
Symbolic Model Learning: New Algorithms and
Applications

George Argyros

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2019

c�2019

George Argyros

All Rights Reserved

Symbolic Model Learning: New Algorithms and Applications

by

George Argyros

Abstract
In this thesis, we study algorithms which can be used to extract, or learn, formal
mathematical models from software systems and then using these models to test
whether the given software systems satisfy certain security properties such as ro-
bustness against code injection attacks. Specifically, we focus in studying learning
algorithms for automata and transducers and the symbolic extensions of these mod-
els, namely symbolic finite automata (SFAs). In a high level, this thesis contributes
the following results:

1. In the first part of the thesis, we present a unified treatment of many common
variations of the seminal L⇤ algorithm for learning deterministic finite automata
(DFAs) as a congruence learning algorithm for the underlying Nerode congru-
ence which forms the basis of automata theory. Under this formulation the
basic data structures used by different variations are unified as different ways
to implement the Nerode congruence using queries.

2. Next, building on the new formulation of L⇤-style algorithms we proceed to
develop new algorithms for learning transducer models. Firstly, we present the
first algorithm for learning deterministic partial transducers. Furthermore, we
extend my algorithm into non-deterministic models by introducing a novel, gen-
eralized congruence relation over string transformations which is able to capture
a subclass of string transformations with regular lookahead. We demonstrate
that this class is able to capture many practical string transformation from the
domain of string sanitizers in Web applications.

3. Classical learning algorithms for automata and transducers operate over finite
alphabets and have a query complexity that scales linearly with the size of the
alphabet. However, in practice, this dependence on the alphabet size hinders
the performance of the algorithms. To address this issue, we develop the MAT ⇤

algorithm for learning symbolic finite state automata (s-FAs) which operate over
infinite alphabets. In practice, the MAT ⇤ learning algorithm allow us to plug
custom transition learning algorithms which will efficiently infer the predicates
in the transitions of the s-FA without querying the whole alphabet set.

4. Finally, we use our learning algorithm toolbox as the basis for the development
of a set of black-box testing algorithms. More specifically, we present Gram-
mar Oriented Filter Auditing (GOFA), a novel technique which allows one to
utilize my learning algorithms to evaluate the robustness of a string sanitizer

or filter against a set of attack strings given as a context free grammar. Fur-
thermore, because such grammars are many times unavailable, we developed
sfadiff a differential testing technique based on symbolic automata learning
which can be used in order to perform differential testing of two different parser
implementations using s-FA learning algorithms and we demonstrate how our
algorithm can be used to develop program fingerprints. We evaluate our al-
gorithms against state-of-the-art Web Application Firewalls and discover over
15 previously unknown vulnerabilities which result in evading the firewalls and
performing code injection attacks in the backend Web application. Finally, we
show how our learning algorithms can uncover vulnerabilities which are missed
by other black-box methods such as fuzzing and grammar-based testing.

Contents

List of Figures vi

List of Tables ix

Acknowledgments x

1 Introduction 1

1.1 Bibliographical Note . 6

2 Related Work 8

2.1 Automata Learning . 8

2.2 Symbolic Automata and Transducers 10

2.3 Applications of Automata Learning 11

2.4 Web Application Analysis . 11

3 Background 12

3.1 Strings and Languages . 12

3.1.1 String Operations. 13

3.1.2 Regular Expressions . 13

3.1.3 Derivatives . 14

3.1.4 Automata . 14

3.1.5 Transducers . 14

3.1.6 Context Free Grammars . 16

3.2 Learning Model . 17

i

4 Congruences and Distinguishability 19

4.1 Equivalence Relations . 19

4.2 Nerode Congruence . 20

4.3 Syntactic Congruence . 21

4.4 Distinguishing predicates . 22

4.5 Black-box distinguishability . 23

4.5.1 Nerode Congruence . 23

4.5.2 Syntactic Congruence . 24

4.6 Building a DFA model . 27

4.7 Partial Congruence . 28

4.8 Implementing a partial congruence 30

4.8.1 Observation Table . 31

4.8.2 The Classification Tree . 32

5 Learning Deterministic Finite Automata 35

5.0.1 Technical Description. 35

5.0.2 Processing Counterexamples. 36

5.0.3 Correctness and Complexity 37

6 Learning Deterministic Transducers 39

6.1 Overview . 39

6.2 Learning Total Transducers . 40

6.2.1 Learning the Syntactic Congruence 40

6.2.2 Learning the output function �f 41

6.2.3 The Algorithm . 41

6.3 Output Label Inference . 42

6.3.1 OLI Algorithm . 42

6.3.2 Correctness and Complexity 44

6.3.3 Robust Output Label Inference 49

6.3.4 The OLI algorithm under partial congruences 50

6.4 Learning Partial Transducers . 55

ii

6.4.1 High-Level Overview . 56

6.4.2 Counterexample Processing 56

6.4.3 Overall Algorithm . 59

6.4.4 Correctness and Complexity 59

7 Learning Non-Deterministic Transducers 61

7.0.1 Visible nondeterminism . 61

7.0.2 Indexed congruence . 62

7.0.3 Visibly nondeterministic transducer 63

7.0.4 Simple Visibly Non-Deterministic Transducers 70

7.0.5 Extended Classification Tree 71

7.0.6 Induced NFA Verification . 73

7.0.7 Counterexample Processing 74

7.0.8 Learning Algorithm Summary 76

8 Learning Symbolic Automata 77

8.1 Background . 77

8.1.1 Boolean Algebras and Symbolic Automata 77

8.2 Learning Algorithm Overview . 78

8.2.1 Partition Learning Algorithms 79

8.2.2 Predicate Learning Algorithm 80

8.3 The MAT ⇤ Algorithm . 80

8.3.1 Contructing an s-FA model 81

8.3.2 Counterexample Processing 84

8.4 Correctness and Completeness of MAT ⇤ 86

8.5 Learnable Boolean Algebras . 89

8.6 Learning Equality Partitions from Data 90

8.6.1 A Greedy MLE algorithm . 92

8.6.2 A frequency based GuardGen algorithm 94

iii

9 Applications 96

9.1 Code Injection Attacks . 96

9.2 Web Application Firewalls and String Sanitizers 97

9.3 Grammar Oriented Filter Auditing 98

9.3.1 Approximating a Complete Equivalence Oracle 100

9.4 Differential Testing with s-FAs . 102

9.4.1 Basic Algorithm . 102

9.4.2 Difference Analysis . 103

9.4.3 Differentiating Program Sets 105

9.4.4 Program Fingerprints . 106

10 Evaluation 110

10.1 Transducer Learning Algorithms Evaluation 110

10.1.1 Benchmarks . 110

10.1.2 Evaluation of SVND transducer learning 111

10.1.3 Black-box testing of sanitizer robustness 114

10.2 MAT ⇤ Evaluation . 115

10.2.1 Equality Algebra Learning . 115

10.2.2 BDD Algebra Learning . 117

10.2.3 s-FA Algebra Learning . 118

10.3 GOFA Algorithm Evaluation . 119

10.3.1 Implementation . 119

10.3.2 Testbed . 120

10.3.3 SFA Learning Algorithm Evaluation 121

10.3.4 GOFA algorithm . 123

10.3.5 Cross Checking HTML Encoder implementations 126

10.3.6 Bug in BEK HTML Decoder Example 129

10.4 SFADiff Evaluation . 131

10.4.1 Initialization evaluation . 131

10.4.2 TCP state machines . 132

iv

10.4.3 Web Application Firewalls and Browsers 135

10.4.4 Comparison with black-box fuzzing 139

11 Conclusions 142

Bibliography 144

v

List of Figures

3-1 Examples of automata and transducers. (left:) A deterministic finite

automaton accepting the language <[>̂]*>. (middle:) A partial de-

terministic transducer. (right:) A total functional non-deterministic

transducer that removes HTML tags. 15

3-2 The Minimally Adequate Teacher (MAT) learning model. 17

4-1 Partial transducer. 24

4-2 (Left:) A DFA accepting the language <[ˆ>]*>. (Middle:) The corre-

sponding observation table implementation of the Nerode congruence.

(Right:) The corresponding classification tree implementation of the

congruence. 31

6-1 The overall algorithmic learning framework. 40

6-2 (Left:) Iterative approximations of the fr(er) value by the OLI algo-

rithm. (Right:) Demonstration of a vulnerable transition (r, a, rs) 2
RH ⇥ ⌃⇥RH. 44

6-3 The three different types of conflict that may occur on a vulnerable

transition (r,↵, rs) as analyzed in the proof of theorem 5. The labels

in the outgoing transitions show the output produced by fr
s

(er
s

) and

fr↵(e
r

s

)

respectively. 54

8-1 An s-FA over equality algebra. 80

vi

8-2 (left) Classification tree and corresponding learned states for our run-

ning example. (right) Two different instances of failed partition verifi-

cation checks that occured during learning and their respective updates

on the given counterexamples (CE). 84

8-3 (left) A minimal s-FA. (right) The s-FA corresponding to the classifi-

cation tree of MAT ⇤ with access strings for qinit and q
2

and a single

distinguishing string ✏. 86

9-1 SFADiff archtitecture . 101

10-1 Total number of output queries made by the learning algorithm for

different alphabet sizes when learning the IE Anti-XSS Form filter (no.

14). 113

10-2 (Top) Evaluation of MAT ⇤ on s-FAs over a BDD algebra. (Bottom)

Evaluation of MAT ⇤ on s-FAs over an s-FA algebra. For an s-FA

Mm,n, the x-axis denotes the values of n. Different lines correspond to

different values of m. 118

10-3 Speedup of SFA vs. DFA learning. 121

10-4 Speedup of SFA vs. DFA learning with GOFA. 123

10-5 Speedup of SFA vs DFA algorithms for different alphabet sizes. . . . 124

10-6 Equivalence Checking of HTML encoder implementations. 129

10-7 The performance (no. of equivalence and membership queries) of the

SFA learning algorithm with and without initialization for different

rules from two WAFs (ModSecurity OWASP CRS and PHPIDS). . . 131

10-8 State machine inferred by SFADiff for Mac OSX TCP implementa-

tion. The TCP flags that are set for the input packets are abbreviated

as follows: SYN(S), ACK(A), FIN(F), PSH(P), URG(U), and RST(R). 133

10-9 The setup for SFADiff finding differences between the HTML/JavaScript

parsing in Web browsers and WAFs. 135

10-10The implementation of membership queries for Web browsers. 136

10-11PHPIDS 0.7 parser (simplified version). 139

vii

10-12Google Chrome parser (simplified version). 139

10-13Fingerprint tree for different web application firewalls. 140

viii

List of Tables

10.1 Performance of SVND learning algorithm. 112

10.2 Evaluation of MAT ⇤ on regular expressions. 116

10.3 SFA vs. DFA Learning . 120

10.4 SFA vs. DFA Learning + GOFA . 122

10.5 Attacks found by succesively reducing the attack grammar rules PHP-

IDS 76 & 52 composed . 127

10.6 Vulnerabilities discovered using the GOFA algorithm on Mod-Security

3.0.0. 127

10.7 Results for different TCP implementations: Number of states in each

model and number of membership queries required to infer the model. 132

10.8 Some example fingerprinting packet sequences found by SFADiff across

different TCP implementations. The TCP flags that are set for the in-

put packets are abbreviated as follows: SYN(S), ACK(A), FIN(F), and

RST(R). 133

10.9 A sample execution that found an evasion attack for PHPIDS 0.7 and

Google Chrome on MAC OSX. 141

ix

Acknowledgments

This thesis would not have been possible without the people that supported me

throughout the years I’ve been in Columbia. I would like to start by thanking my

co-authors that contributed in the research presented in this thesis: Suman Jana,

Margus Veanes, Loris D’Antoni, Aggelos Kiayias, Ioannis Stais and my advisor An-

gelos Keromytis.

I would like to particularly thank my undergraduate advisor Aggelos Kiayias, who

has been a long-term collaborator in a number of projects presented in this thesis as

well as a mentor and good friend. Ioannis Stais has also been a close collaborator for

a number of years and contributed significantly in bringing this thesis closer to the

practical setting.

Beyond the research presented in this paper I had the wonderful opportunity to

collaborate with a number of great people from within the department. I would like

to particularly thank Junfeng Yang and Roxana Geambasu for working with me and

for being quite supportive during my studies.

My colleagues in Columbia played a significant role in my life both profession-

ally and personally. Specifically, I would like to thank Theofilos Petsios, Vaggelis

Atlidakis, Suphannee Sivakorn, Dimitris Mitropoulos and Marios Pomonis.

Last but not least, I would like to thank my advisors Tal Malkin and Angelos

Keromytis for giving me the opportunity to come to Columbia and for supporting me

throughout the years of my studies.

It goes without saying that this thesis would not exist without the continuous

support of my family and friends. In both joyful and difficult times you were always

there for me, thank you.

x

Chapter 1

Introduction

In modern years, the wide adoption of computer systems in every aspect of our lives

have revolutionized modern societies. From the Internet revolution, to self-driving

cars and heart pacemakers which are remotely controlled by software systems, our

lives are becoming more and more dependent on the correct functionality of the

software and hardware systems we develop.

In this computer-dependent world, the development of tools and algorithms which

allow us to analyze properties of software and hardware systems is of paramount

importance. However, due to it’s generality, this problem is very difficult to tackle

effectively. In it’s more general mathematical form the problem is unsolvable in a

formidable manner: the famous Rice’s theorem [74] from the early 1950s, states that

any non-trivial semantic property of a computer program is undecidable. Here, by

non-trivial semantic property we basically mean any program property which cannot

be derived simply by the syntactic structure of the program, i.e. it depends on the

semantics of the program.

In order to cope with undecidability, the research community developed a large

body of approximation techniques such as the seminal abstract interpretation [29]

framework, where the program is analyzed with respect to an abstract domain and

then the program is executed with respect to some abstract semantics which are

easier to analyze. In more general terms, the main avenue of research in order to

prove program properties is the following: Initially, we use a simpler computational

1

model which can be analyzed efficiently with respect to the desired property and then,

we construct an approximation of the original program in the selected computational

model and analyze the approximation instead of the original program. Constructing

the approximation is usually performed with specialized algorithms such as static

analysis algorithms.

This thesis will follow the same general avenue of research however, we will study a

different way of constructing the approximations of the system to be analyzed. More

specifically, we develop novel active learning algorithms which can be used to extract

formal models from software systems by actively querying the target system, produc-

ing a model of the system and finally, refining the model using counterexamples, i.e.

inputs where the output of the model is not consistent with the output of the target

system. This learning model, which is called learning with a minimally adequate

teacher (MAT), is a natural learning model where the algorithm is able to ask the

target system queries with arbitrary inputs and obtain the output of the system in

these queries and moreover, to test whether a candidate model is correct or obtain a

counterexample.

In terms of formal models, we will utilize finite automata for modelling programs

with binary output and transducers (automata with output) in order to model gen-

eral programs. Automata and transducers are among the most fundamental com-

putational models since they present nice algebraic properties, efficient computation

of many properties and moreover, they are expressive enough in order to model or

approximate many important real-life functionalities such as parsers and string trans-

formation routines.

