized when the IP corresponding to the domain is the infrastructure

utilized in the APT operation.
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• You can utilize any tool at your disposal to do so.

• Deliver a file with every RR you can confidently label.

Aside from the RRs, the analysts are also provided with open Internet access along

with all the features generated, and they are allowed to perform any tasks to validate the

correctness of their decision (e.g., reverse IP lookups, searching IPs in IP intelligence and

other reports, etc.). Next, we provide more details regarding each labeled dataset.

(Training) Public Reports Dataset (PR)

This set incorporates the public knowledge from APT reports. As APT actors will not

share their infrastructure with the public, the next most accurate set that can be utilized

is that of report authors who have manually labeled the infrastructure and openly shared

it in threat reports. For this dataset, we utilize all the APT domain to IP mappings (RRs)

that have been publicly mentioned in the APT reports of our APT data sources described

in subsection 5.3.1, and have been matched together in Active DNS. However, these records

only represent the positive class (i.e., actor-utilized) of the ground truth. To generate the

negative class (i.e., not actor-utilized), and avoid class imbalance [179], we pick an equal

amount of other random resource records from Active DNS, for the same domains that

have a positive class record, and give all these records for manual labeling to analyst JA1.

Analyst JA1 confidently labels 1,915 out of 2,027 RRs and marks 1,065 RRs as actor-

utilized and 851 RRs as non-actor-utilized. While the class distribution is not equal, the

final dataset does not suffer from class imbalance [179], with 55.61% actor-utilized RRs

and 44.43% non-actor-utilized RRs. Overall, this dataset consists of 1,915 resource records

from 938 domains of 94 APT actors, from threat reports spanning from 2014-02-11 to

2023-04-13. To further evaluate JA1 records for label inaccuracies [179], after JA1 has

completed the manual labeling, we give the same set of records and instructions to another

junior analyst JA2 from the same organization as JA1 for labeling. After their inspection,
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we quantify the level of agreement between the two analysts by computing the Cohen’s

kappa [180] for the records they both successfully labeled. We find a Cohen’s kappa score

of 0.9820, suggesting almost perfect agreement, thus giving us confidence that the PR

dataset has a very high level of agreement among analysts.

(Evaluation) Senior Expert Analyst Dataset (EA)

Despite that the PR incorporates the public reports’ APT infrastructure labels and the fact

that the two analysts reached a high confidence agreement level in manually labeling it,

sampling bias could still be apparent [179]. To better understand the potential sampling

bias of the PR dataset that will be used for training, we ask an expert analyst with over

20 years of experience, from a separate organization of JA1 and JA2, to manually label a

second completely disjoint ground truth from that of PR. This set consists of all the RRs

found in Active DNS for one random domain name per APT actor, totaling 2,293 RRs. SA

was able to confidently label 831 from the 2,293 RRs and marked 155 RRs as actor-utilized

and 683 RRs as non-actor-utilized. The dataset SA labeled is not as balanced as PR, since

SA was given all the historical RRs for each domain name and not a balanced set of RRs,

in contrast to JA1. We do utilize this dataset — since the PR dataset is balanced — to

evaluate Atropos in a scenario without base rate fallacy [179]. Overall, this dataset consists

of 831 RRs from 191 domain names of 191 different APT actors.

(Evaluation) Future Records Dataset (FR)

The second test set is created after the system is completed with the intent to evaluate its

performance against future distributions of RRs that were not seen during training. To do

that, we pick a random sample of 100 RRs from reports spanning from 2023-05-03 to 2025-

01-29, which were published after all of the reports from our training dataset. These 100

RRs correspond to 65 domains, 98 IPs, and 33 APT actors. Given the same instructions

and data that were outlined in subsection 5.4.1, analysts JA1 and JA2 label these 100 RRs
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and resolve their disagreements to arrive at a single dataset. The class distribution of this

set is 73 non-actor-utilized and 27 actor-utilized RRs.

Table 5.5: Average 10-fold cross-validation performance of Atropos on the PR dataset.
Atropos achieves at best a 99.86 ROC AUC score when utilizing Virus Total DNS data and
training on the PR dataset utilizing a Random Forest Model.

DNS ML Average 10-fold X Validation Scores
Dataset Model ROC AUC F1-Macro Accuracy Precision Recall

Active DNS Random Forest 99.82% 98.14% 98.16% 98.03% 98.60%
Active DNS Decision Tree 97.67% 97.71% 97.72% 97.74% 98.11%
Active DNS XGBOOST 99.52% 98.36% 98.37% 98.07% 99.00%
Active DNS SVM 97.86% 88.20% 88.70% 82.88% 100.0%
Active DNS MLP 96.83% 94.33% 94.37% 96.50% 93.05%
Virus Total Random Forest 99.86% 98.86% 98.90% 98.37% 99.77%
Virus Total Decision Tree 98.14% 98.39% 98.44% 97.62% 99.77%
Virus Total XGBOOST 99.86% 98.66% 98.70% 98.35% 99.44%
Virus Total SVM 97.40% 81.37% 83.44% 78.38% 99.33%
Virus Total MLP 97.00% 95.54% 95.56% 96.30% 96.31%

5.4.2 Experimental Results

Classification Results

Table 5.5 shows the average 10-fold cross-validation performance of Atropos on the PR

training dataset. Atropos achieves significant ROC AUC scores across all utilized machine

learning models and the two DNS datasets. The best-performing model in terms of ROC

AUC score is Random Forest with a score of 99.82% and 99.86% on Active DNS and

VirusTotal datasets, respectively. This showcases that Atropos has high performance across

models and can have high levels of transferability across different DNS datasets during our

evaluation when training. Since Random Forest has the highest performing scores, we pick

this model as best for our next test, out-of-distribution experiments.

Our second experiment evaluates Atropos against two test sets (EA and FR) that con-

sist of records that were not considered during training with the intent to test Atropos

performance against out-of-distribution(OOD) datasets and observe its generalization and

robustness against sampling bias that has been identified as a major problem in the security
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field [179]. Table 5.6 demonstrates Atropos’ performance against these two test sets and

across the two DNS datasets. We observe that in all of the tests, Atropos remains highly

accurate with accuracy equal to and higher than 91.00%. We also notice that the precision

of Atropos drops especially in the EA dataset. We investigate these records and find out

that the largest class of false positives comes from Cloudflare and Namecheap web-hosting

IPs (35.71%), while the rest are distributed among different ASes. After debriefing the EA

analyst, they mentioned that they do not consider any cloud-fronting and virtual-hosting

IP addresses (e.g., Cloudflare, Namecheap virtual-hosting) as operation-related, as they do

not provide any basis for pivoting or evidence that the actors owned the IPs, as they can

belong to multiple users. Despite that EA analyst is correct and these IPs are not use-

ful for pivoting and should not be considered for blacklisting, this comes in contrast with

our instructions in which we outlined we wanted to identify the IP corresponding to the

domain is the infrastructure utilized in the APT operation, regardless of whether they are

cloud-fronting or virtual hosting. Despite that, the overall performance of Atropos across

all tests remains very high, and this experiment showcased that its results are generaliz-

able in (OOD) datasets. In the appendix, we demonstrate how Atropos can be adjusted to

generalize in similar scenarios of labeling as those considered by the EA analyst.

Table 5.6: Out-of-distribution test set evaluation of Atropos. Atropos achieves an over
91.00% accuracy across the two evaluation datasets, demonstrating generalization.

DNS Test
Dataset Set ROC AUC F1-Macro Accuracy Precision Recall

Active DNS FR 95.47% 95.08% 95.38% 92.00% 95.38%
Virus Total FR 95.47% 95.08% 95.38% 92.00% 95.38%
Active DNS EA 87.13% 85.56% 91.00% 73.23% 91.00%
Virus Total EA 88.47% 87.20% 91.39% 76.53% 91.39%

Feature Importance

By calculating the Mean Decrease of Impurity (MDI) score on an 80-20% split utilizing the

PR dataset and Active DNS data, we rank the features that Atropos has used to find out their
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importance, thus offering model interpretability. Table Table 5.7 presents these results. We

observe that the top five features by MDI include the number of Historic Domains on IP

(0.187), the IP first seen Delta (0.177), the number of Communicating Files on IP (0.158),

and the Mean and Median Concurrent Domains on IP (0.125 and 0.149), thus highlighting

importance across all feature types but specifically in infrastructure and temporal features.

This fact aligns with our observations from the SolarWinds case study in subsection 5.2.2,

where both the temporal (i.e., when an IP was pointed to the domain name compared to

detection) and infrastructural (i.e., what kind of infrastructure that IP is), are necessary to

distinguish the actor-utilized from the non-actor utilized infrastructure. Considering this,

we are confident that Atropos makes decisions that follow the principles that a human

analyst would also have used.

The strong performance of the top three features can be attributed to their capability

to identify parking and sinkhole infrastructure. This reflects on the motivating example of

SolarWinds we showcased in Section subsection 5.2.2, where the actor-controlled IPs had

only the SolarWinds domain names pointed to them while parking and sinkhole IPs had

more than nine million and 600 other domains pointed to them, respectively. The other

benefit of these features is that Atropos does not only rely on parking and sinkhole IP and

DNS name server lists, which are usually static and can take months or even years to be

updated.

The second strongest set of features is the temporal features. This is not a surprise,

because as we saw in SolarWinds, the APT-controlled IPs pointed to the domains a few

months before the detection and continued to be the primary destination of the domains

until very close to their detection. Atropos can pick up on this temporal aspect and penalize

IPs of previous owners that were first seen on the domains very early and IPs of sinkholes

that were first seen after the domain detection, similarly to Fig. Figure 5.2.
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Table 5.7: Atropos MDI Feature Importance when trained on PR dataset and utilizing
Active DNS data with an 80-20% split.

#f Feature MDI #f Feature MDI

f1 Detection and IP Fseen Delta 0.177 f12 IP Reputation 0.012
f2 Detection and IP Lseen Delta 0.050 f13 # of Malicious Votes 0.038
f3 IP Lifetime 0.007 f14 # of Harmless Votes 0.009
f4 # of Historic Domains on IP 0.187 f15 # of Malicious Analyses 0.004
f5 Mean Concurrent Domains on IP 0.125 f16 # of Suspicious Analyses 0.005
f6 Median Concurrent Domains on IP 0.149 f17 # of Undetected Analyses 0.011
f7 # of IP Communicating Files 0.158 f18 # of Harmless Analyses 0.013
f8 IP is Known Parking 0.018 f19 # of Domain Communicating Files 0.001
f9 Nameserver is Known Parking 0.019 f20 # of Files Downloaded From Domain 0.003
f10 IP is Known Sinkhole 0.009 f21 # of Domain Subdomains 0.003
f11 Nameserver is Known Sinkhole 0.000 f22 # of Domain Certificates 0.002

Table 5.8: Number of network IoCs associated with the actors from the OSINT threat
reports and identified by Atropos for the top 10 actors, and overall. Atropos provides three
times the IP visibility of threat reports and contextualizes three times more domain names
than threat reports.