The field of active learning algorithms for automata and transducers was moti-

vated by a series of negative results which proved NP-Hardness of Ocam-razor style

learning algorithms for deterministic finite automata [42] . In 1989, Dana Angluin

presented the seminal L⇤ algorithm [14] which was the first algorithm which can learn

deterministic finite automata using membership and equivalence queries in polyno-

mial time and using a polynomial number of queries. Since then, this algorithm has

spawn a large number of variations and optimizations as well as a number of applica-

2

tions in various domains. In the first part of this thesis, we will study the L⇤ family

of algorithms under an algebraic automata-theoretic view; the main advantage of this

new formulation of the algorithm is the unification of the main data structures which

by this type of algorithms such as the observation table and the classification tree as

data structures which implement the Nerode congruence relation using queries. Once

these data structures are abstracted away and the algorithm is explained in terms of

extending a congruence relation, we can greatly simplify the analysis and presentation

of the whole family of L⇤ algorithms.

Next, we move to our first novel algorithm. Specifically, we present a novel L⇤-

style algorithm for learning deterministic partial transducers. While learning total

deterministic transducers can be achieved using a simple extension to the original

L⇤ algorithm, once we introduce partiality the learning process becomes much more

challenging. To address this problem, we develop an independent algorithm which

can be used to infer the output of each transition in a single-valued transducer given

the underlying state machine of the transducer. Afterwards, we extend the syntactic

congruence which forms the equivalent of the Nerode congruence for transducers into

a generalized form which can model string transformations functions with regular

lookahead and provide an instantiation of our generalized congruence which gives rise

to a canonical class of non-deterministic transducers. Finally, we provide an extension

of our deterministic learning algorithm for this new class of transducers.

Afterwards, we demonstrate the applicability of our novel learning algorithms in

the domain of string sanitizers for Web applications. We demonstrate that our novel

class of non-deterministic class can capture a large number of string transformations

which are used by popular string sanitization frameworks such as the Internet Explorer

and Edge XSS filters. To the best of our knowledge our learning algorithm is the first

that can efficiently infer models of such string transformations which can then be

used for further analysis of the sanitization routines.

L⇤ and other similar algorithms work primarily over a finite alphabet ⌃ and the

number of queries performed by the algorithm scales linearly with the size of the

alphabet. However, when we want to use this type of algorithms in order to learn

3

models of parsers and string transformation routines we need to be able to operate

our learning algorithms using very large alphabet such as UTF-16 which includes

2

16 symbols. In order to address this significant scalability issue, we extend the L⇤

algorithm into symbolic automata (s-FA). Symbolic automata have transitions which

operate over predicates instead of individual characters and can therefore represent

regular languages over infinite alphabets. In the next chapter of the thesis, we present

the MAT ⇤ algorithm which can learn s-FAs over any boolean algebra which is also

learnable using membership and equivalence query. We demonstrate that MAT ⇤

allows us to scale automata learning algorithms efficiently into alphabets such as

UTF-16. Another important practical implication of this algorithm is the capability

to plug any learning algorithm for inferring the transitions of the s-FA independently

of the learning algorithm which learns the congruence. We demonstrate this point by

presenting and analyzing a statistical learning algorithm which infers the predicates

in each transitions by learning from a data-set of s-FAs. Finally, beyond the practical

implications of our algorithm we demonstrate how our algorithm provides an almost

complete characterization of the set of efficiently learnable s-FAs.

Now that we have developed a comprehensive toolbox of learning algorithms, our

next goal is to develop techniques and algorithms which will allow us to use these

algorithms for the analysis of systems. We focus in the analysis of Web applications

for code injection attacks. Code injection attacks currently present the primary risk

factor for Web application security. In a nutshell, code injection attacks occur when

the application confuses part of the user input which is intended to be data as code,

therefore changing the semantics of the execution of the Web application code. Code

injection attacks can result in the execution of arbitrary code in the Web server or the

user’s browser, leaking of sensitive information and other severe security implications.

In order to defend against code injection attacks, Web applications employ a number

of different lines of defenses. In this thesis we will focus primarily on two popular

defense mechanisms: (1) Web Application Firewalls (WAFs) and string sanitizers.

Web Application Firewalls work as a generic defense mechanism and they are

generally deployed independently of the Web Application. While many different ar-

4

chitectures are available, in their most common form, web application firewalls act

as a parser which tries to detect whether an input to the Web application contains a

code injection (or other) attack and in this case the request is dropped from further

processing by the application. On the other hand, string sanitizers work by taking

as input an input to the application which is “unsanitized” and through a series of

string transformations such as removing potentially dangerous part of the input and

encoding certain sensitive characters, transform the input into a “sanitized” input

which is safe for further processing by the Web application.

Our main goal is to use our learning algorithm in order to extract models of

Web Application Firewalls and String sanitizers and analyze their robustness against

code injection attacks. The first setting we consider is the Grammar Oriented Filter

Auditing (GOFA) problem. In the GOFA setting we are given a context free grammar

G which describes the set of attack strings for a particular code injection attack. For

example, consider the class of SQL Injection attacks; then, the context free grammar

G can be the set of valid continuations to SQL statements that start with a particular

prefix. Given such a grammar the GOFA problem asks to find a string s belonging

to G such that s is bypassing the filter or sanitization routine. We will demonstrate

that, by using the context free grammar G in order to simulate an equivalence query

as follows: given a model inferred by our learning algorithms, we use the model to see

if there exists any string s 2 G which bypasses our inferred model. If such an input is

found, then we test the candidate attack against the actual filter or sanitizer. If the

attack succeeds then we have effectively solved the problem. Otherwise, notice that

the string s is a counterexample to our model and therefore can be used to further

refine the model.

While the GOFA algorithm can be used to efficiently test the robustness of filters

and sanitizers in a black-box manner when the grammar G is available, such a detailed

description of the set of attack strings is often not available or not accurate enough

in order to thoroughly test the robustness of firewalls and sanitizers against code

injection attacks. For example, in order to thoroughly evaluate the robustness of Cross

Site Scripting (XSS) filters and sanitizers one would need a grammar describing the

5

set of HTML statements which result in Javascript execution. However, the HTML

standard is implemented quite differently by each different browser and these small

variations actually play a significant role in the evaluation of the robustness of string

sanitizers and filters. To address this important issue we develop SFADiff a technique

building on top of our GOFA algorithm. In a nutshell, instead of being given the

grammar G as an input to the GOFA algorithm, we utilize our learning algorithms

in order to infer the set of attack strings. For example instead of using the HTML

standard as the set of attack strings for the GOFA algorithm, we can utilize our

learning algorithms to infer regular approximations of the HTML standard parsed by

different browsers. Finally, we show how these techniques can be also used in order

to generate program fingerprints which can be used to distinguish between different

implementations using only black-box queries.

In order to evaluate the effectiveness of our GOFA and SFADIff algorithms we

use our algorithms to evaluate the robustness of popular Web Application Firewalls

against common code injection attacks such as SQL Injection (SQLi) and Cross Site

Scripting (XSS). Our GOFA algorithm is able to find more than 10 previously un-

known bypasses against Mod-Security, the most popular open source WAF, while our

SFADiff algorithm found 6 different XSS attacks bypassing PHPIDS and Expose two

popular WAFs. Moreover, we demonstrate how our algorithms can be used to built

a fingerprint tree which can be used in order to distinguish between different WAF

products using only black-box queries. Finally, we demonstrate that, when used in

conjunction with our transducer learning algorithm, the GOFA algorithm can un-

cover sophisticated recursive XSS attacks against sanitizers. We showcase this point

by demonstrating how our system can bypass a sanitization function in a popular

PHP application and construct a valid XSS attack.

1.1 Bibliographical Note

The results presented in this thesis have been also peer reviewed and presented in

the following conferences: The GOFA algorithm along with a preliminary version of

6

the MAT* algorithm were presented under the title “Back in Black: Towards Formal

Black-box Analysis of Sanitizers and Filters” in the “2016 IEEE Symposium on Secu-

rity and Privacy”. The SFADiff extension was presented under the title “SFADiff: Au-

tomated Evasion Attacks and Fingerprinting using Black-box Differential Automata

Learning” in the “Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security”. The MAT* algorithm was presented under the title

“The Learnability of Symbolic Automata” in “2018 International Conference on Com-

puter Aided Verification”. The work on transducer learning algorithms is currently

under peer review.

7

Chapter 2

Related Work

2.1 Automata Learning

Hardness of Automata Learning. Active learning algorithms for Deterministic

Finite Automata and other related classes were initated after a series of negative re-

sults on various passive learning models. Gold [42] shows that finding the minimum

DFA consistent with a set of samples is NP-Hard while, a few years later, the problem

was shown to be NP-Hard to approximate within any polynomial [72]. Moreover, a

representation-independant hardness result for learning automata based on crypto-

graphic assumptions was proven by Kearns and Valiant [52]. Even in the case where

access to membership queries is provided, certain models such as non-deterministic

finite automata, context free grammars, unions of DFAs and others remain hard to

learn [16].

The L⇤ Algorithm. In order to cope with hardness results, Angluin [14] intro-

duced the Minimally Adequate Teacher (MAT) learning model and the L⇤ algorithm.

After its introduction, Anlguin’s algorithm was improved and many variations were in-

troduced; Rivest and Schapire [75] showed how to improve the query complexity of the

algorithm and introduced the binary search method for processing counterexamples.

The classification tree data structure was introduced by Kearns and Vazirani [53].

Balcazar et al. [18] describe a general approach to view the different variations of

Angluin’s algorithm. Isberner et al. [51] recently developed the TTT algorithm which

8

provide a space optimal variation of the L⇤ algorithm which also contributes practical

improvements in the classification tree data structure by rearranging the nodes of the

tree. Implementations for most variations of the L⇤ algorithm can be found in the

LearnLib library [73].

Extensions to other models. A large number of extensions to classical au-

tomata exist with different properties and applications and extensions of the L⇤ algo-

rithm have been developed for such models as well. Residual Finite State Automata

(RFSA) [35] are canonical non-deterministic automata which can be exponentially

more succint than DFAs. A learning algorithm for RFSAs was developed by Bollig

et al. [22]. Adaptations of the L⇤ were also developed for alternating [15] and nom-

inal [63] which are more expressive than the classical deterministic finite automata.

Finally, another important model is register automata [25] which are canonical au-

tomata models which incorporate restricted use of registers and for which different

learning algorithms were developed [49, 13].

Other learning algorithms. Beyond the setting of active learning, the RPNI

algorithm [67] is usually employed in order to learn deterministic finite automata

from a set of samples. The algorithm will learn a correct DFA when a characteristic

sample of the regular language is provided (identification in the limit). Finally, a

line of work on kernel methods for identifying regular languages was developed more

recently [28, 55].

Learning transducers. Transducers were introduced as a mathematical object

by Marcel-Paul Schutzenberger and were used extensively in the past in natural lan-

guage processing [64]. However, lately transducers (and their extensions) have seen

extensive applications in the field of programming languages as an underlying formal-

ism for many domain specific languages [47, 41, 61]. A minimization algorithm for

deterministic finite state transducers was developed by Mohri [65].

An adaptation of the L⇤ algorithm to transducers [84] and Mealy machines [77]

were introduced after the development of the L⇤ algorithm. A general treatment of

the field of grammatical inference can be found in [33]. An algorithm for learning non-

deterministic Mealy machines was developed in [54], however, the algorithm required

9

a stronger type of queries than output queries and has an exponential running time.

The OSTIA algorithm is a popular passive learning algorithm for total transducers

developed by Oncina et al. [68].

2.2 Symbolic Automata and Transducers

Symbolic automata and transducer were initially introduced to cope with large alpha-

bets that were used in regular expressions and as a theoretical tool to reason about

automata with infinite alphabets. This line of work was initiated with the introduc-

tion of symbolic automata [82], although similar constructions were suggested much

earlier [86]. The introduction of symbolic finite state transducers (SFTs) followed

shortly afterwards with the developed of BEK [48], a domain specific language for

string sanitizers while the corresponding theory can be found in a follow up work

by Bjorner et al. [21]. A minimization algorithm for symbolic automata was devel-

oped by D’Antoni and Veanes [31] while a minimization for symbolic transducers was

developed by Saarikivi and Veanes [76]. Extensions to richer symbolic models and

domain specific languages were developed in the following years [37, 83, 81, 32]. A

general survey of the field of symbolic automata and transducers can be found in [39].

Learning Symbolic Automata and Transducers. In the inference of sym-

bolic automata and transducers there are two relevant recent works. Botincan and

Babic [23] used symbolic execution in combination with the Shabaz-Groz algorithm

in order to infer symbolic models of programs as symbolic lookback transducers. Al-

though the authors claim that equivalence of symbolic lookback transducers(SLT) is

decidable a paper published recently by D’Antoni and Veanes [38] shows that equiv-

alence of SLTs is in fact undecidable. The problem of learning regular languages over

large alphabets has attracted attention even before the introduction of symbolic au-

tomata through various techniques such as alphabet refinement [50] and parametric

languages [20]. The first algorithm to address learning of symbolic automata was

developed by Maller and Mens [60], however the algorithm assumed the existence of

an equivalence oracle which provides counterexamples of minimal length.

10

2.3 Applications of Automata Learning

In the context of testing, automata learning algorithms were used in order to infer

specifications for model checking, a concept called black-box checking [70, 43]. The

Vasileski-Chow algorithm [27], an algorithm for checking compliance of two automata,

given an upper bound on the size of the black-box automaton. This algorithm how-

ever, has a worst case exponential complexity a fact which makes it impractical for

real applications. Another important area of application for automata learning ap-

plication is learning models of network protocols. Recent examples include learning

and model checking models of the SSH protocol [40], learning TLS/SSL state ma-

chines [34], botnet command and control centers [26] and TLS hostname verification

routines [79]. Finally, we point out that a general review of applications of automata

learning algorithms is presented in a recent review article [80].

2.4 Web Application Analysis

There is a large body of work regarding whitebox program analysis techniques that

aim at validating the security of sanitizer code. The SANER [19] project uses static

and dynamic analysis to create finite state transducers which are overapproximations

of the sanitizer functions of programs. Minamide [62] constructs a string analyzer

for PHP which is used to detect vulnerabilities such as cross site scripting. He also

describes a classification of various PHP functions according to the automaton model

needed to describe them. The Reggae system [58] attempts to generate high coverage

test cases with symbolic execution for systems that use complex regular expressions.

Wasserman and Su [85] utilize Context free grammars to construct overapproxima-

tions of the output of a web application. Their approach could be used in order to

implement a grammar which can then be used as an equivalence oracle when applying

the cross checking algorithm for verifying equality between two different implemen-

tations.

11

Chapter 3

Background

In this section, we will provide a general introduction to the formal models we will

use in this thesis. For a more complete description of basic concepts we recommend

basic theory of computation textbooks [57].

3.1 Strings and Languages

Given a set ⌃, ⌃⇤ denotes the set of all finite sequences of elements over ⌃. We

do not distinguish here between ⌃ and unit-length sequences in ⌃⇤, assuming thus

that ⌃ \ ⌃⇤
= ⌃. The empty sequence is denoted by ✏. We frequently refer to ⌃ as

an alphabet, its elements are called characters and sequences of characters are called

strings. We write s, t, u, v, w for strings and a, b, c,↵, �, � for characters. We let x, y, z

range over characters as well as strings. For any integers m and n let [m..n] denote

the range {i | m  i  n}. Given a bottom element ? /2 ⌃⇤ we write ⌃⇤
? for ⌃⇤[{?}.

We use � similarly to ⌃. We use ⌃ for input alphabets and � for output alphabets

of string functions. We denote the Boolean domain as B = {T,F}.

The length of a string s is denoted by |s|. For s 2 ⌃⇤ and i 2 [1..|s|], let s[i..] be

the suffix of s from position i, let s[..i] be the prefix of s upto position i, and let s[i]

be the character at position i.

12

3.1.1 String Operations.

For u, v, w 2 ⌃⇤ and a 2 ⌃ we define the following operations:

– u 2 v: u is a prefix of v; u � v means u 2 v and u 6= v.