Actor IP addresses BGP prefixes ASN Domain Coverage (%)
Reports Atropos Reports Atropos Reports Atropos Reports Atropos

Lazarus Group 1,047 776 569 504 371 241 20.25% 76.12%
Gamaredon 361 1,873 130 623 25 253 20.90% 45.19%
Fin7 218 341 132 222 56 126 23.48% 60.75%
Unc1878 208 379 73 134 48 47 63.45% 96.49%
APT28 204 723 155 381 97 202 29.63% 71.89%
Muddywater 173 301 92 206 36 98 06.38% 43.20%
Winnti Group 158 206 85 126 47 74 23.64% 21.28%
APT29 157 144 123 130 93 91 28.35% 65.67%
Sandworm 132 53 93 20 70 13 21.42% 71.42%
CharmingKitten 128 554 62 188 62 81 46.84% 63.19%

Total 7,553 25,049 3,530 6,115 1,291 1,762 20.20% 61.07%

5.4.3 Infrastructure Expansion and Lifetime Characterization

Table 5.8 presents the number of IPs, BGP Prefixes, Autonomous System Numbers (ASNs),

and domain coverage comparison between what is provided in threat reports and what is

identified by Atropos. The table presents the coverage of the top 10 APT actors along

with the total number of all the actors. Overall, Atropos provides 3.062 times more high-

confidence IPs than OSINT APT reports. The added benefit for BGP prefixes and au-

tonomous systems (ASes) is smaller as they represent bigger groupings of Internet infras-

tructure, but are still significant. Furthermore, Atropos provides actor-utilized IP mappings
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Figure 5.4: Daily active APT actors for the top 15 most utilized provider ASes in the last
decade. Cloudflare utilization for domain name hosting has increased drastically over the
years, making forensic analysis and attribution of IP infrastructure harder.

for 61.07% of domains provided in APT reports, which is significantly larger than that of

just matching the IPs that exist or reports with their domain names. To characterize the

lifetime of IP infrastructure, we utilize the historical information provided by the Active

DNS dataset [32], enabling us to build lifetimes with a daily granularity for all of the high-

confidence IPs Atropos has identified associated with the APT domains in our dataset.

Takeaways: Our measurement methodology accurately expands the APT infrastructure

identified by APT reports by 3.06 times and is able to characterize 61.07% of the APT

domains appearing in threat reports, thus enabling us to conduct a more comprehensive

measurement study than just utilizing OSINT data.

5.5 Infrastructure Analysis

In this section, we conduct the largest APT and most comprehensive APT infrastructure

analysis to date. To do so, we utilize all of the APT IoCs from our OSINT data sources

described in subsection 5.3.1, as well as the new infrastructure Atropos has identified,

utilizing both the ActiveDNS and VirusTotal DNS datasets. For more conservative estima-

tions, we remove RRs on which ActiveDNS and VirusTotal models disagree. The number

of these records is only 1.34% of the overall records and thus it does not bias our measure-

ment results. We structure our analysis around the following research questions:
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• Where do APT actors provision their infrastructure and do they re-use the same host-

ing providers over the years? ( subsection 5.5.1)

• What is the lifecycle of the different infrastructure types associated with APT do-

mains, and how does that affect forensic analysis? ( subsubsection 5.5.2)

• How long before the public reporting of an attack are actor-utilized IPs provisioned

to the domains, and what is the time window of their observability? ( subsubsec-

tion 5.5.2)

5.5.1 Infrastructure Utilization

Hosting Provider Utilization

Figure 5.4 demonstrates the density of the daily active APT actors that utilize any of the

top 15 hosting providers in our dataset. We observe that these hosting provider ASes that

APTs utilize consist of a mix of cloud-fronting, CDN, and proxying providers (e.g., Cloud-

flare, Akamai, AWS, Google Cloud), virtual hosting providers (e.g., Vultr, DigitalOcean,

OVH, Namecheap, UnifiedLayer), dedicated hosting (i.e., Hetzner, OVH, Hostkey, M247),

and providers that are more tolerant to abuse (i.e., Colocrossing, Stark Industries, M247).

Thus, APT actors utilize a plethora of different types of hosting providers for their domain

name hosting and do not primarily choose a specific category of providers. Temporally, we

observe that after 2023, CloudFlare has drastically increased in popularity among actors,

with 74 different actors hosting at least one domain in their network. This increased pop-

ularity of Cloudflare over the years is well justified, as this provider offers very lucrative

technologies that enhance the stealthiness of APT infrastructure, such as origin IP masking

and blending with benign domain traffic behind the same virtual hosting IPs. This trend

complicates network threat hunting and forensics as it diminishes the value of IP addresses

for such domains, a fact that has been anecdotally verified by APT experts [22]. Another

recent rising trend is that of the increased utilization of the bulletproof hosting provider
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Figure 5.5: AS re-utilization among APT actors.

Stark Industries Solution after 2023. Stark Industries Solution is a new bulletproof host-

ing provider that was launched in February of 2022[181](although its IP space was used

in previous attacks under different management). While we observe 23 different groups

to have utilized this hosting provider since 2023, the two groups with the highest number

of domains are Fin7 and MuddyWater [182, 183]. Lastly, despite the aforementioned ris-

ing trends, several hosting providers (e.g., Hetzner, VULTR, M247) have featured a steady

utilization by APT groups across the years.

Infrastructure Reuse

In order to measure the re-use of ASes among different APTs, we identify for each domain

name and group the first time that domain was provisioned to each AS. Then we measure

the proportion of ASes that get reused for more than one year per APT actor, and we

focus this experiment only on the actors that we have, in the APT context, a significant

number of domains, which is more than 20 domain names. This amounts to 135 APT

actors. Figure 5.5 demonstrates the proportion of ASes that these actors reuse across the
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years. We notice that most APT actors re-use a small portion of all the ASes they have

provisioned their domain names historically, with the average re-use rate for all these actors

being 26.20%. This means that most actors do not choose to host their domain names on

the exact same set of ASes over the years; however, they do re-use a smaller portion of

the same hosting ASes. When we look at the percentage of the APT groups that do re-use

at least one AS for over one year, we see that it is 97.03%. Thus, APT actors do re-use

network infrastructure in the same hosting providers; however, this re-use only accounts

for a small portion of all the infrastructure they have used historically. Threat hunters and

attribution experts need to be careful when identifying and attributing new campaigns to

existing actors, mainly by network infrastructure signals, and will need to focus on the

infrastructure that is consistently being reused when doing so.
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Figure 5.6: Number of actor-utilized IPs per country for the top affiliated countries of the
APT actors.

Infrastructure Geolocation

Another important insight that can help us characterize and compare the APT actors is the

geolocation of their infrastructure. To that end, we map each actor-utilized IP address to

the country where it is most likely located according to IPInfo [184] and then analyze the
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Figure 5.7: Number of IPs per category of infrastructure for the top affiliated countries of
the APT actors.

correlation of the location of the infrastructure with the country affiliation of the actors.

Figure 5.6 shows a heatmap of the country an actor is affiliated with and the country

where the actor-utilized infrastructure is provisioned. In the interest of space, the countries

have been limited to the ones with the most publicity and references across our threat

reports. We can observe that most of the actor-utilized IPs are provisioned in the USA,

with other big hosting provider countries like Germany and the Netherlands to follow.

Additionally, we can see that actors from different countries choose to utilize infrastructure

with different patterns that, in some cases, overlap, like the Russian and Iranian APT actors.

Their utilization of infrastructure among the US, the Netherlands, Germany, France, and

the United Kingdom is more evident and different from that of Chinese actors, which, aside

from their disproportionate use of US-based infrastructure, also utilize more infrastructure

in Hong Kong, Japan, and South Korea.

These findings raise two interesting questions. First, whether the location of the actor-

utilized infrastructure correlates with the location of the attack target. Second, whether

the location of said infrastructure relates to countries with large hosting providers. To

answer these questions, we utilize targeting data from the APT reports and match each
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domain name and IP with the countries that were identified as targets in the same APT

reports. We only use infrastructure for which targeting information is available in this

part of our analysis. We also group together countries that are the top 10 largest hosting

providers [185] to see if the infrastructure provisioning of the actors is correlated with those

aspects.

In Figure 5.7, we see that APT actors from the top countries mostly provision their

infrastructure either in countries that have large hosting providers or in the target coun-

tries. Chinese and North Korean actors deploy most of their infrastructure in their target

countries, while Iranian and Indian groups mostly utilize countries that have large host-

ing providers. The Chinese actors provision infrastructure to countries labeled as ”Other”

which is mostly located in Hong Kong and Singapore. Finally, as expected, country-

affiliated APT actors rarely provision infrastructure in their own country.

Takeaways: The infrastructure utilization analysis has demonstrated that APT actors uti-

lize a plethora of different hosting providers, with trends changing over the years. The

recent increase in cloud-fronting service utilization makes forensic analysis significantly

more difficult and calls for adjustments in attribution and detection models. While the ma-

jority of APT actors re-use infrastructure, this re-utilization only occurs to a small portion

of their overall infrastructure.

5.5.2 Infrastructure Lifecycle

Aside from the amplification of the known APT infrastructure that we saw in Table 5.8,

Atropos also provides a plethora of new domain-to-APT IP mappings. These mappings

allow us to measure the lifecycle of APT infrastructure more comprehensively using the

domain names in the APT OSINT reports and the first day they were reported.
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Figure 5.8: The unique lifecycle of the infrastructure associated with APT domains com-
pared to the first public report date.

Infrastructure Type Analysis

As we have discussed in subsection 5.2.1, there are many types of infrastructure associated

with APT domains that complicate forensic analysis. Figure 5.8 shows the lifecycle of all

these types of infrastructure compared to the first public reporting of each of the domains

they point at. We observe that the vast majority of actor-utilized infrastructure is mainly

first seen on DNS records a few months before the first reporting date, with most of the

IPs spanning back to within 2 years before. More interestingly, 73.6% of the actor-utilized

IPs no longer point to their domains at the detection date. This finding has practical appli-

cations for analysts and systems detecting and investigating APT infrastructure during and

after the disclosure of an attack, considering the lack of comprehensive coverage that threat

reports provide. Analysts and systems that do not utilize historical DNS datasets and do

not consider the lifetime of their IP infrastructure risk at best incomprehensively discover-

ing attacker-utilized infrastructure or at worst, misclassifying parking, sinkhole, or other

unrelated infrastructure that appears after detection as attacker-utilized.
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As expected, sinkhole infrastructure mainly starts being observed near the first reporting

date and spans long after detection; however 17.5% of the sinkhole IPs appear before the

domain first reporting, and thus, analysts investigating to find actor-utilized IPs before the

domain detection have to consider them. Similarly, 35.9% of known parking IPs appear to

be first pointed to the domains before publication, and as we showcased in the SolarWinds

case study, they have to be considered and filtered out even before the domain reporting.