– v 3 u: u is a suffix of v; v � u means v 3 u and u 6= v.

– u u v: the maximal common prefix of u and v; u u ? = u and ? u v = v.

– u t v: the maximal common suffix of u and v; u t ? = u and ? t v = v.

– u·v (or uv for short): the product (concatenation) of u with v.

– for k � 1, i 2 [1..k], vi 2 ⌃

⇤, let
Nk

i=1

vi denote the generalized product

v
1

·v
2

· · · vk.

– if w = u·v then w � v
def
= u (right division of w by v).

– if w = u·v then u � w
def
= v (left division of w by u).

– if L ✓ ⌃

⇤ then prefixes(L)
def
= {v | 9u 2 L.v 2 u}; L is prefix closed if

prefixes(L) = L.

Let ? 2 ? but, forall u 2 ⌃⇤, ? 62 u and u 62 ?. For all operations, other than u
and t, the result is ? whenever some argument is ?. Given a function f : ⌃

⇤ ! �

⇤
?,

the domain of f is dom(f)
def
= {v 2 ⌃⇤ | f(v) 6= ?}, f is monotone when forall

u, v 2 dom(f) if u 2 v then f(u) 2 f(v). The following properties are used.

Proposition 1. Let X be a nonempty subset of strings. There exist fixed witnesses

w
1

, w
2

2 X such that
d

X = w
1

u w
2

and for all x 2 X either
d
X = x u w

1

or
d

X = x u w
2

.

3.1.2 Regular Expressions

Given a fixed finite alphabet ⌃ we make use of standard notation of regular expressions

(over ⌃) and if r is a regular expression then [[r]] is the corresponding language that

r denotes. For example, [[.*]] = ⌃⇤ and [[[^a].*|()]] is the set of all strings that do

not start with character a, provided for example that ⌃ is ASCII.

13

3.1.3 Derivatives

Given character a 2 ⌃ and language L ✓ ⌃⇤, the derivative of L with respect to a

is the language a0L def
= {v 2 ⌃⇤ | a·v 2 L}. L is nullable if ✏ 2 L. When we work

with regular languages, we make use of the property that any derivative of a regular

language is also regular. For example b0[[[^a].*|()]] = [[.*]] and a0[[[^a].*|()]] = ;.

3.1.4 Automata

We will now proceed to define finite state automata which form the basis of the models

we study in this thesis.

Definition 1. A finite automaton (FA) is a tuple A = (Q, q
0

, F, �) where Q is the set

of states, q
0

2 Q is the initial state, F ✓ Q is the set of final states and � ⇢ Q⇥⌃⇥Q

is the transition relation.

In this thesis, we will work primarily with deterministic finite automata(DFA),

where determinism is defined as follows:

Definition 2. A finite automaton A = (Q, q
0

, F, �) is deterministic if and only if

(q,↵, p) 2 � ^ (q,↵, p0) 2 �, then we have that p = p0.

In other words, a finite automaton is deterministic if and only if every transition

from a state on a specific input symbol have a unique target state.

An important property of deterministic finite automata (and FA automata in

general) is that they form a Boolean algebra, i.e. they are closed under the boolean

operations of intersection,union and negation. Moreover, equivalence of DFAs can be

efficiently checked in time O(n log n) and emptiness can be also checked efficiently.

These properties make DFAs an attractive model for analyzing programs.

3.1.5 Transducers

A transducer is a tuple A = (⌃,�, Q, q
0

, F,�,�) where ⌃ is the input alphabet, � is

the output alphabet, Q is a set of states, q
0

2 Q is the initial state, F ✓ Q is the set

14

q0

q2b/✏

q1

q3

a/d
a/d

b/c
a/dd

b/c
a/✏
b/✏

q0 q2</<

x6=</x
>/✏

x6=>/x

x6=>/✏

q1

</✏

Figure 3-1: Examples of automata and transducers. (left:) A deterministic finite
automaton accepting the language <[>̂]*>. (middle:) A partial deterministic trans-
ducer. (right:) A total functional non-deterministic transducer that removes HTML
tags.

of final states, � ✓ Q ⇥ ⌃ ⇥ �⇤ ⇥ Q is the transition relation, � 2 �⇤ is the output

prefix. A is finite if all of its components are finite.

We let p
a/u��! q denote (p, a, u, q) 2 �. Transducer A is a simple computational

model which consumes input symbols and produces output symbols. Let the transitive

closure of the transition relation of A, denoted �⇤, be the least subset T of Q⇥⌃⇤⇥
�

⇤ ⇥Q such that

– if q 2 Q then (q, ✏, ✏, q) 2 T ;

– if pi�1

a
i

/u
i���! pi for i 2 [1..k] then (p

0

,
Nk

i=1

ai,
Nk

i=1

ui, pk) 2 T .

A state q is reachable if there exist u and v such that (q
0

, u, v, q) 2 �⇤; we say that u

accesses q. A state q is live if there exist u and v and p 2 F such (q, u, v, p) 2 �⇤; we

say that u is enabled from q. Transducer A is said to be trim if all of its states are

reachable and live. For each state q 2 Q let the transduction of A (from q) denoted

TA (T q
A) be the following subset of ⌃⇤ ⇥ �⇤,

T q
A

def
= {(u, v) | 9p 2 F.(q, u, v, p) 2 �⇤}, TA

def
= {(u,�·v) | (u, v) 2 T q0

A }.

The domain of A, dom(A), is the set of all u such that there exists some v

such that (u, v) 2 TA. A is total when dom(A) = ⌃

⇤ and partial otherwise. A is

functional if, for all u 2 ⌃⇤ there is at most one v 2 �⇤ such that (u, v) 2 TA. A

is deterministic if, for all q 2 QA and a 2 ⌃ there exist at most one u and p such

that (q, a, u, p) 2 �. If A is deterministic then A is also functional. Figure 3-1(right)

shows a trim total nondeterministic functional finite state transducer. Figure 3-

1(left) is deterministic and partial. In this paper, we are going to work exclusively

15

with functional transducers. For functional transducers A we adopt the view of the

transduction of A as a partial function over ⌃⇤ or, because it is more convenient to

work with total functions, as a function from ⌃

⇤ to �⇤
? such that for all u 2 ⌃⇤, if

u 2 dom(A) and (u, v) 2 TA then TA(u) = v, and if u /2 dom(A) then TA(u) = ?.

Earliest Normal Form

For q 2 Q define bq as the greatest common prefix of all the outputs originating from

q, i.e., bq def
=

d
{v | 9p 2 F : 9u 2 ⌃⇤

: (q, u, v, p) 2 �⇤}. We let
d
; def
= ?, so thatbq = ? when q is not live. Observe that bq = ✏ for all q 2 F because (q, ✏, ✏, q) 2 �⇤

for all q. The earliest normal form of A or ENF(A) is defined as follows.

ENF(A) def
= (⌃,�, Q, q

0

, F, {(p, a, bp � (u·bq), q) | (p, a, u, q) 2 �},�·bq
0

).

Observe that bp 2 u·bq for all (p, a, u, q) 2 � so the output bp � (u·bq) is indeed well-

defined.

3.1.6 Context Free Grammars

A straightforward generatlization to automata and transducers is the addition of a

stack to the corresponding models. The corresponding models are called pushdown

automata and transducers and they are one of the most classic models which combine

rich expressive properties with low complexity. An equivalent definition of pushdown

automata is given through context free grammars which we will extensively in order

to provide formal specifications of attacks.

Definition 3. A Context Free Grammar (CFG) G is a 4-tuple G = (V,⌃, R, S) where

V is the set of non-terminals, ⌃ is the set of terminals, R ✓ V ⇥ (V [⌃)⇤ is the set

of productions and S 2 V is the initial symbol.

While certain properties of CFGs are undecidable such as computing whether two

grammars are equivalent, other important properties can be computed in polynomial

time. Important for our applications is the computation of the intersection between a

16

Figure 3-2: The Minimally Adequate Teacher (MAT) learning model.

CFG and a DFA which can be performed in polynomial time and moreover, checking

a CFG for emptiness which can also be performed in polynomial time.

3.2 Learning Model

The algorithms described in this paper are active learning algorithms operating in

a learning model called learning with a Minimally Adequate Teacher (MAT) and

also learning from membership and equivalence queries [14, 53]. Under this model, a

learning algorithm which is learning a target function f : ⌃⇤ ! �

⇤ [{?} is given the

ability to perform two types of queries:

• Output queries: Also called membership queries in the case f is a boolean

function. For any input s 2 ⌃⇤, an output query will return the value of the

function f(s).

• Equivalence queries: Once the learning algorithm generates a candidate

model h for the function f , an equivalence query is performed to verify cor-

rectness of the model. If the model is correct, i.e. for all s 2 ⌃⇤ we have that

f(s) = h(s) then, the query will return T. Otherwise, a counterexample c 2 ⌃⇤

is provided such that f(c) 6= h(c).

17

Relation to PAC learning. The most traditional learning model used in learning

theory is the Probably Approximately Correct (PAC) model. In this model, a learning

algorithm have no query access to the target function and only receives samples from

the function according to some target distribution. The goal of the learning algorithm

is to output a hypothesis (i.e. model) which, with high probability, has a small error

on future samples from the same distribution. Under this model, even deterministic

finite automata are hard to learn under cryptographic assumptions [52]. However,

with a simple reduction [53] one can show that the existence of a MAT algorithm for

a class of functions implies that the function is PAC-learnable when output queries

are provided to the learning algorithm.

18

Chapter 4

Congruences and Distinguishability

Automata and transducers are computational models based on simple state ma-

chine graphs. However, these graphs can be perceived as emerging from algebraic

equivalence properties of the underlying function which is computed by the automa-

ton or the transducer. When we consider the state machines which are emerging from

these underlying equivalence properties we obtain normal forms for the automata and

transducers computing a specific function. More importantly, all the learning algo-

rithms in the L⇤ family of algorithms, can be viewed as algorithms which iteratively

learn the underlying equivalence relation and indeed, under this view, many concepts

and data structures in the learning algorithms arise naturally under this formulation

of the problem.

We will start this chapter by describing the Nerode congruence which forms the

basis for regular languages and then proceed to describe the syntactic congruence

from which canonical forms of transducers arise. Finally, we will discuss how all these

equivalence relations can be defined through their negations, a fact which form the

basis of learning.

4.1 Equivalence Relations

Before describing the equivalence relations which form the basis of automata and

transducers we will first give a refreshment of equivalence relations.

19

Definition 4 (Equivalence relation). A binary relation ⇠ over a set X is said to be

an equivalence relation if and only if the following hold for any a, b, c 2 X:

1. Reflexivity: a ⇠ a.

2. Symmetry: a ⇠ b =) b ⇠ a.

3. Transitivity: If a ⇠ b and b ⇠ c, then a ⇠ c.

Despite the fact that the relations we will describe next are dumped congruences,

they are primarily equivalence relations over strings.

4.2 Nerode Congruence

Despite the fact that automata were introduced in 1943, the algebraic underlying

of automata theory came more than one decade later by Myhil and Nerode who,

independently, showed that DFAs, and therefore regular languages, can be viewed as

emerging from an equivalence relation over strings with respect to the target language.

We will now formally define the Nerode Congruence:

Definition 5 (Nerode Congruence). Let f : ⌃

⇤ ! B be a boolean function. Given

two strings u, v 2 ⌃⇤ the Nerode congruence is defined as follows:

u ⇠ v
def() 8w 2 ⌃⇤

: f(uw) = f(vw) (4.1)

It is easy to verify that the Nerode congruence is an equivalence relation. A ⇠-

equivalence class is denoted by hui/⇠ or hui when ⇠ is clear from the context, and

given S ✓ ⌃⇤, hSi def
= {hxi | x 2 S}. Given the congruence, one can construct the

corresponding DFA as follows:

DFA(f) def
= (h⌃⇤i, h✏i, h{u | f(u) = T}i, {hui a�! hu·ai | u 2 ⌃⇤, a 2 ⌃})

It follows that DFA(f) is a minimal DFA for f . Notice that the congruence relation

can be defined for any function f regardless of whether the function is regular or not.

20

The seminal theorem proved by Myhill and Nerode shows that when the number of

equivalence classes in this congruence relation is finite then the corresponding function

is regular.

Theorem 1 (Myhill-Nerode). Let f : ⌃

⇤ ! B be an arbitrary function. Then, f is

regular if and only if the number of equivalence classes in the corresponding Nerode

congruence is finite.

4.3 Syntactic Congruence

Like automata, transducers can emerge from a similar underlying congruence relation

like the Nerode congruence. While the main idea is again to force state equivalence

with respect to the behavior of the target function on the set of different suffixes, here

we have to take into account the fact that an output is produced during each step of

the computation. The syntactic congruence is an equivalence relation which defines

state equivalence with respect to general outputs.

Fix f : ⌃

⇤ ! �

⇤
?. Define bf(u) as the output prefix of f that depends only on

input prefix u and define fu as the continuation function of f after input u that cuts

the prefix bf(u). Then two strings u, v 2 ⌃⇤ are syntactically congruent iff fu = fv.

Formally:

bf(u) def
=

l

w2⌃⇤

f(u·w), fu(w)
def
=

bf(u) � f(u·w), u ⇠ v
def() fu = fv (4.2)

One can now construct a transducer from f , Tf ,

Tf
def
= (⌃,�, h⌃⇤i, h✏i, hdom(f)i, {hui a/�f (u,a)�����! hu·ai | u 2 ⌃⇤, a 2 ⌃},bf(✏))

where �f (u, a)
def
=

bf(u) � bf(u·a) is the output produced from state hui for a, provided

that hu·ai is live, else �f (u, a)
def
= ✏. One can show that Tf is in ENF and also minimal.

The following basic property holds for the output function.

Proposition 2. For any u 2 ⌃⇤ we have that
d

↵2⌃ �(u,↵) = ✏.

21

Intuition. While the Nerode congruence is largely self explained, in the sense

that state equivalence basically imply that two strings have the same behavior with

respect to the function f irrespectively from the suffix. However, in the syntactic

congruence the definition is more convoluted. The main idea behind the syntactic

congruence is to define the concept of “the output produced so far by the function f ”

without invoking the concept of a transducer or states. In a deterministic transducer

it is evident that given a common prefix the output produced up to that point will

be the same irrespective of the suffixes used. This concept is captured formally in the

syntactic congruence using the bf(u) term, which provides the common prefix over an

infinite number of suffixes and this way provides a definition of the “output produced

so far”. Once we have this definition, state equivalence is defined as equality of the

output produced by the different suffixes.

4.4 Distinguishing predicates

Both the Nerode and the Syntactic congruence require the computation of the function

on an infinite number of inputs (suffixes). Therefore, unless an explicit form of the

congruence is given such as a DFA or a transducer, using simply queries to the target

function, as in the case of learning, is impossible to decide whether two strings are

equivalent. For this reason, Instead of reasoning directly about it we reason about its

negation through witnesses of distinguishability. As we will show, both congruences

can be computed efficiently when a set of distinguishing predicates is avaiable. For

the following we will consider a congruence to be either the syntactic or the Nerode

congruence.

A predicate �(x) over strings distinguishes s and t (or distinguishes hsi and hti)

– �(s) 6, �(t)

– for all u, v 2 ⌃⇤ if u ⇠ v then �(u), �(v)

In other words a distinguishing predicate separates at least two congruence classes.

22

For every finite equivalence relation there exists a finite set of predicates which dis-

tinguishes between all the different equivalence classes.

We use a set R of strings that represent distinct congruence classes. One can show

that R can be chosen to be prefix closed, intuitively elements of R are access strings

to distinguishable states. A set � of predicates is saturated for R if for all s, t 2 R
there exists � 2 � such that � distinguishes s and t.

Given a saturated set � for a congruence relation ⇠ we can then compute the

congruence relation between u, v 2 ⌃⇤ as follows:

u ⇠ v ,
^
�2�

�(u), �(v) (4.3)

For the remainder of the paper we will commonly define a congruence relation as

(R,�) with respect to a prefix closed set of representatives R of ⇠ and a saturated

set � of predicates.

4.5 Black-box distinguishability

Now that we defined distinguishing predicates we will describe the type of predi-

cates which can be used in order to distinguish equivalence classes in the case of the

congruences we have defined so far.

4.5.1 Nerode Congruence

In the case of the Nerode congruence distinguishing between equivalence classes is

straightforward. Let Pdom
w

def
= (f(w) = T). Then, it follows from the definition of

equivalence that

u 6⇠ v =) 9w, f(uw) 6= f(vw)

Therefore, it follows that for every two equivalence classes hui, hvi there exists a

w 2 ⌃⇤ such that the predicate Pdom
w distinguishes between hui and hvi.

23

q0

q2b/✏

q1

q3

a/d
a/d

b/c
a/dd

b/c
a/✏
b/✏

Figure 4-1: Partial transducer.

4.5.2 Syntactic Congruence

Black-box distinguishability in transducers has been studied implicitly in the context

of Mealy machine and total transducer learning algorithms [77, 17]. In Mealy ma-

chines, exactly one output symbol is produced for each input symbol and therefore,

checking the suffix of certain length suffices in order to extract the corresponding

output produced. On the other hand, in the case of total transducers we have thatbf(u) = f(u) and therefore, the value fu(w) can be computed as fu(w) = f(u) � f(uw).

It is therefore natural to ask whether similar checks are enough to determine

the output fu(w) for some suffix w in the general setting of partial transducers as

well. However, as the following example demonstrates, such simple suffix checks are

inherently unable to distinguish between different states.

Example 1. Let f be the underlying function of the transducer Tf shown in figure 4-

1. Then bf(a) = f(aa) u f(ab) = d and bf(b) = f(bb) u f(ba) = ✏. Here q
0

= h✏i,
q
1

= hai, q
2

= hbi and q
3

= haai. We have that

fa(a) = bf(a) � f(aa) = d � dd = d, fa(b) = c,

fb(a) = bf(b) � f(ba) = ✏ � dd = dd, fb(b) = c

States hai and hbi are distinguishable with the input suffix a, but there is no position

conflict which is detectable between them because fb(w) 3 fa(w) for all w. However,

notice that since f(aa) = f(ba) = dd, no simple suffix check is capable of using this

input to distinguish between the states accessed by a and b respectively. ⇥

Example 1 is important because it demonstrates that simple methods of proving

distinguishability in a black-box manner that were used by previous learning algo-

rithms cannot be ported into the setting of partial transducers.

24

A class of distinguishing predicates

We now describe a class of predicates which are provably distinguishable for any two

distinct equivalence classes. We start by defining the suffix extraction function J
which can be used to compute fu(w) given only black-box access to the function f .

J (u, w, w
1

) = (f(u·w) u f(u·w
1

)) � f(u·w) (4.4)

The following lemma establishes the connection between J and fu. It is important also

to note that J (u, w, w
1

) is effectively computable for any given u, w, w
1

because f(x)

is assumed to be effectively computable for any x and the involved string operations

are effectively computable.

Lemma 1. For any u, w 2 ⌃⇤ there exists w
1

2 ⌃⇤ such that J (u, w, w
1

) = fu(w).

Moreover, the following property holds.

Proposition 3. For any u, w, w
1

, we have that fu(w) 3 J (u, w, w
1

).

We will now proceed to define two types of distinguishing predicates which can

be used in order to distinguish between different equivalence classes based on either

differences in the domain or in the output.

Domain Distinguishability The first type of distinguishing predicates we will use

are the domain distinguishing predicates Pdom
w indexed by a string w 2 ⌃⇤ which were

also used in order to distinguish equivalence classes in the Nerode congruence. In the

context of transducers these predicates are used when we have two equivalence classes

hui, hvi which can be distinguished using a suffix w such that f(uw) 2 dom(f) but

f(vw) 62 dom(f) or vice versa.

Output Distinguishability As we demonstrated in example 1 distiguishing based

on the output after two states is a non-trivial task. In order to complete this task we

utilize the suffix extraction function defined above. In order to distinguish between

two states using the suffix extraction function we choose appropriate w
1

, w
2

such

25

that, for two different access strings u, v we have that J (u, w
1

, w
2

) 6= J (v, w
1

, w
2

).

Since, by lemma 1, we can always find such w
1

, w
2

, the suffix extraction function

avoids the problems of simply checking the suffix as in example 1. To convert this

test into a distinguishing predicate, we fix the value that J should have on a fixed

set of strings w
1

, w
2

. More specifically, we define the output distinguishing predicate

Pout
w1,w2,t

(u)
def
= (J (u, w

1

, w
2

) = t). It is easy to verify that Pout
w1,w2,t

for appropriately

chosen w
1

, w
2

, t satisfies the definition of a distinguish predicate.

It is important to note that both kind of distinguishing predicates can be effectively

evaluated. The following proposition states that output and domain distinguishing

predicates can be used to distinguish between any s, t 2 R for which there exists w

such that fs(w) 6= ft(w).

Proposition 4. For all s, t 2 R such that s ⌧ t, there exists either a domain dis-

tinguishing predicate or an output distinguishing predicate that distinguishes s from

t.

Proof. In the case that there exist a sequence w such that sw 2 dom(f) but tw 62
dom(f) or vice versa then, it is clear that the domain distinguishing predicate Pdom

w

distinguishes s from t. Let us consider the case where s, t have an output conflict,

i.e. there exists w such that fs(w) 6= ft(w). Without loss of generality, we assume

that |fs(w)| � |ft(w)| and choose w
1

such that fs(w1

) u fs(w) = ✏. We claim that the

output distinguishing predicate Pout
w,w1,fs(w)

distinguishes s from t. Indeed, consider

the following cases:

• Position conflict. Assume that there exists some position k such that fs(w)[k] 6=
ft(w)[k]. Then, clearly J (s, w, w

1

) 6= J (t, w, w
1

).

• Length conflict. Assume that fs(w) � ft(w) or, in other words, that fs(w) =

vft(w) for some v 6= ✏. Then, by proposition 3 we have that |J (t, w, w
1

)| 
|ft(w)| < |fs(w)| and therefore, it follows that J (t, w, w

1

) 6= fs(w).

Keep in mind that, since we assumed that |fs(w)| � |ft(w)|, no other case of length

conflict exists.

26

Example 2. Let us consider a set of distinguishing predicates which distinguish

between all states in the transducer of figure 4-1. Notice that states q
3

and {q
0

, q
1

, q
2

}
are distinguished by the domain predicate Pdom

✏ . Moreover, states q
0

and {q
1

, q
2

} are

distinguished by the domain predicate Pdom
a and finally states q

1

and q
2

, which are

indistinguishable using suffix checks, are distinguished by the predicate Pout
a,b,d. ⇥

4.6 Building a DFA model

At this point, we have described how we can go from computing the congruence using

an infinite number of suffixes into computing the congruence through distinguishing

predicates which can be done using a bounded number of queries. However, we still

need query access in order to be able to compute the negated representation of the

congruence. We will now describe an algorithm which can be used in order to build

a DFA model of the congruence (either the Nerode or Syntactic) which can be used

withouth querying the target function. While we described such a construction in the

mathematical definition of both congruences, here we will give an explicit algorithmic

form which can be used by the learning algorithms.

Algorithm 1 getDFA Algorithm
Require: (R,�) is a congruence relation, ⌃ is the alphabet

function L⇤(f , (R,�),⌃)
Q R
q
0

 ✏
F {r|r 2 R ^ f(r) = T}
� ;
for r 2 R do

for ↵ 2 ⌃ do
Let r0 be such that r0 ⇠ r↵
� � [(r,↵, r0)

return (Q, q
0

, F,⌃,�)

Given access a congruence (R,�) we can convert the congruence to a DFA repre-

sentation as follows:

• The set of states is the set of equivalence class representatives Q = R.

27

• The initial state is q
0

= ✏.

• The set of final states is F = {u|u 2 Q ^ f(u) = T}.

• The transition function � is constructed as follows: For each state u 2 Q and

alphabet symbol ↵ 2 ⌃, we use the congruence relation in order to find v 2 Q

such that u↵ ⇠ v. Then, we add the transition (u,↵, v) in �.

Therefore, we can see that once a finite congruence is obtained for a function f , it is

straightforward to construct a DFA representation of the congruence. This implies

that learning a DFA is reducing to learning the underlying Nerode congruence. We

will use similar ideas in order to learn partial transducers in section 6. Algorithm 1

presents the pseudocode for the algorithm for getting a DFA from the congruence

relation.

From congruence to transducer. In the case that the target function is a

boolean function, once we construct the DFA representation of the congruence we

have effectively recovered the entire function. However, in the case of a general

function the DFA representation will only correspond to the syntactic congruence.

Recovering the entire transducer corresponds to also computing the output function

�. We will discuss how this is achieved for different transducer models in chapter 6.

4.7 Partial Congruence

During the execution of the learning algorithm, various approximations to the con-

gruence will be constructed and utilized by the learning algorithm. In this section we

will formally define the class of intermediate approximations to the target congruence

constructed by our algorithms. Such a definition is important in order to be able to

analyze algorithms which operate given such approximate information.

Definition 6. For a congruence ⇠f
def
= (�,R) we define the partial congruence ⇠h

def
=

(H,RH) of ⇠f as follows:

• RH ✓ R is a prefix-closed subset of R.

28

• H ✓ � is a subset of � which is saturated for RH.

In the case of the Nerode congruence, the partial congruence (R,�) gives rise to an

approximation h of f using the same DFA construction we described in the previous

section. In the case of the syntactic congruence, we will also define the partial output

function �h as follows:

Definition 7. Given a partial congruence ⇠h, we define the partial output function

�h as follows, for u 2 ⌃⇤ and a 2 ⌃:

�h(u, a)
def
= �f (r, a) where r is the member of RH such that r ⇠h u (4.5)

Thus, the choice of the output depends on the set RH of representatives which is

also why RH is an integral part of the definition of ⇠h. The effect of removing repre-

sentatives and distinguishing predicates amounts to collapsing of certain equivalence

classes. More formally:

Proposition 5. Let ⇠f= (�,R) be a congruence and ⇠h= (H,RH) be a partial

congruence of ⇠f . Then the following properties hold:

1. Persistence of congruence: For all u, v 2 ⌃⇤, if u ⇠f v then u ⇠h v.

2. Collapse of equivalence classes: Let s 2 R\RH. Then, there exists r 2 RH

such that for all u 2 ⌃⇤, if u ⇠f s then u ⇠h r.

Moreover, the following useful property follows trivially from the definition:

Proposition 6. For all r 2 RH and a 2 ⌃, we have that �h(r, a) = �f (r, a).

Given a partial congruence, the learning algorithms described in this thesis will

iteratively extend the congruence by adding new equivalence classes until a saturated

set of distinguishing predicates is obtained. We will now formally define an extension

to a partial congruence.

Definition 8. Given a partial congruence ⇠h= (H,RH), an extension to ⇠h is a

tuple (r,�) 2 ⌃⇤ ⇥ P such that:

29

1. r 62 RH and RH [{r} is a prefix-closed set.

2. Let ri 2 RH such that ri ⇠h r. Then, � is a distinguishing predicate for ri, r.

One can easily see that the above definition implies that the partial congruence

defined as (H [�,RH [{r}) is also a partial congruence which contains one more

equivalence class than ⇠h. The main invariant we will prove for the learning al-

gorithms is that each counterexample will provide us with a valid extension to the

current partial congruence until all equivalence classes are recovered.

4.8 Implementing a partial congruence

Implementing the congruence relation is usually performed in terms of the corre-

sponding state machine of the automaton or the transducer. If two strings end up in

the state then they are congruent with respect to the underlying congruence relation

(either Nerode or Syntactic). However, when we compute the congruence relations

based on distinguishing predicates and queries we will utilize different data strctures

in order to efficiently compute equivalence between different strings with respect to

a specific congruence. We will now explore two different data structures which are

commonly used in variations of the L⇤ algorithm for this purpose, the observation

table [14] and the classification tree [53] also sometimes referred as discrimination

tree [51]. In order for these data structures to effectively implement a (partial) con-

gruence we would like them to support the following basic functionalities:

1. Equivalence checking: The most basic property of any data structure imple-

menting a congruence is to be able to decide equivalence between two strings. In

other words, given u, v 2 ⌃⇤ the data structure must be able to answer whether

u ⇠h v with respect to the partial congruence (R,�).

2. Extension: Given a partial congruence (R,�) and an extension (r,�) the

data structure must be able to extend the partial congruence with the given

extension.

30

Figure 4-2: (Left:) A DFA accepting the language <[ˆ>]*>. (Middle:) The corre-
sponding observation table implementation of the Nerode congruence. (Right:) The
corresponding classification tree implementation of the congruence.

We will now proceed to describe each data structure in more detail. In figure 4-2

we present a DFA (left) and the corresponding congruence implementation using an

observation table (middle) and a classification tree (right).

4.8.1 Observation Table

The first data structure we will describe is called the observation table. This data

structure was originally introduced by Angluin as part of the seminal L⇤ algorithm [14]

and was later improved by Rivest and Schapire [75].

Definition 9. An observation table OT is a tuple (S,W,O) where:

• S ⇢ ⌃⇤ is the set of access strings (i.e. states).

• W ⇢ P is the set of distinguishing predicates.

• O : S ⇥W ! B is the lookup function with row indices from S and column

indices from W .

For s 2 S, let row(s) : W ! B denote the row vector of the table corresponding

to the access string s:

row(s)
def
= {x 7! O(s, x) | x 2 W}

31

Deciding Equivalence

Equivalence in the observation table is checked by finding, for any string u, the class

r 2 S such that u ⇠ r. It follows that we can easily check equivalence of arbitrary

strings by finding the corresponding equivalence classes they belong. In order to find

the equivalence class for a string u we add u as a new row in the table and fill the

corresponding entries in order to get the row vector row(u). Afterwards, we find the

corresponding row of a string r 2 S such that row(u) = row(r).

Closedness of the observation table The astute reader might notice that, in the

case that a partial congruence is represented by the observation table, it may be the

case for a string u such that row(u) 6= row(r) for all r 2 S because u is congruent

to a yet unknown equivalence class! In this case, we say that the observation table is

not-closed. During the execution of the L⇤ algorithm the strings for which equivalence

will be checked will always be of the form r↵ where r 2 S and a 2 ⌃. If for all such

strings we have that row(r↵) = row(r0) for some r0 2 R then the table is closed and a

DFA model can be constructed. Otherwise, the string r↵ is used as a new equivalence

class and is added as a row in the table. Notice that in this case the distinguishing

predicates already present in the table are enough to distinguish between the new

class and all other classes already present. In general, one can show that the number

of distinguished predicates required to obtain a saturated set is at most |h⌃⇤i| � 1

and at least log

2

|h⌃⇤i|.

Extending the observation table

Given an extension (r,�), we extend the observation table by adding the distinguish-

ing predicate � in the set W and the new access string r in the set S.