Surprisingly, 31% and 42% of the parking and sinkhole IPs, respectively, have one or more

malicious detections on Virus Total, and 18% of the sinkhole IPs have five or more. This

can be explained due to the large amount of APT and other malicious domains that end up

being pointed at them, which makes some vendors flag them as malicious by association.

Nevertheless, this fact highlights that researchers have to be careful and not blindly trust

vendors’ detections but consider the type of infrastructure when doing forensic analysis

or building intrusion detection or investigation systems, especially considering that five or

fewer VirusTotal malicious detections are common in malicious IP labeling [186, 187, 188,

189, 190].

Atropos filters out a lot of infrastructure that is either not actor-utilized, known sink-

holes, or parking IPs. This infrastructure is primarily first pointed after the domain report-

ing for 75.9% of the IPs, and is mainly associated with unrelated actor-utilized infrastruc-

ture, such as future owners, parking, and sinkhole IPs unknown to the public. The top two

IPs of this class are: ”35[.]205[.]61[.]67”, an unknown to our sinkhole list sinkhole [191],

and ”54[.]65[.]172[.]3”, an Amazon shared hosting IP that had 995,067 domains histori-

cally pointed at it. Since these IPs are not directly utilized by the actors for the intent of

their malicious operations, Atropos considers these IPs as unrelated.

Takeaways: The diverse type of IP infrastructure associated with APT domains features

unique temporal lifecycles. 73.6% of the actor-utilized IPs no longer point to their domains

after their detection, highlighting the importance of historical data for comprehensive in-

frastructure tracking. Researchers and analysts have to be very careful not to misclassify
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Figure 5.9: Number of days that actor-utilized IPs were first and last observed before their
domain name public disclosure.

parking and sinkhole infrastructure as actor-utilized despite their malicious detections by

vendors.

Actor-Utilized IP Activity

Figure 5.9 demonstrates the first and last seen of the APT utilized resource records among

all actors as observed in ActiveDNS compared to their first public disclosure. We observe

that there is a wide variation among initial provisioning delta compared to the first public

threat reporting. The mean and median first IP provisioning is 317 and 187 days, respec-

tively, before the first public disclosure, which indicates that many actor-utilized IPs remain

well under the radar for months. This fact reinforces the common knowledge that APT at-

tacks are stealthy, and it takes a significant amount of time to detect them in contrast to

other cyber attacks like phishing or password stealers, which feature significantly shorter

detection lifecycles of 21 hours and 11 days, respectively [10, 103]. It is important to note

that this is a higher bound estimate as it includes the time for a report to be written and

published; however, the difference is still significant relative to commodity threats, and the
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reliance of expert APT analysts on the public reports has been recently verified [22]. The

long delta between first infrastructure provisioning and public reporting of the attacks can

also be explained by the fact that advanced actors have been reported to strategically age

their domain names [141, 140]. Looking at the last time the actor-utilized IPs kept pointing

to their domain names relative to public disclosure, we observe a mean and median time

of 173 and 75 days, respectively. This fact reiterates the need for historical data in order

to comprehensively track APT infrastructure, and the need for threat analysts to be careful

of the type of infrastructure that gets pointed to the domains close to public release, as we

have showcased that security vendors can sinkhole APT domains even before the public

release of an attack.

These observations can aid network detection systems that are heavily dependent on

features related to the short lifespan of malicious domain names, which have been proven

not to be adversarially robust [142]. Furthermore, they have practical implications for

organizations and government entities that need to forensically investigate APT attacks

against them. Our results demonstrate that 90% of the actor-utilized IPs first and last get

pointed to their domain names between 19 to 25 months before their public reporting.

Thus, organizations that are sensitive to APT threats and network APT experts will need to

keep at least 19 months’ worth of historical network records to comprehensively evaluate

whether they have been a target of a prior APT threat and to thoroughly investigate the

network infrastructure of APT actors, respectively.

Takeaways: The lifecycle analysis indicates that APT actors first provision infrastructure

on their domain names 317 days on average before the APT attack is publicly reported. This

number alone provides ample time for actors to successfully conduct their operations while

making detection systems that assign a positive reputation to longer-lived domains and

infrastructure less effective. Organizations need to keep their network logs for at least (19

to 25 months) to be able to identify 90% of the APT infrastructure from a DNS perspective.
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5.6 Discussion

The recent increase in the utilization of cloud-fronting services like CloudFlare among

APT actors makes forensics and attribution harder. For APT actors and malicious domains

utilizing such infrastructure, future works could adjust DNS-based detection and attribution

systems to work well beyond the infrastructure-level features of prominent works [143,

144] and emphasize lexical, registration, and temporal characteristics of domain names.

Despite this trend, traditional dedicated hosting still remains prevalent, and systems can

still capitalize on such features for detection and attribution. Although the focus of our

work was to comprehensively measure the infrastructure utilized by actors, future works

can utilize and adjust methodologies like Atropos to identify and focus on dedicated hosting

and only on the infrastructure that actors choose to re-use for attribution and threat hunting,

as we have demonstrated in Appendix Appendix A.

5.7 Summary

In this chapter, we analyzed the network infrastructure of 405 APT actors spanning over a

decade. Utilizing our novel measurement methodology, we have expanded the IP visibility

and contextualized the network infrastructure of three times more domains than that possi-

ble only with infrastructure from public threat reports. This infrastructure visibility enables

us to conduct the largest APT infrastructure characterization study and pinpoint several

practical findings. Our lifecycle analysis determines that organizations will need to retain

network logs for at least 19 to 25 months in order to maintain comprehensive visibility in

APT network infrastructure in the case of an attack. We observed that while APT actors

utilize a plethora of different hosting providers, they only re-use a small portion of them

over the years, and that use of cloud-fronting has increased significantly, making network

forensics and attribution harder. Furthermore, we find that at the first public disclosure of

APT attacks, the vast majority of their IP infrastructure no longer points to their domain
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names, and considering the incomplete infrastructure sharing on public reports, this finding

highlights the need for historical data retention and systems to increase the completeness

of publicly known APT infrastructure. Our findings verify prior insights from experts and

we hope to be the basis for increased attention from the community.
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CHAPTER 6

CONCLUSION

6.1 Summary

The goal of this dissertation has been to shed light on the temporal aspects of network in-

frastructure utilization in cyber attacks. Each work presented in this dissertation has offered

insights into the different stakeholders interacting with malicious network infrastructure

from different and unique network vantage points.

Our first study presented a longitudinal study analyzing the network communication of

202 different malware families from the perspective of a popular authoritative DNS server.

We observed billions of resolutions over four years at our authoritative collection point,

enabling temporally complete and global visibility into malicious domain usage. AuthDNS

simultaneously solidifies prior findings while also shedding new light on the epidemiology

of malware. Our temporal analysis demonstrated that the vast majority of newly registered

malicious domains are set up and detected quickly. Due to network noise from scanners

and AV vendors, both the temporal and organizational properties of network clients should

be considered when estimating malware infections from a network perspective. Finally,

we introduced a brief taxonomy of malware measurement perspectives and discussed the

advantages and disadvantages across four primary measurement goals.

The second study presented an empirical analysis of Stealers and shed light on the

infrastructure and the lifecycle of the interactions of cybercriminals with it. We found

that operators quickly provision their C2 infrastructure within 14 days after registration to

their domain names and much of the Stealers infrastructure to be long undetected, with

public blocklists detecting Stealer domains on average 74 days after initial domain reg-

istration, which gives operators plenty of time to infect more victims. Stealers operators
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conduct their campaigns utilizing minimal hosting resources and abuse services such as

free ccTLDs and cloud-fronting. Operators use proxy services ranging from traditional

VPNs to mobile and residential proxies to Tor networks, and the mobile and residential

proxies they utilize can cause misdirection when characterizing their profile; thus, law en-

forcement and security analysts have to be careful in their attributions. The diurnal analysis

of the operators suggested that they administer their botnet as a full-time job. Last, we find

that 69.03% of the operators stop utilizing their panels within 30 days of a detection event,

suggesting that while they do not immediately abandon their operations after detection, the

detection event is critical to curb their operations.

Our last study characterized the network infrastructure of sophisticated actors (i.e., APT

and sophisticated cybercriminal groups). In this work, we proposed a novel measurement

methodology that expanded the IP visibility and contextualized the network infrastructure

of three times more domains than that possible only with infrastructure from public threat

reports. This infrastructure visibility enabled us to conduct the largest APT infrastructure

characterization study and pinpoint several practical findings. The lifecycle analysis deter-

mined that organizations will need to retain network logs for at least 19 to 25 months in

order to maintain comprehensive visibility in APT network infrastructure in the case of an

attack. We observed that while APT actors utilize a plethora of different hosting providers,

they only re-use a small portion of them over the years, and that the use of cloud-fronting

has increased significantly, making network forensics and attribution harder. Furthermore,

we find that at the first public disclosure of APT attacks, the vast majority of their IP

infrastructure no longer points to their domain names, and considering the incomplete in-

frastructure sharing on public reports, this finding highlights the need for historical data

retention and systems to increase the completeness of publicly known APT infrastructure.

Next, we discuss the limitations of the studies and systems of this thesis and propose

future avenues of research, considering the limitations but also the insights provided in this

dissertation. Lastly, we offer the closing remarks.
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6.2 Limitations

6.2.1 Malware Infrastructure Study Limitations

Recursive resolvers. The DNS protocol relies heavily on recursive resolvers, which op-

erate between authoritative DNS servers and DNS clients. This indirection makes client

estimation difficult. Although many public DNS resolvers support ECS [92, 192], lack of

client support for ECS can lead to underestimation. Furthermore, if multiple infected hosts

exist within the same ECS network block, AuthDNS cannot distinguish between them. Fi-

nally, authoritative DNS servers typically see only a portion of the DNS requests issued

by individual hosts [193] due to caching by recursives. We do not utilize query volumes.

Instead, we focus on the number of unique clients we observe querying for each domain in

AuthDNS over the four years of our measurement. Due to the aforementioned limitations,

our results, even with a global perspective, should be viewed as lower bounds on the overall

malware ecosystem.

Noisy clients. Not all DNS lookups for malware-related domains come from the mal-

ware itself. Honeypots and network scanners may query DNS to detect malware-related

infrastructure in several cases. This is a common challenge in prior malware ecosystem

research that leads to overestimation [194, 17]. We do not address this limitation in sec-

tion 3.3 and section 3.4, in order to perform meaningful comparisons with established

alternative perspectives. However, we begin to address this challenge in section 3.5 by

examining the different stages of the malware domain lifecycle and identifying likely scan-

ners based on signals such as queries that consistently appear after new malware domains

are reported/discovered on blocklists.