4.8.2 The Classification Tree

The classification tree is a more efficient alternative to the observation table which

was introduced by Kearns and Vazirani [53]. The main difference from the observation

32

table is that the distinguishing predicates are organized in a binary tree which allows

more efficient evaluation of the congruence relation. We will now proceed to give a

formal definition of the classification tree.

Definition 10. A classification tree T = (V, L,E) is a binary tree such that:

• V ⇢ P is the set of nodes.

• L ⇢ ⌃⇤ is the set of leafs.

• E ⇢ V ⇥ V ⇥ B is the transition relation. For (v, u, b) 2 E, we say that v is

the parent of u and furthermore, if b = T (resp. b = F) we say that u is the

T-child (resp. F-child).

Intuitively, given any internal node � 2 V , any leaf lT reached by following the

T-child of � can be distinguished from any leaf lF reached by the F-child using �.

Initialization

To initialize the CT data structure, we use a query on the empty word ✏. Then, we

create a CT with two nodes, a root node labeled with ✏ and one child also labeled

with ✏. The child of the root is either a T-child or F-child, according to the result of

the query on ✏.

Deciding equivalence with the sift operation

Reducing a string s 2 ⌃⇤ to the corresponding equivalence class is perfomed using an

operation called sift. The sift(s) operation performs the following steps:

1. Set the current node to be the root node of the tree and let � be the label at

the root. Check the value of the predicate �(s).

2. Let b = �(s). Select the b-child of the current node and repeat step 2 until a

leaf is reached.

3. Once a leaf is reached, return the access string with which the leaf is labelled.

33

Note that, until both children of the root node are added, we will have inputs that

may not end up in any leaf node. In these cases our sift operation will return ?
and, in the case of a learning algorithm, we will add the queried input as a new leaf

in the tree similarly with the closedness property of the observation table. However,

in the case of the tree, having an undefined target equivalence class can occur at most

one time (afterwards, all paths will lead to a known equivalence class), while in the

case of the observation table, closedness can be violated arbitrarily often.

Extending the classification tree

Given an extension (r,�) we proceed to extend the partial congruence represented by

the classification tree as follows: Let r0 be an access string such that r ⇠h r0 based

on the current classification tree. Then, we replace the leaf holding r0 with a new

subtree with three nodes such that

• The root of the subtree is labelled with the distinguishing predicate �.

• Assume without loss of generality that �(r) = T. Then, we have that the T-

child of the root is labelled with r and the F-child with r0. If �(r) = F, then

the opposite labels are assigned to each child.

34

Chapter 5

Learning Deterministic Finite

Automata

We will start this chapter with the presentation of the L⇤algorithm for learning de-

terministic finite automata using membership and equivalence queries.

The classical way under which the L⇤algorithm is presented is as an algorithm

which successively discovers new states in the target DFA. In this section we will

study the L⇤algorithm as a congruence learning algorithm. As we saw above, infer-

ring the Nerode congruence while having query access to the target function, allows

one to easily reconstruct a DFA representation of the target function (if such finite

representation exists).

5.0.1 Technical Description.

The algorithm starts with an equivalence relation containing a single equivalence class

accessed by the empty string (recall that the set of representatives is prefix-closed)

and a single distinguishing predicate Pdom
✏ distinguishing between final and non-final

states. The congruence can be implemented using any appropriate data structure

discussed in the previous section such as the classification tree or the observation

table. Given any such congruence we use either a classification tree or an observation

table data structure to represent it and then construct a DFA. Finally, once we built

35

the DFA model, we submit an equivalence query. If the model is correct the algorithm

terminates. On the other hand, given a counterexample we invoke the counterexample

processing algorithm described below which utilizes the counterexample in order to

extract a new representative and distinguishing predicate which will then extend the

partial congruence.

The full pseudocode of the algorithm is available in algorithm 2 while the coun-

terexample processing routine in algorithm 3.

5.0.2 Processing Counterexamples.

The main idea behind using a counterexample s to extend the partial congruence

with a new equivalence class (in terms of a new representative and distinguishing

predicate) is the following:

Let �i = ri·s[i + 1..] where ri ⇠h s[..i]. In other words, �i is obtained by tak-

ing the prefix of length i of s and finding the representative based on ⇠h. Then,

we concatenate the resulting ri with the remaining suffix and check the value of the

string �i using a query to the target function. Notice that f(�
0

) = f(s) and moreover,

f(�|s|) 6= f(�|s|). Therefore, there exists a breakpoint j where f(�j�1

) = f(s) but

f(�j) 6= f(s). We claim that rj�1

s[j] is a new representative accessing an undiscov-

ered equivalence class (or equivalently state) and s[j + 1..] is a new distinguishing

string which can separate strings in the equivalence class rj from strings in the new

equivalence class rj�1

s[j].

The following lemma formally proves that the counterexample processing algo-

rithm will provide us with a valid extension to the current partial congruence.

Lemma 2. The tuple (rj�1

s[j], s[j + 1..]) is an extension to the partial congruence

(R,�).

Proof. The fact that RH remains prefix closed is trivial. Regarding distinguishability

notice that, by definition of �j we have that f(rj�1

s[j]s[j + 1..]) 6= f(rjs[j + 1..]) but

we have that rj�1

s[j] ⇠h rj and therefore Pdom
s[j+1..] is distinguishing for rj�1

s[j] and

rj.

36

Optimizing counterexample processing with binary search. Searching for

the breakpoint j can be done by sequentially running the process of generating �i

and checking whether the breakpoint is found for all i  |s|. However, we are not

necessarily interested in obtaining the smallest breakpoint j. Any index j such that

f(�j�1

) = f(s) and f(�j) 6= f(s) will suffice. Therefore, in order to speed up the search

and reduce the number of queries we can use the following binary search process:

We start at the index j = |s|/2 and check whether f(�j) = f(s). If f(�j) = f(s)

we recursively apply the same process on the index 3|s|/4 or in the index |s|/4 on

the opposite case until we have found an index j such that j is a valid breakpoint.

Algorithm 3 presents the binary search counterexample processing algorithm.

Remarks. We should point out that certain properties of the congruence are not

really fundamental and can be implemented in different ways. For example, the set

of representatives can be constructed in a way that is not prefix closed while the set

of strings used by distinguishing predicates can be constructed in order to be suffix

closed [53]. Such variations on the properties of the congruence are affected by the

details of the counterexample processing algorithm, however the general principle of

detecting a breakpoint which provides both the new representative as well as the new

distinguishing predicate is a common theme across all variations.

5.0.3 Correctness and Complexity

The correctness and the complexity of the L⇤ algorithm is summarized in the following

theorem:

Theorem 2. Let A = (Q, q
0

, F,�) be a DFA over an alphabet ⌃. Then, the L⇤

algorithm will learn A using O(|Q|2|⌃| + |Q| logm) membership and |Q| equivalence

queries, where m is the length of the longest counterexample provided to the algorithm.

Proof. The correctness and termination of the algorithm follow from lemma 2 since,

after at most |Q| counterexamples all equivalence classes will be recovered and a

correct DFA model will be constructed. Since the algorithm starts with a partial

congruence with a single equivalence class and a single distinguishing predicates and

37

extends the congruence with an additional equivalence class (i.e. state) with each

counterexample, it follows that |Q| counterexamples are required in order to recover

all equivalence classes. Processing each counterexample requires logm queries using

the binary search algorithm described above. Finally, constructing a DFA model

requires O(|Q||⌃|) queries using either the observation table or the classification tree

implementation of the partial congruence relation.

Algorithm 2 L⇤Algorithm
Require: f is the target function, E is an equivalence oracle

function L⇤(f , E)
R {✏}
� {Pdom

✏ }
h getDFA(R,�)
while E(h) 6= T do

s getCounterexample()
(r,�) processCounterexample(s)
R R [{r}
� � [{�}
h getDFA(R,�)

return h

Algorithm 3 Counterexample processing algorithm
Require: h is the partial congruence, s is the counterexample.

function processCounterexample(h, s)
L 0

R |s|� 1

while L 6= R do
m (L+R)/2
if f(�m) = f(s) then

L m+ 1

else
H m� 1

return (rms[m],Pdom
s[m+1..])

38

Chapter 6

Learning Deterministic Transducers

In this chapter we will describe novel L⇤-style algorithms for learning transducer mod-

els. We will start by presenting a non-trivial extension of the L⇤algorithm for par-

tial deterministic transducers. Partiality introduces non-trivial challenges in learning

since concepts such as distinguishability become more difficult to verify in the setting

of partial functions. In order to address this challenge, we extend to concept of black-

box distinguishability for transducers and introduce a novel output label inference al-

gorithm which can be used in order to learn the output labels of a transducer given it’s

state machine structure. Afterwards, we introduce a generalized, indexed congruence

relation which can used as the basis of defining canonical non-deterministic transducer

models, and we develop such a class called visibly non-deterministic transducers and

show that this class can also be learned efficiently. As we will demonstrate in our eval-

uation this class is effective in modelling many string transformation functions which

are commonly encountered in Web applications such as calls to the preg_replace

function and other similar code constructs.

6.1 Overview

Figure 6-1 presents the overall algorithmic learning framework under which our learn-

ing algorithms operate. In a nutshell, our algorithms work by first inferring an ap-

proximation of the underlying state machine (or equivalence relation) of the target

39

Figure 6-1: The overall algorithmic learning framework.

transducer. Given such a state machine we describe, in section 6.3, an algorithm

which can recover the output labels of the target transducer. This algorithm is very

general and can be applied even to non-deterministic models as long as they are func-

tional. Finally, given a counterexample, we proceed to refine the state machine by

adding previously undiscovered states.

6.2 Learning Total Transducers

As a warm-up for the T ⇤ algorithm let’s consider the problem of adapting the L⇤

algorithm in the case of deterministic transducers. As we will see the fact the target

function is total allows us to easily evaluate the syntactic congruence and therefore

adapting the L⇤ algorithm in this case is straightforward.

As we describe in our overall algorithmic framework in figure 6-1, we will split

learning into two components, a congruence learning component which allows us to

recover the syntactic congruence and an output label inference component which,

given the partial syntactic congruence, infers the corresponding output function. We

will now describe the two components in detail.

6.2.1 Learning the Syntactic Congruence

In order to learn the syntactic congruence we will use the identical high level L⇤

algorithm from the previous section including the counterexample processing method

introduced there. This shows the advantage of describing the L⇤ algorithm in terms

of a generic congruence. However, we will address certain aspects of the algorithm

40

which are different.

Distinguishability. In the original L⇤ algorithm the distinguishing predicates

constructed were all domain distinguishing predicates. However, in the case of total

transducers, output distinguishing predicates need to be used in order to distinguish

between different equivalence classes (i.e. states).

6.2.2 Learning the output function �f

Once, we have a partial syntactic congruence, we proceed to use it in order to infer

the output function �f . Again, the fact that the transducer is total makes this task

straightforward as for all r 2 R,↵ 2 ⌃ we have that �f (r,↵) = f(r) � f(r↵). As we

will see in the next section, computing the output function becomes highly non-trivial

once we introduce partiality in the target functions.

6.2.3 The Algorithm

As we mention above, the algorithm follows the same high level description as the

L⇤ algorithm, shown in algorithm 2. However, since the target function is total, the

empty string is not distinguishing between any states and therefore, we start with the

congruence (R,�) = ({✏}, ;). Moreover, given a partial syntactic congruence, instead

of invoking the getDFA algorithm, we first invoke the getDFA to obtain a state machine

and afterwards, we use the algorithm described above to add the corresponding output

in each transition.

The second difference is the way we process counterexamples. As in the L⇤ algo-

rithm, given a counterexample s, we generate the strings �i in the same way. However,

instead of checking whether f(�i) = f(s), we would like to only compare the suffix

of the generated output in order to distinguish according to the syntactic congru-

ence. Therefore, we perform the test f(ri) � f(�i) = f(s[..i]) � f(s). After we obtain

the breakpoint j, we generate the output distinguishing certificate parametrized by

(s[j + 1..], ✏, f(s[..j]) � f(s)).

Given the above changes, the remaining part of the L⇤ algorithm remains the same

41

and the correctness proof and complexity follow in the same fashion.

6.3 Output Label Inference

In this section we introduce a central component of all our learning algorithms. Our

goal in this section is to define and solve the Output Label Inference (OLI) problem.

An input to the problem is the syntactic congruence ⇠f corresponding to (�,R). In

its full generality the input is allowed to be a partial congruence of ⇠f but it is useful

to explain first the algorithm in terms of the full syntactic congruence. The essential

part of ⇠f used by OLI is the DFA induced by ⇠f , the DFA has R as its set of states,

the initial state is ✏, final state set is R \ dom(f), and the transition function is

�(q, a) = p for q, p 2 R and a 2 ⌃ where p ⇠f q·a. The purpose of the algorithm is

to calculate the output function �f . More concisely:

OLI: The input parameters are query access to f and the DFA induced by ⇠f . The

task is to compute the output function �f and thus the finite state transducer

Tf .

In the transducer formulation of the problem, we are given as input the target trans-

ducer with the output labels hidden and the ability to query the target transducer

with any input of our choice. The goal is to efficiently recover the output labels of

the target transducer in ENF.

6.3.1 OLI Algorithm

Before starting to delve into the details of the OLI algorithm, we will define the set of

enabling suffixes, a concept which will be important for the operation of the algorithm.

Definition 11. For an r 2 R we say that e 2 ⌃⇤ is an enabling suffix if re 2 dom(f)

and for all prefixes p 2 prefixes(e) \ {e, ✏} we have that rp 62 dom(f).

Our algorithm will construct us a suffix-closed set of enabling suffixes E containing

one enabling suffix for each representative. For r 2 R we will denote by er 2 E the

42

enabling suffix for r. Suffix-closedness is enforced by the following property for all

er 2 E:

er =

8<: ✏, if r 2 dom(f),

er[1]·e�(r,e
r

[1])

, otherwise.
(6.1)

Finally, if there doesn’t exist a suffix er such that r·er 2 dom(f), i.e. r is accessing

a dead-end state, then we define er = ?. Our algorithm for solving the OLI problem

is based on a simple formula for computing the output function for any state. More

specifically, let u 2 R,↵ 2 ⌃. Then we have that:

�(u,↵) = bf(u) � (f(u·↵·e�(u,↵)) � f�(u,↵)(e�(u,↵))) (6.2)

Moreover, the following lemma shows a way to compute the prefix based on the values

of the suffix:

Lemma 3. For any sequence u 2 R we have that:

bf(u) = l

↵2⌃
(f(u↵·e�(u,↵)) � f�(u,↵)(e�(u,↵))) (6.3)

Proof. We have

l

↵2⌃
(f(u↵·e�(u,↵)) � fu↵(e�(u,↵))) =

l

↵2⌃
(

bf(u)·�(u,↵))
=

bf(u) l

↵2⌃
�(u,↵)

=

bf(u)

Using lemma 3 we conclude that the only unknown in equation 6.2 is the value

of fr(er) for all access strings r 2 R. If r is a final state, then we can simply

compute fr(er) = f(r) � f(r·er). However, in the case that r is a non-final state, the

computation of fr(er) becomes non-trivial.

At a high level, our OLI algorithm will iteratively approximate the value of fr(er)

43

Figure 6-2: (Left:) Iterative approximations of the fr(er) value by the OLI algorithm.
(Right:) Demonstration of a vulnerable transition (r, a, rs) 2 RH ⇥ ⌃⇥RH.

for each different state r 2 R until a fix-point is reached. More formally, the algorithm

works as follows:

1. Initialize f (0)r (er) = ✏ and f (�1)

r (er) = ? for all r 2 R.

2. While 9r 2 R : f (i)r (er) 6= f (i�1)

r (er) repeat the following steps sequentially for

all r 2 R:

(a) bf (i+1)

(r) =
d

↵2⌃(f(r↵·e�(r,↵)) � f (i)�(r,↵)(e�(r,↵))).

(b) 8↵ 2 ⌃ : �(i+1)

(r,↵) = bf (i+1)

(r) � (f(r↵·e�(r,↵)) � f (i)�(r,↵)(e�(r,↵))).

(c) f (i+1)

r (er) = bf (i+1)

(r) � f(r·er).

3. Return �(i) as the result.

Note that in the return value �(r,↵) = ? whenever �(r,↵) is a deadend.

6.3.2 Correctness and Complexity

In this section our main goal is to prove the correctness of the OLI algorithm. More

specifically, we will prove the following theorem:

Theorem 3. The OLI algorithm on input a congruence (�,R) with n = |R| over an

alphabet ⌃ and query access to the function f will recover the output function using

|⌃|n output queries and in time O(n2|⌃|m) where m = maxr2R,↵2⌃ |�(r,↵)|.

The main idea in our analysis is to define a class of states for which the value

of fr(er) will be computed correctly from the first iteration. We will show that such

44

r 2 R necessarily exist and moreover, that the correct values computed for these

states will eventually propagate in subsequent iterations into all the other states. We

will start with the basic definition of the BAD state .

Definition 12. A state r 2 R is called ↵-BAD if ⌃ can be partitioned into two sets G
and B such that:

– For every � 2 B we have that �(r, �) = ✏ and ↵ 2 fr(er).

– For every � 2 G we have that ↵ 2 �(r, �).

An r 2 R is called BAD when there exists ↵ 2 ⌃ such that r is ↵-BAD.

The intuition behind the definition of BAD states, is that, for this class of r 2 R,

the initial computation of bf (1)(r) will result in over-approximating the value of bf(r).
As we will show now, for all r 2 R which are not BAD the value of fr(er) will be

computed correctly from the first iteration.

Lemma 4. If an r 2 R is not BAD then f (1)r (er) = fr(er).

Proof. Since we initially start with f (0)r (er) = ✏ for all r 2 R, it follows the computa-

tion of bf(r) is equivalent to

bf(r) = l

↵2⌃
f(r·↵·e�(r,↵)) (6.4)

Since r is not BAD one of the following holds:

1. There exist ↵, � 2 ⌃ such that �(r,↵)u�(r, �) = ✏ and both �(r,↵) and �(r, �)

are non-empty. It follows easily that in this case bf(r) will be computed correctly.

2. There exists ↵, � 2 ⌃ such that �(r,↵) = �(r, �) = ✏ but fr↵(e�(r,)↵)ufr�(e�(r,�)) =
✏. Again, in this case, it follows that bf(r) will be computed correctly.

Our next task is to prove that even if an r is BAD, if any neighboring r↵ is not BAD

the subsequent iteration of the algorithm will correctly set the value for r. We start

with the following lemma:

45

Lemma 5. For any i > 0 and any r 2 R we have that fr(er) 3 f (i)r (er).

Proof. By induction in i. For i = 0 the result holds trivially. For the inductive step,

notice that the inductive hypothesis implies that bf(r) 2 bf (i)(r) from which the result

follows using equation 6.2.

Lemma 6. Let r 2 R be ↵-BAD and assume that there exists � 2 B with rb = �(r, �),

such that f (i)r
�

(er
�

) = fr
�

(er
b

). Then, f (i+1)

r (er) = fr(er).

Proof. We have that

bf (i+1)

(r) =

l

↵2⌃
(f(r↵·e�(r,↵)) � f (i)�(r,↵)(e�(r,↵)))

= (

bf(r)·�(r, �)) u l

↵2⌃^↵ 6=�

(f(r↵·e�(r,↵)) � f (i)�(r,↵)(e�(r,↵)))

(� 2 B =) �(r, �) = ✏) = (

bf(r) u l

↵2⌃^↵ 6=�

(f(r↵·e�(r,↵)) � f (i)�(r,↵)(e�(r,↵)))

(lemma 5) =

bf(r)
Therefore, in the i+1 iterations of the algorithm, the value of bf(r) will be computed

correctly and thus, f (i+1)

r (er) = fr(er).

At this point, we have that the correct results will eventually propagate and correct

the values in the BAD states. The final piece is to prove that for every BAD state there

exists a suffix which leads to a state which is not BAD showing that eventually all BAD

states will be fixed.

Lemma 7. Let r 2 R be a state such that r is ↵-BAD. Then, for every � 2 B we

have that �(r, �) is either ↵-BAD or not BAD.

Proof. Assume that rb = �(r, �) is �-BAD for some � 2 ⌃. Then, by definition 12, we

have that � 2 fr
b

(er
b

), a contradiction, since ↵ 2 fr
b

(er
b

) since � 2 B.

For the following lemma we will denote by Gr,Br the partition for the BAD state

r.

46

Lemma 8. Let r be an ↵-BAD state. Then there exists a sequence wr, with |wr|  |R|
such that:

1. �(r, wr) is not BAD.

2. For all pi 2 prefixes(wr) we have that �(r, pi) is ↵-BAD and moreover, pi[|pi|] 2
B�(r,p

i

)

.

Proof. Since r is ↵-BAD, by definition of bf(r), there exists a w such that rw 2 dom(f)

and moreover, � 2 f(rw) for some symbol � 6= ↵. Let r� = �(r, w�) be such that

w� 2 w and � 2 �(r�, w�[|w�|]). Moreover let ri = �(rw�[1..i],) for i < |w�|. It

follows that r� is either �-BAD or not BAD.

Now, consider the path starting at r and extending to r� through all prefixes of

w�:

r
w

�

[1]���! r
1

w
�

[2]���! r
2

w
�

[3]���! · · · w
�

[|w
�

|�1]������! r�
w

�

[|w
�

|]����! · · · (6.5)

Notice that for all ri we have that �(ri, w�[i]) = ✏ because the first output symbol

is produced by �(r, w�). Moreover, starting from r
1

we have, by lemma 7, that

every ri is either ↵-BAD or not BAD. Finally, notice that r� cannot be ↵-BAD because

� 2 �(r�, w�[|w�|]). Putting the above together, we get that there exists a k such

that for all i < k we have that ri is ↵-BAD and moreover, rk is not BAD.

Therefore, by setting wr = w[..k] we get the result. To show that |wr|  |R| we

notice that since there are at most n = |R| states, after at most n steps, we will have

a state repeating and therefore we can trim the path accordingly.

We are finally ready to prove theorem 3:

Proof of theorem 3. Consider any r 2 R. If r is not BAD then by lemma 4, we

have that f (1)r (er) = fr(er). Now consider an r 2 R such that r is ↵-BAD. By

lemma 8 there exists a w with length |w|  |R| such that �(r, w) is not BAD and

�(r, w[..|w|� 1]) is ↵-BAD. By lemma 6, in the subsequent iteration of i = 2, we have

that f (i)�(r,w[..|w|�1])

(e�(r,w[..|w|�1])

) will be computed correctly, and therefore, by reap-

plying lemma 6 we have that after at most n = |R| iterations we will have that

f (n)r (er) = fr(er) will be computed correctly for all r 2 R and the algorithm will

47

terminate. Regarding the time and query complexity of the algorithm, notice ini-

tially that we have proved that within at most n = |R| iterations, the OLI algorithm

will terminate. Within each iteration the common prefix of |⌃| sequences of length

at most nm which can be done in time linear in |⌃|nm. Therefore, the total time

complexity is O(n2|⌃|m). Moreover, for each state the algorithm performs |⌃| output

queries, for a total of |⌃|n queries.

The OLI problem and word equations. An alternative approach to solve the

OLI problem would be to pose it as a word equation problem. More specifically, since

by definition we have that the output of the function is a series of concatenations of

the output function, we can create a single variable for each output function value

and attempt to solve the following linear system of word equations: where, for r 2 R
and ↵ 2 ⌃ the variable �↵

r denotes the variable corresponding to the value of �(r,↵).

One can easily prove that any solution to the above system of equations would be a

valid assignment for the output labels in the corresponding transducer formulation

of the function. However, not all these solutions would correspond to a valid output

function as defined in this paper. Therefore, the following additional constraint has

to be added into the system which enforces a unique solution which corresponds to

the solution found by the OLI algorithm presented in this section:

8r 2 R :

l

↵2⌃
�↵
r = ✏ (6.6)

Notice that the addition of this constrains still give a linear system of word equa-

tions. Unfortunately, solving linear systems of word equations is an NP-Complete

problem []. While more restricted fragments are known to be solvable in polynomial

time, we didn’t find any efficiently solvable fragments which can capture the instances

generated by the OLI algorithm. Under this formulation our OLI algorithm can be

viewed as a word equation solver for a fragment of linear word equations as defined by

the problem definition. An interesting future work direction is to explore applications

of similar ideas in the context of word equation solving.

48

6.3.3 Robust Output Label Inference

In the setting of learning transducers, when we invoke the OLI algorithm the input

given to the algorithm will be an incomplete representation of the state machine of

the transducer, i.e. a partial congruence. In order to be able to utilize OLI in the

context of a transducer learning algorithm this aspect needs to be taken into account.

In this section, we will describe a variation of the OLI algorithm which adds a

robustness check in each iteration in order to produce a certificate of the current

approximation computed by the algorithm. This certificate can be used to verify the

current approximation and will play a significant role when we analyze the behavior

of the OFL algorithm under partial congruences. Recall that, for a string r 2 R and

an enabling suffix er, we say that C(r) 2 ⌃⇤ is a certificate for w if J (r, e,C(r)) = w.

Our goal in this section is to develop an algorithm such that, for each approxi-

mation f (i)r (er) we will also obtain a certificate C(i)
(r) for f (i)r (er) proving the current

approximation. Before describing the internals of the certificate generation algorithm,

we will define the reason for each approximation computed by the OLI algorithm.

Definition 13. For r 2 R and an approximation f (i+1)

r (er) computed by the OLI

algorithm, we define the reason for the approximation as

R(i)
(r) = argmin

↵2⌃
|f(r↵·e�(r,↵)) � f (i)�(r,↵)(e�(r,↵))| (6.7)

Intuitively, the certificate for each approximation is computed as follows: During

the first iteration of the OLI algorithm, the common prefix between all equations for

each state r 2 R will be removed to yield the first update. In this case, the certifi-

cate proving the first approximation is simply a suffix e�(r,↵) for some ↵ 2 ⌃ such

that f(re�(r,↵)) u f(re�(r,e
r

)

) = f (1)r (er) . Afterwards, the newly computed approxima-

tions will be used to further prune the common prefix in successive iterations of the

algorithm. In this case, the reason function is used to determine which transition

(symbol) caused a new update in the current approximation.

More formally, the certificate for each successive approximation of the OLI algo-

rithm is defined as follows:

49

Definition 14. For i � 0 we define by C(i)
(r) to be the certificate for f (i)r (er), defined

as follows.

C(0)

(r) = ? (6.8)

For i = 1, let � 2 ⌃ be such that bf (1)(r) = f(r·er)u f(r�·e�(r,�))1. Then, we have that:

C(1)

(r) =

8<: C(0)

(r), if f (1)r (er) = f (0)r (er),

�·e�(r,�), otherwise.
(6.9)

For i > 1, r 2 R, define ⇢ = R(i)
(r). Then we have that

C(i)
(r) =

8<: C(i�1)

(r), if f (i)r (er) = f (i�1)

r (er),

⇢·C(i�1)

(�(r, ⇢)), otherwise.
(6.10)

Note that the computation of the certificates can be incorporated within the main

execution loop of the OLI algorithm. We call this augmented version of OLI, the

Robust Output Label Inference (ROLI) algorithm. The overall ROLI algorithm is

depicted in algorithm 4. The following theorem states the correctness of the certificate

generation algorithm:

Theorem 4 (Certificate Validity). For every i � 0, if C(i)
(r) 6= ?, then C(i)

(r) is a

certificate for f (i)r (er).

6.3.4 The OLI algorithm under partial congruences

Now that we have described the full version of the ROLI algorithm we will proceed to

analyze it’s behavior when a partial congruence is given as input. More specifically,

we consider the following problem: The algorithm is given output query access to

the transducer f as in the normal OLI setting however, the algorithm is given access

to a partial congruence ⇠h defined by (H,RH) instead of being given access to the

congruence for f .

1
The existence of � is guaranteed by proposition 1

50

Algorithm 4 Robust output function learning algorithm.
Require: (H,RH) is a partial congruence with respect to f .
1: function VerifyCertificate(C, r, e, w)
2: if J (r, e,C) = w then
3: return T
4: else
5: return F
6: function ROLI(H,RH)
7: if 9r 2 R such that er 6= ? ^ f(rer) = ? then
8: return ?
9: 8r 2 RH : f (0)r (er) ✏

10: 8r 2 RH : C(0)

(r) ?
11: while 9r 2 RH : f ir 6= f (i�1)

r do
12: for r 2 RH do
13: if 9↵ 2 ⌃ : VerifyCertificate(C(i)

(r↵), r↵, e�(r,↵), f
(i)
�(r,↵)(e�(r,↵))) = F

then
14: return ?
15:

bf (i)(r) d
↵2⌃(f(r↵·e�(r,↵)) � f (i�1)

�(r,↵)(e�(r,↵)))

16: �(i)
(r,↵) bf (i)(r) � (f(r↵·e�(r,↵)) � f (i�1)

�(r,↵)((e�(r,↵)))

17: f (i)r (er) bf (i)(r) � f(r·er)
18: if f (i)r = f (i�1)

r then
19: C(i)

(r) C(i�1)

(r)
20: else
21: /* Set C(1)

(r) according to def 14, afterwards use the following
formula */

22: C(i)
(r) R(i)

(r)·C(i�1)

(�(r,R(i)
(r)))

23: return �(i)

The ideal outcome for the algorithm when given as input a partial congruence ⇠h

would be to recover the partial output function �h and subsequently reconstruct the

transducer h defined by the partial congruence ⇠h and the partial output function �h.

For example, in traditional Mealy machine and total transducer learning algorithms,

the intermediate hypothesis constructed are always equivalence to the transducer

defined by ⇠h and �h (because the output labels are computed easily). However, as

we will see, the fact that algorithm is given access to ⇠h but is querying the transducer

f , may cause a certain number of issues. In this case the robust version of the OLI

algorithm is important in order to simplify the analysis.

First, notice that it is obvious that, as long as f and h are equal on all queries

51

performed by the OLI algorithm, then, by theorem 3 the ROLI algorithm will recover

the partial output function �h.

Our next task is to analyze the conditions under which the results from the queries

will disagree between f and h. We start with the following definition.

Definition 15. Let (r,↵, rs) 2 RH ⇥ ⌃ ⇥RH be a transition in the DFA incduced

by ⇠h. We say that the tuple (r,↵, rs) is vulnerable if the following conditions hold:

1. r↵ ⇠h rs and r↵ 6⇠f rs.

2. fr
s

(er
s

) 6= fr↵(er
s

).

In simpler words, a transition from a state r with a symbol ↵ is vulnerable if it

is directed to an incorrect state (i.e. the state accessed by r↵ and rs are different in

the transducer f) and moreover, fr
s

(er
s

) is distinguishing for r↵ and rs.

As we will show now, if a discrepancy occurs in the results of the output queries

performed by the OLI algorithm when querying f versus querying h, then some tran-

sition (r,↵, rs) is vulnerable.

Proposition 7. Consider the set of strings S which are queried by OLI(H,RH).