VPNs and proxies. Clients may utilize VPNs or proxies to hide their true network lo-

cation. This can skew AuthDNS’s geolocation of infected populations. To approximate the
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presence of proxies and anonymizing networks in our dataset, we measure the prevalence of

Tor exit nodes in AuthDNS using historical Tor exit node lists[195], accounting for the days

that each exit node is active. We find the average daily client percentage and average daily

query volume percentage of Tor exit node IPs to be 0.07% and 0.001%, respectively; thus,

their presence on our dataset is minimal. The low prevalence of anonymizing networks on

our dataset does not guarantee the absence of other popular proxy and VPN providers. A

lack of well-documented historical datasets for proxies/VPNs limits our ability to measure

them more thoroughly.

Malware Visibility. The observations in our study are limited by the visibility of our

datasets. More specifically, our visibility of malicious domains depends on the MAL

dataset, which only includes Windows malware. Additionally, we intersect the malicious

domains with those registered in our AuthDNS dataset, which removes an additional set

of malicious domains. Despite these limitations, our study covers more than 200 malware

families.

6.2.2 Password Stealers Study Limitations

The operational nature of the Stealer dataset can affect the accuracy of our results. The

tracking pixel may only appear on some panel pages and therefore miss activities from

operator devices. Additionally, since the data collection relies on running malware in a

sandbox, the malware binary collection and analysis can create a skewed view of the mal-

ware families. However, since our dataset is large (hundreds of thousands of records), we

can assume the data is statistically representative of the overall population.

The data validation analysis shows that operators may spoof their UA, use private

browsing, or use multiple devices. It is difficult, if not impossible, to associate a virtual

entity with a physical entity based on the current dataset. Nevertheless, we make con-

servative assumptions about the operators by framing the analysis as operator devices and

extensively validating the dataset.

112



Another possible limitation is the effect of network address translation (NAT) traffic and

aggregated pDNS data from recursive servers. These artifacts can impact our infection es-

timation and operator count. Additionally, operator network proxies can create ambiguities

about the geographical regions of the operators.

6.2.3 APT Domain Study Limitations

Despite the increased infrastructure visibility that our measurement methodology (Atro-

pos) provides compared to APT threat reports, it cannot identify all actor-utilized IPs for

all domains, as illustrated in Table Table 5.8. Some of the APT domain names belong to

ccTLDs and other TLDs that do not share their zone files, so it is difficult for DNS scan-

ners to pick them up before their detection. APT actors may also set their name servers to

respond with a valid command and control IP only to specific target networks (i.e., victims)

and with invalid IPs to others, including projects like Active DNS. Additionally, some APT

actors may utilize a subdomain that hasn’t been observed by a DNS scanner (e.g., 3LD or

4LD) for their command and control server and park their e2LD to known parking loca-

tions, which Atropos will filter out. Despite all this, the infrastructure expansion compared

to public reports for our measurement study is still significant.

As illustrated in Section subsection 5.4.2, Atropos performs very well in both evaluation

datasets; however, its performance can vary by actor depending on how differently actors

utilize the network infrastructure. APT actors can perform mimicry attacks or utilize fast

flux [175] to induce false positives and perform label shift [179, 196]. Future work can

build dedicated models for individual groups and their strategies to address such issues. We

did not explore this avenue as the existing high-confidence ground truth for these threats

is insufficient to effectively represent each APT actor in a machine-learning model without

big class imbalances [179].
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6.3 Future Work

While the previous subsection described the limitations of the studies and methodologies

that are part of this dissertation, in this subsection, we discuss future works that could try

to address these limitations, but also future works that are enabled by the innovations and

insights of this thesis.

Accurate discovery of DNS scanners, security vendors, and victims in network

datasets utilizing lifecycle features. The findings of chapter 3, demonstrated that while it

is hard to assess the stakeholders interacting with malware-hosting domain names just by

their network, due to the utilization of public recursives, VPNs and proxies, the temporal

interactions of some stakeholders such as DNS scanners and security vendors start after

the detection of a malicious domain name. Future works can focus on accurately identi-

fying the different types of stakeholders interacting with malware infrastructure by taking

advantage of lifecycle features, such as the first time they accessed the infrastructure, com-

pared to the domain registration, detection, and takedown. Future works can also deploy

distributed DNS and HTTP honeypots in order to identify DNS and HTTP scanners and

their attributes, and filter them out when assessing victim targeting on network data.

Improving the performance and generalization of network infrastructure charac-

terization systems. One of the limitations of Atropos is that while it provides a significant

IP expansion based on what is publicly reported, it can still not characterize all known APT

domain names with the IPs they likely utilized when they were active. Future works could

try to apply similar methodologies to Atropos in other DNS datasets, including passive

DNS in order to increase the coverage and comprehensiveness in APT domain character-

ization. Passive DNS datasets from various regions around the world could provide IP

visibility to domain names that were not visible by the active DNS datasets we utilized in

our study.

Additionally, since Atropos is a general system that works across all domain names
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of APT actors, that may introduce a lower precision or comprehensiveness in the domain

and IP characterizations of some actors. The network provisioning techniques can vary per

actor, thus, a general model may not be precise across all actors. Future works could aim to

build dedicated models that operate on particular APT actors, or groups of actors that uti-

lize similar provisioning techniques, in order to improve the characterization performance.

The same methodology could be applied to the development of dedicated models that deal

with the characterization of fast-fluxing domain names, which we excluded from our study.

The utilization of fast-fluxing malicious domain names even after their detection by some

APT actors like the Gamaredon Group (e.g., in some ccTLDs that delay their takedown) is

significantly different from most of the other actors that stop utilizing their domain names

or pointing new IP infrastructure to them after detection. Future studies could aim to build

models or characterize the modus operandi of such divergent groups.

Furthermore, a significant part missing from the community related to the network in-

frastructure of sophisticated threats is that of historical benchmark datasets of real-world

utilized infrastructure. This is obviously hard, as sophisticated actors that are often backed

by nation-states will not release their utilized infrastructure to the public. In our study, we

had to manually extract and label historical resource records associated with known APT

domains in order to create training and evaluation datasets for Atropos, which was very

time-consuming and could be subject to the subjective biases of the junior and senior an-

alysts we utilized. The community should focus on building bigger, community-evaluated

ground truth datasets of the historical infrastructure associated with sophisticated threats

and their domain names in order to enable consistent comparison among the systems and

studies that will follow. Additionally, these datasets could also enable the creation of more

dedicated systems that are specialized to particular actors or groups of actors.

Understanding and measuring the impact of lifecycle analysis in domain detection

and reputation systems. In chapter 5 we have discussed how identifying when a mali-

cious domain name was historically active is a hard process and presented as a solution to
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this problem, our system, Atropos. Sophisticated actors have been utilizing the process of

strategically aging their domain names in order to evade detectors that heavily rely on fea-

tures such as the temporal proximity of a domain name to its registration in order to consider

it as malicious [143, 144]. While recent works have demonstrated that such systems can

easily be evaded [142], future works can utilize Atropos to identify the active period and

infrastructure of malicious domain names and measure the impact of incorporating such

features in their training datasets. As we discussed in chapter 5, a malicious domain name

can also be associated with parking, sinkhole, and other IP infrastructure that is not relevant

to an attack. Future works can incorporate this signal into their detectors and not indiscrim-

inately train their models, assuming all the IP infrastructure of a malicious domain name is

relevant to the attacks. For example, future works can utilize systems and methodologies

like Atropos to identify the particular IPs associated with a domain name that were likely

utilized during an attack and train their domain or IP reputation systems only with these

IPs and not the parking, sinkhole, and other unrelated IPs (e.g., previous or future owners

of a domain name) that are not associated with the infrastructure the cybercriminals used.

As demonstrated in chapter 5, over 70% of the attack-utilized IP addresses in sophisticated

attacks no longer point to their domains at the time of the first public reporting, so future

detection systems need to take that into account when training.

Attribution of APT attacks using an expanded network infrastructure dataset and

utilizing the provisioning lifecycle patterns of different threats. In chapter 4 and chap-

ter 5, we discussed the implications of utilizing IP infrastructure for malicious threat actor

attribution. In agreement with experts [22], we have found that attribution exclusively

utilizing IP infrastructure exhibits many challenges due to the proxies, VPNs, and cloud-

fronting that modern cybercriminals utilize. However, we have also demonstrated that cy-

bercriminals often reuse infrastructure, and this can be the basis of future attribution work.

Attribution analysts can expand known and publicly reported APT infrastructure utilizing

tools like Atropos, and then focus on identifying the subset of the infrastructure that gets
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reused. Additionally, future network attribution efforts can focus on metadata regarding

the infrastructure provisioning of APT actors, such as the average delta of infrastructure

provisioning across each actor, the parking and infrastructure that different actors utilize to

strategically age their domain names [140, 141], and the lifecycle patterns of provisioning

across different domain names. Such efforts could lead to more robust attribution systems

than simply matching future infrastructure based on domain names and IPs alone.

6.4 Closing Remarks

This dissertation aims to provide real-world insights into how network infrastructure is be-

ing utilized by malicious threat actors throughout their operations and over the years, and

how the characterization of these interactions can affect common security tasks. The find-

ings presented in this thesis validate prior works [40, 82] with respect to the geographic

distribution of malicious infrastructure and its victims, but also expert insight on attri-

bution [22]. We have shown that victim analysis utilizing authoritative DNS datasets is

temporally sensitive, and that threat analysts need to take into account DNS scanners and

security vendors who are overwhelmingly scanning malicious infrastructure after detec-

tion. We conducted an empirical analysis of the interactions of cybercriminals with their

botnet management panels, and we identified that the detection event is significant in curb-

ing their operations, with 69.03% of the operators stopping accessing their panels within

30 days of their detection. Finally, we demonstrated how sophisticated malicious threat

actors provision their infrastructure IPs to their domains on average 317 days before their

attacks are publicly reported, and provided a measurement methodology, Atropos, capable

of expanding their known IP infrastructure by over three times from that which is publicly

reported in threat reports. We hope that the findings and tools presented in this dissertation

will lead to the development of more robust and accurate methodologies and systems with

applications to malicious infrastructure detection and attribution.
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APPENDIX A

ATROPOS GENERALIZATION FOR THREAT HUNTING

To see whether Atropos can generalize and adapt to different analyst requirements, such

as threat hunting for IPs that are non-cloud-fronting and virtual hosting – similar to the

labeling methodology of EA described in Section subsubsection 5.4.2 –, we modify the

PR dataset by flipping all the labels of IP addresses with more than 200 concurrent domain

names pointed to them as non-APT controlled to imitate EA labeling process, changing 63

resource records from APT-controlled to non-APT controlled. We name this dataset PR-

NVH. We train our model again utilizing PR-NVH and report our results in Table Table A.1.

We observe that the accuracy and precision of the new model improve compared to those

presented in Table Table 5.6, meaning that Atropos can be trained on datasets with different

requirements and provide accurate results for different use cases that are outside of the

scope of our study.

Table A.1: Evaluation of Atropos trained with and altered PR dataset.

DNS Test
Dataset Set ROC AUC F1-Macro Accuracy Precision Recall

Active DNS EA 87.86% 89.03% 93.58% 85.45% 93.58%
Virus Total EA 87.29% 88.06% 92.39% 83.22% 92.39%
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