Assume that there exists t 2 S such that f(t) 6= h(t). Then, there exists (r,↵, rs) 2
RH ⇥ ⌃⇥RH such that (r,↵, rs) is vulnerable.

In the proof of proposition 7 with the following lemma:

Lemma 9. For a deterministic transducer f = (⇠f , �f) and u 2 ⌃⇤, the transduction

of f on u can be written as:

f(u) =
O

i2[1..|u|]
�(u[..i� 1], u[i]) (6.11)

We now proceed with the main proof.

Proof. Every t 2 ⌃⇤ queried by the OLI algorithm can be written as t = r↵·e�(r,↵) for

some r 2 RH,↵ 2 ⌃ and an enabling suffix e�(r,↵). Moreover, by using lemma 9 we

52

have that

f(t) 6= h(t)

=)
O

i2[1..|t|]
�f (t[..i� 1], t[i]) 6=

O
i2[1..|t|]

�h(t[..i� 1], t[i])

=)
O

i2[1..|r|]
�f (r[..i� 1], r[i])·�f (r,↵)·fr↵(e�(r,↵)) 6=

O
i2[1..|r|]

�h(r[..i� 1], r[i])·�h(r,↵)·hr↵(e�(r,↵))

Notice now that, by definition, we have that RH is a prefix closed set and therefore,

for each u 2 r we have that u 2 RH. By applying proposition 6 we get that

O
i2[1..|r|]

�f (r[..i� 1], r[i])·�f (r,↵) =

O
i2[1..|r|]

�h(r[..i� 1], r[i])·�h(r,↵) (6.12)

Using the above equation we simplify the overall expression as follows:

O
i2[1..|r|]

�f (r[..i� 1], r[i])·�f (r,↵)·fr↵(e�(r,↵)) 6=
O

i2[1..|r|]
�h(r[..i� 1], r[i])·�h(r,↵)·hr↵(e�(r,↵))

=) fr↵(e�(r,↵)) 6= hr↵(e�(r,↵))

The result now follows from the fact that the set of enabling suffixes E is suffix-

closed.

We will now derive the main result of this section which constrains the errors that

may occur in the output function when inferred by the ROLI algorithm.

Theorem 5 (ROLI robustness). Assume the ROLI algorithm is executed on a partial

congruence and completes without failing and let �ROLI = ROLI(H,RH). Then, we

have that:

�ROLI(r,↵) =

8<: �h(r,↵)·(fr
s

(er
s

) � fr↵(er
s

)), if (r, a, rs) is vulnerable ,

�h(r,↵), otherwise.
(6.13)

Proof. Firstly, notice that, by proposition 7 unless some transition (r,↵, rs) is vul-

53

Figure 6-3: The three different types of conflict that may occur on a vulnerable
transition (r,↵, rs) as analyzed in the proof of theorem 5. The labels in the outgoing
transitions show the output produced by fr

s

(er
s

) and fr↵(e
r

s

)

respectively.

nerable we have that �ROLI = �h. Now, consider a vulnerable transition (r,↵, rs) such

that r↵ ⇠h rs but r↵ 6⇠f rs.

Let us now consider the process of running the ROLI algorithm in the presence of

vulnerable transitions. The main issue with vulnerable transitions is that, while for

the state rs the value f (i)(er) will be approximated correctly, when this value is used

during the computation of bf (i)(r) instead of utilizing the correct value f (i)r↵ (e�(r,↵)), the

value f (i)s (er
s

) will be used. In most cases this will have the effect of aborting the

algorithm but, as we will prove now in one case the algorithm will continue and end

up with an incorrect value for the output label of the vulnerable transition.

We distinguish three cases on the way ws = fr
s

(er
s

) differs from wr↵ = fr↵(er
s

).

Moreover, notice that even the certificate suffix will likely have a different corre-

sponding output because we use a certificate computed with respect to rs however, in

reality, the certificate suffix is taken from �(r,↵). Now, we will discuss each different

case separately. The three cases are presented visually in figure 6-3.

1. Position conflict: This is the case demonstrated in the left side of figure 6-

3. In this case, we have that there exists an index j such that ws[|ws| � j] 6=
wr↵[|wr↵| � j]. It’s easy to notice that in this case the certificate verification

operation in the ROLI algorithm will fail.

2. Length Conflict 1(|ws| > |wr↵|): This is the case demonstrated in the mid-

dle of figure 6-3. Notice that in this case, the length of ws is larger than the

length of wr↵. Therefore, by proposition 3, regardless of the value the out-

put of the certificate C(i)
(rs) is taking when we prepend r↵, we have that

54

|J (rs, er
s

,C(i)
(rs))| > |J (r↵, er

s

,C(i)
(rs))| and therefore, the certificate verifi-

cation will fail.

3. Length Conflict 2(|ws| < |wr↵|): This is the case demonstrated on the right

side of figure 6-3. The difference with the previous case is that the output ws

has smaller length that wr↵. In this case, by setting the output produced by

C(rs) when computed from r↵ in an appropriate value we can ensure that the

certificate verification will be successful. In this case the prefix of w
1

= wr↵ � ws

will be pushed into the suffix of the output label �(r,↵).

Therefore, in all cases we have that either the algorithm will fail through a certificate

verification error, or the prefix of fr↵(er
s

) will be pushed into the suffix of �(r,↵) and

the proof is complete.

The astute reader might notice that fr↵(er
s

) � fr
s

(er
s

) is undefined if fr
s

(er
s

) 63
fr↵(er

s

). Indeed, in most cases of a vulnerable transition, the ROLI algorithm will

be able to detect the error using the certificate validation mechanism and abort the

execution. In fact, there is only one case of a length conflict between fr
s

(er
s

) and

fr↵(er
s

) that will cause an invalid output label to be produced by ROLI.

Theorem 5 demonstrates the importance of the adding the certificate validation in

the basic version of the OLI algorithm. An immediate corollary of theorem 5 is that

the only case in which a transition has an invalid label with respect to the partial

transducer h is if some prefix of a subsequent transition is pushed backwards. Let µ

be the transducer defined by the partial congruence ⇠h and �ROLI. Then, for every

state r 2 H and suffix w we conclude that fr(w) 3 µr(w). This is an important

property which we will exploit in our learning algorithm in the next section. Finally,

note that this property does not hold for the basic version of the OLI algorithm.

6.4 Learning Partial Transducers

Now that we have described and analyzed our main technical tool, the ROLI algorithm,

we are ready to describe the algorithm for learning deterministic transducers.

55

6.4.1 High-Level Overview

The algorithm starts with an initial, minimal partial congruence containing only the

domain distinguishing predicate Pdom
✏ which distinguishes between final and non-final

states. In order to implement such a congruence we use the classification tree [53] a

data structure commonly used in L⇤-style algorithms.

Afterwards, the OLI algorithm is used to derive the output function for the con-

gruence relation. Notice here that in this first call to the OLI algorithm, no robustness

checks are required, since the problem of inferring the output function is trivial when

we only have a single state in our transducer model.

Once the first model is created and checked for equivalence we proceed to process

the counterexample in order to generate a new distinguishing predicate and access

string which are used to extend the current partial congruence (see below). Once

we extend our current congruence with the new distinguishing predicate and access

string we invoke the ROLI algorithm to convert the induced DFA into a transducer

model.

On each failure of the execution of the ROLI algorithm we extract a new distin-

guishing predicate and an access string for a new state which extends the partial

congruence. Once, the ROLI algorithm succeeds we generate a new transducer model

and repeat this process until a correct model is constructed. We will now describe

each component of the learning algorithm in more detail.

6.4.2 Counterexample Processing

Once the classification tree is constructed, we have access to the induced DFA corre-

sponding to a partial congruence and we proceed to invoke the ROLI algorithm and,

if the ROLI algorithm terminates without an error, we produce a transducer model

h and submit it for equivalence checking. In this section, we will describe how the

learning algorithm handles counterexample resulting either from equivalence queries

or from failures in the ROLI algorithm.

Domain Counterexamples. The simplest type of counterexamples that may

56

occur during the execution of the algorithm are domain counterexamples. In this type

of counterexamples, we have a string s such that s 2 dom(h) but s 62 dom(f). These

counterexamples may occur either as a result of an equivalence query or during the

execution of the ROLI algorithm. Notice that domain counterexamples are indepen-

dent of the output labels in the transducer model and therefore, they only dependent

on the induced DFA of the current classification tree. Therefore, we process such

counterexamples using the same algorithms used for processing counterexamples in

classic automata learning algorithms [75]. Once we run the counterexample process-

ing algorithm we obtain a new access string and a domain distinguishing predicate

which are then used in order to extend the classification tree.

ROLI Counterexamples. By ROLI Counterexamples we refer to counterexamples

that occur during the execution of the ROLI algorithm when the algorithm fails (re-

turns ?). The two cases where this may happen is during the initial queries performed

by the algorithm if for some state r 2 R such that er 6= ? we have that f(rer) = ?. In

this case, we proceed to handle the input string s = rer as a domain counterexample

and generate a new domain distinguishing predicate as described above.

The second case where the ROLI algorithm may return ?, is if some certificate

verification check fails. We will now proceed to analyze how to extract distinguishing

predicates from a certificate verification failure in the ROLI algorithm. As stated in

theorem 5 the only way under which the ROLI algorithm may fail is if we have a

vulnerable transition (r,↵, rs) such that r↵ ⇠h rs but r↵ 6⇠f rs and moreover, es is

producing a different output from r↵ and rs. Therefore, if the certificate verification

is failing for such a pair, then we can conclude that Pout
e
r

s

,C(i)
(r

s

),f
(j)
r

s

(e
r

s

)

is a valid

output distinguishing predicate for r↵ and rs, where j is the last iteration of the

algorithm before failing. We proceed to extend the classification tree splitting the

access string rs with the new access string r↵ and the output distinguishing predicate

Pout
e
r

s

,C(i)
(r

s

),f
(j)
r

s

(e
r

s

)

.

Equivalence query counterexamples. The counterexample processing rou-

tine, shown in algorithm 6, is responsible with taking a counterexample provided by

the equivalence oracle and returning a new distinguishing predicate, either domain

57

or output. In the case the counterexample is a domain counterexample, we proceed

to handle it as described above. If we have an output counterexample t (i.e. for our

transducer h we have h(t) 6= f(t) and both h(t) and f(t) are not ?), then we proceed

with the following algorithm:

In a high level, the algorithm processes each prefix t[..i] of the counterexample

and first, the prefix is executed in the model in order to obtain the state ri accessed

by t[..i]. Afterwards, the following checks are performed:

1. The first check, is to verify that the output produced by our model h up to

the prefix t[..i] is a prefix of the output produced by the target function f . If

we have that h(t[..i]) 62 f(t) then, we conclude that in fact the value of the

output function for the input �h(ri�1

, t[i]) is overapproximated. In this case,

notice that using t[i+ 1..] as a certificate will be able to distinguish between ri

and ri�1

t[i]. Let w = J (ri, er
i

, t[i + 1..]). Then, we create the distinguishing

predicate Pout
e
r

i

,t[i+1..],w and extend the classification tree by splitting ri with the

new access string ri�1

t[i].

Connecting back to theorem 5, this check is responsible of processing coun-

terexamples caused due to vulnerable transitions causing a prefix of an output

label to be pushed backwards into the suffix of the output label of a vulnerable

transition.

2. Once the first check is passed, we proceed to extract and compare the suffix of

the counterexample using a certificate. As a certificate we choose appropriately

a sequence from the set W = {er
i

,C(ri)}. Notice that, because the output

produced by the strings in the set W , (i.e. the values J (ri, er
i

,C(ri)) and

J (ri,C(ri), er
i

)) share no common prefix and are non-empty, it follows that

one of them will be appropriate to extract any suffix using the J function. On

the case that C(ri) = ? then we can show that er
i

can be used to extract any

suffix using the J function. Assume that s 2 W is the certificate selected.

Then, we verify that J (ri, t[i + 1..], s) = J (ri�1

t[i], t[i + 1..], s). If this check

fails, then we generate the output distinguishing predicate Pout
t[i+1..],s,J (r

i

,t[i+1..],s).

58

6.4.3 Overall Algorithm

Summarizing the previous section, we now provide the overall learning algorithm for

deterministic transducers:

1. Initialize a classification tree T = (V, L,E) with the distinguishing predicate

Pdom
✏ and a single access string ✏ and use queries to set the leaf node to either a

T-child or a F-child.

2. Use the OLI algorithm to obtain a transducer model.

3. Repeat the following steps until an equivalence query returns T:

(a) Make an equivalence query on the current transducer model and process

any counterexample returned as described in section 6.4.2.

(b) Once the classification tree is extended, call the ROLI algorithm using the

DFA induced by the tree.

(c) While the ROLI algorithm returns ?, process the corresponding counterex-

amples, extend the classification tree and call the ROLI algorithm until a

transducer model is obtained.

4. return the current transducer model.

Algorithm 5 presents the pseudocode of the deterministic learning algorithm.

6.4.4 Correctness and Complexity

We will now state the following theorem which summarizes the query and time com-

plexity of our algorithm.

Theorem 6 (Learnability of Deterministic Transducers). Let f be a function rep-

resentable as a deterministic transducer with n states. Then, f is learnable using

O(n3|⌃| + nm) output and n equivalence queries, where m is the length of longest

counterexample given to the algorithm.

59

Algorithm 5 Learning algorithm for deterministic transducers
Require: O, E is an output and equivalence oracle for a function f

function LearnDet(O, E)
(H,RH) (�, ✏)
�h OLI(H,RH)
while E(H,RH, �h) 6= > do

t getCounterexample()
(�n, rn) processCounterexample(t)
(H,RH) (H [{�n},RH [{rn})
while (�h = ROLI(H,RH)) = ? do

(�n, rn) getROLIDistinguishingPredicate()
(H,RH) (H [{�n},RH [{rn})

return (H,RH, �h)

Algorithm 6 Counterexample processing algorithm
Require: O, E is an output and equivalence oracle for a function f

function ProcessCounterexample(t,h)
r
0

 ✏
for i = 1; i  |t| do

if bh(t[..i]) 62 f(t) then
w J (ri, er

i

, t[i+ 1..])
return (Pout

e
r

i

,t[i+1..],w, ri�1

t[i])

ri getAccessString(t[..i])
W {er

i

,C(ri)}
s getCertificate(W,hr

i

(er
i

))

if J (ri, t[i+ 1..], s) 6= J (ri�1

t[i], t[i+ 1..], s) then
w J (ri, t[i+ 1..], s)
return (Pout

t[i+1..],s,w, ri�1

t[i])

// Unreachable code

In terms of time complexity, assuming that the maximum length of an output label

is k and each output and equivalence query take constant time, the algorithm will

run time O(n2

(n|⌃|k +m)). The time complexity stems from the fact that building

each DFA model requires |⌃|n calls to the sift procedure where the maximum height

of the tree is n. Adding the complexity of counterexample processing and the ROLI

algorithm we obtain the result.

60

Chapter 7

Learning Non-Deterministic

Transducers

We introduce a subclass class of nonedeterministic transducers that have a canonical

form, based on an indexed form of syntactic congruence. The main idea behind this

class is the following. Given any state with two or more non deterministic transitions,

the output produced by each nondeterministic transition up to the enabling suffix

starts with a different prefix. The intuition is that, at this point, we are forced to

break into a non-determinsitic choice because we can no longer keep producing output

before resolving the lookahead.

The way we capture the different lookaheads needed to resolve the different cases

is by detecting nonmonotonicity in the behavior of the given function f : ⌃

⇤ ! �

⇤
?

and by separating monotonic and nonmonotonic continuations using nondeterminism.

7.0.1 Visible nondeterminism

We define a partition of a language L ✓ ⌃

⇤ into two lookahead languages eL and

L\eL representing nonmonotone and monotone behaviors wrt f . Observe that all

definitions here have f as an implicit parameter. For u 2 ⌃⇤ we let con(u) denote

the set of all v 2 ⌃⇤ such that u·v 2 dom(f). Let the enabling sequences from u be

61

the following subset of con(u)

es(u)
def
= {v 2 con(u) | 8x(✏ � x � v) x /2 con(u))}

So, an enabling sequence from u is a valid proper continuation from u that is minimal

in the sense that no proper prefix of it suffices as a valid continuation. Observe that

con(u) is nonempty iff es(u) is nonempty. For e 2 es(u) let nme(u, e) be the set of

non-monotonic extensions of e from u.

nme(u, e)
def
= {w 2 con(u) | e � w ^ f(u·e) 62 f(u·w) ^ (7.1)

8x(x 2 con(u) ^ e � x � w) f(u·e) 2 f(u·x))}(7.2)

nme(u)
def
=

[
e2es(u)

nme(u, e) (7.3)

The intuition is that a non-monotonic extension of an enabling sequence breaks mono-

tonicity locally and therefore requires a nondeterministic choice to be made in the

underlying transducer. Condition (7.1) ensures that w is a witness of nonmonotonic-

ity while condition (7.2) makes sure that the nonmonotonicity is local in the sense

that the behavior has been monotonic upto butlast(w).

Finally, provided that nme(u) is nonempty we define a partition of a continua-

tion language L that is associated with u. Observe that L here is assumed to be a

nonempty subset of con(u).

eLu def
= nme(u)·⌃⇤ \ L

We write eL for eLu when u is clear from the context.

7.0.2 Indexed congruence

Let bfL(u) be the output prefix of f that depends only on input prefix u for input

suffixes from L. bfL(u) def
=

l

w2L
f(u·w)

62

Define fLu : ⌃

⇤ 7! �

⇤
? as the continuation function of f after input u that omits from

the output the common output prefix produced for u, wrt continuations from L:

fLu (w)
def
=

bfL(u) � f(u·w)

We define the indexed congruence relation ⇠L over ⌃⇤ as follows:

u ⇠L v
def() 8w 2 L : fLu (w) = fLv (w) (7.4)

The relations ⇠L induce the following equivalence relation over ⌃⇤ ⇥ 2

⌃

⇤ :

(u, L) ⌘ (v, L0
)

def() L = L0 ^ u ⇠L v

A ⌘-equivalence class is denoted by hu, Li/⌘ or hu, Li when ⌘ is clear from the

context. We write bf for bf
⌃

⇤ and fu for f⌃
⇤

u . We write ⇠ for ⇠
⌃

⇤ .

7.0.3 Visibly nondeterministic transducer

The visibly nondeterministic transducer of f , denoted VND(f), is defined as the least

fixpoint of (⌃,�, Q, q
0

, F,�,�) satisfying the following conditions.

– q
0

= h✏,dom(f)i and q
0

2 Q;

– if hu, Li 2 Q and E 2 {eLu, L\eLu}, then, for all x 2 ⌃, if x0E 6= ; then

hu·x, x0Ei 2 Q and

hu, Li x/bf
L

(u)�bf
x

0
E

(u·x)����������! hu·x, x0Ei 2 �;

– if hu, Li 2 Q and ✏ 2 L then hu, Li 2 F ;

– � =

bf
dom(f)(✏).

We have the following main correctness result for VND(f). (Proof is in the appendix.)

Theorem 7. T
VND(f) = f .

63

Proof. First, we prove (7.5).

8u, v 2 ⌃⇤, x 2 ⌃, L ✓ ⌃⇤, E ✓ L : (u ⇠L v) (

bfL(u) � bfx0E(u·x) = bfL(v) � bfx0E(v·x)))
(7.5)

This implies that for all states q of VND(f), and all outgoing transitions from q

the output produced is invariant wrt ⌘ and therefore the transitions of VND(f) are

well-defined. Consider fixed u, v 2 ⌃⇤, x 2 ⌃, L ✓ ⌃

⇤, E ✓ L such that u ⇠L v.

We prove that bfL(u) � bfx0E(u·x) = bfL(v) � bfx0E(v·x) through a series of equivalence

preserving transformations of true statements. First, the following statement holds

by definition of ⇠L, for all x·w 2 L, and therefore also for all x·w 2 E (or w 2 x0E)

bfL(u) � f(u·x·w) = bfL(v) � f(v·x·w)

This implies in particular that the following statement holds

l

w2x0E

bfL(u) � f(u·x·w) =
l

w2x0E

bfL(v) � f(v·x·w)

We can reorder the operations because the first parts are fixed

bfL(u) �
l

w2x0E

f(u·x·w) = bfL(v) �
l

w2x0E

f(v·x·w)

which is, by definition of bfx0E, the same as

bfL(u) � bfx0E(u·x) = bfL(v) � bfx0E(v·x)

which completes the proof of (7.5).

Next we prove that T
VND(f) = f . Consider a start state q = hu, Li and a path

in �
VND(f) consisting of two transitions starting from q for input characters a, b 2 ⌃

and some states s
1

= hv, L
1

i and s
2

q
a/bf

L

(u)�bf
a

0
E

(ua)����������! s
1

b/bf
L1 (v)�bf

b

0
E1

(vb)
�����������! s

2

64

where we know that E ✓ L, L
1

= a0E 6= ;, E
1

✓ L
1

, b0E
1

6= ;, and ua ⇠L1 v. Let

L
2

= b0E
1

. Then, by using (7.5), it follows that bfL1(v) � bfL2(vb) = bfL1(ua) � bfL2(uab),

and therefore the above path equals

q
a/bf

L

(u)�bf
L1 (ua)���������! s

1

b/bf
L1 (ua)�bf

L2 (uab)�����������! s
2

from this follows, by generalizing to arbitrary finite paths, given u 2 L
0

= dom(f),

|u| = k, that there exists Li for 1  i  k such that

h✏, L
0

i
u[1]/bf

L0 (✏)�bf
L1 (u[..1])�������������!hu[..1], L

1

i
u[2]/bf

L1 (u[..1])�bf
L2 (u[..2])���������������!

hu[..2], L
2

i
u[3]/bf

L2 (u[..2])�bf
L3 (u[..3])���������������!

hu[..3], L
3

i · · · hu, Lki

where ✏ 2 Lk because u 2 dom(f), so hu, Lki 2 F
VND(f). Then, by using the

definition of �⇤
VND(f) and the definition of T

VND(f), it follows that

(u,bfL0(✏)·
kO

i=1

(

bfL
i�1(u[..i�1]) � bfL

i

(u[..i]))) 2 T
VND(f)

We can now apply (k � 1 times) the simplification that (x � y)·(y � z) = (x � z)

when x 2 y and y 2 z, because bfL(v) 2 bfa0E(va) when E ✓ L and a0E 6= ;. It follows

that

bfL0(✏)·
kO

i=1

(

bfL
i�1(u[..i�1]) � bfL

i

(u[..i])) = bfL0(✏)·(bfL0(✏) � bfL
k

(u)) = bfL
k

(u)

where the last equality holds because if x 2 y then x·(x � y) = y.

Let L =

]Lk�1

u[..k�1]

be the nonmonotonic lookahead from state hu[..k�1], Lk�1

i,
i.e., this is the next to last state. Since ✏ 2 Lk we know that Lk cannot be u[k]0L

because all strings in L have length at least 2. This means that Lk = u[k]0(Lk�1

\L)
which implies that Lk does not contain any nonmonotonic extensions of u. In other

words, for all v 2 Lk, f(u) 2 f(uv) and so bfL
k

(u) = f(u).

65

Finally, it follows that (u, f(u)) 2 T
VND(f) and if u0

= u then f(u) = f(u0
), so

VND(f) is functional. The theorem follows.

Example 3. The example illustrates the principle behind how finalizers from the

subsequential case are handled by visible nondeterminism. Consider the following

functon f over ASCII strings:

f(✏) = ✏, f(&) = &, f(&a) = &a, f(&am) = &am, f(&) = &, f(&) = &,

This function represents a small part of an HTML decoder. Assume also that for all

other input strings the output is undefined. We illustrate how VND(f) is formed

in this case. We have that, dom(f) = L
0

= {✏, &, &a, &am, &, &}, es(✏) =

{&},nme(✏, &) = nme(✏) = ;,fL
0

= ;. Let L
1

= &0L
0

= {✏, a, am, amp, amp;}. We

have the transition

h✏, L
0

i &/&��! h&, L
1

i

and es(&) = {a},nme(&, a) = nme(&) = {amp;},fL
1

= {amp;}, L
1

\fL
1

= {✏, a, am, amp}.
Let N

2

= a0fL
1

= {mp;}, M
2

= a0(L
1

\fL
1

) = {✏, m, mp}. We now get two nondetermin-

istic transitions

h&, L
1

i a/✏�! h&a, N
2

i

h&, L
1

i a/a��! h&a,M
2

i

Next, we get that es(&a) = {m},nme(&a, m) = nme(&a) = {mp;}, fN
2

= N
2

, fM
2

= ;.
Let N

3

= m0N
2

= {p;}, M
3

= m0M
2

= {✏, p}. We get, similarly to above, the

remaining tarnsitions

h&a, N
2

i m/✏�! h&am, N
3

i p/✏�! h&, {;}i ;/✏�! h&, {✏}i

h&a,M
2

i m/m��! h&am,M
3

i p/p��! h&, {✏}i

Observe that f{✏}u (✏) = bf{✏}(u) � f(u) = f(u) � f(u) = ✏ when u 2 dom(f), so u ⇠{✏} v

66

for all u, v 2 dom(f). Therefore h&, {✏}i = h&, {✏}i above. The transducer

VND(f) is shown in Figure 3-1(middle). ⇥

67

Example 4. Let f be the transduction function of the transducer in Figure 3-1(right).

We construct VND(f). Assume ⌃ = ASCII. We use regular expressions here. Con-

sider q
0

= hu, L
0

i where L
0

= [[.*]] and u = ✏. Observe con(✏) = dom(f) = [[.*]] in

this case. We have es(u) = ⌃ and we get the following non-monotonic extension for

each such initial enabling sequence e 2 es(u).

for e 6= < : nme(✏, e) = ;, nme(✏, <) = [[<[^>]*>]]

To understand why nme(✏, <) is [[<[^>]*>]] note that < 2 <a<a> but f(<) 62 f(<a<a>)

while at the same time for any proper prefix x of <a<a> it holds that f(u·<) 2 f(u·x).
It follows that

fL
0

= [[<[^>]*>.*]], L
0

\fL
0

= [[<[^>]*|[^<].*|()]].

In order to compute the transitions from the initial state, we first compute the deriva-

tives x0L
0

\fL
0

and x0fL
0

with respect to each symbol x 2 ⌃. We have the following

four cases:

L
1

= <0fL
0

= [[[^>]*>.*]]

L
2

= <0L
0

\fL
0

= [[[^>]*]]

for x 6= < : x0fL
0

= ;

for x 6= < : x0L
0

\fL
0

= L
0

Since both L
1

and L
2

are nonempty and distinct, there are two distinct states q
1

=

h<, L
1

i and q
2

= h<, L
2

i with the respective associated continuations L
1

and L
2

. Also,

since x0fL
0

is empty when x 6= < we may compute the derivative wrt L
0

, i.e., we get

that for x 6= <, x0L
0

= L
0

.

Transitions are computed as follows. Transition q
0

</y1��! q
1

is computed wrt looka-

head fL
0

, transition q
0

</y2��! q
2

is computed wrt lookahead L
0

\fL
0

, and, for x 6= <,

68

transition q
0

x/y3��! hx, L
0

i is computed wrt lookahead L
0

, where,

y
1

= (

bffL0
(✏) � bf<0fL0

(✏·<)) = (✏ � bfL1(<)) = ✏

y
2

= (

bfL0\fL0
(✏) � bf<0L0\fL0

(✏·<)) = (✏ � bfL2(<)) = <

for x 6= < : y
3

= (

bfL0(✏) � bfx0L0(✏·x)) = (✏ � bfL0(x)) = x

where y
1

6= y
2

, so the nondeterministic choice from q
0

is visible. Next, fix x 6= <. We

show that x ⇠ ✏ (recall that L
0

= ⌃

⇤) and so hx, L
0

i = q
0

. Recall that x ⇠ ✏ holds iffbf(x) � f(x·v) = bf(✏) � f(✏·v) for any v 2 ⌃⇤ and the latter is true because bf(x) = x.

States q
1

and q
2

are explored as follows. First, we calculate that nme(<) =

[[[^>]+>]].

We consider q
2

= h<, L
2

i first. Fix x 6= >. Since L
2

does not admit > it follows

that fL
2

= ;, so L
2

\fL
2

= L
2

. State q
2

ends up with loop q
2

x/x��! q
2

because x0L
2

= L
2

and < ⇠L2 <·x. The output on the transition is x because (

bfL2(<) � bfx0L2(<·x)) = (< �

<·x) = x. State q
2

is final because ✏ 2 L
2

.

We consider q
1

= h<, L
1

i next. We get that

fL
1

= nme(<) · ⌃⇤ \ L
1

= [[[^>]+>.*]] \ [[[^>]*>.*]] = [[[^>]+>.*]]

L
1

\fL
1

= [[[^>]*>.*]] \ fL
1

= [[>.*]]

Fix x 2 ⌃\{>}. It is now easy to calculate that >0L
1

\fL
1

= L
0

and x0fL
1

= L
1

and that

in all other cases the derivative is empty. We also have that <> ⇠L0 ✏ and <·x ⇠L1 <,

so h<>, L
0

i = q
0

and h<·x, L
1

i = q
1

. Also, it is straightforward to calculate that the

outputs of the transitions from q
1

are empty. Thus the transitions are q
1

x 6=>/✏���! q
1

and q
1

>/✏�! q
0

. Here the initial output � is ✏. ⇥

Now that we defined the general concept of visible non-determinism and visibly

non-deterministic transducers, we will proceed to describe an extension of the algo-

rithm for learning deterministic transducers in order to learn a subclass of the VND

class. The main motivation behind this subclass is that, as we will demonstrate in

our evaluation, it is able to efficiently capture many regular-expression based string

69

transformations while being simple enough to allow efficient learnability.

We conjecture that the whole class of VND transducers is in fact efficiently learn-

able and we consider extending our algorithm to be an interesting direction for future

work.

7.0.4 Simple Visibly Non-Deterministic Transducers

We will now describe the additional constraints we impose on the functions in this sec-

tion. Specifically, we call a function f to be simple visibly non-deterministic (SVND)

if it satisfies the following properties:

1. f is visibly non-deterministic.

2. f is total.

3. Consider the transducer VND(f) = (⌃, Q, q
0

, F,�,�). Then, for a state (u, L)

we have that eLu 6= ; =) (u, L) 2 F .

Condition (3) implies that, in the transducer formulation of the function f , non-

deterministic transitions can only happen in final states.

There are two main motivations behind the SVND class of functions: Firstly,

conditions (2) and (3) greatly simplify the analysis of non-monotonic extensions since

they allow us to create a simple oracle in order to check for non-monotonic extensions

from a state in the transducer. Moreover, since non-determinism only emerges from

final states in the target transducer, the analysis we performed for the ROLI algorithm

can be easily reused in this case as well.

Secondly, this class is well suited for learning regular-expression based transfor-

mations such as those performed using preg_replace type functions [71] and which

are commonly found in web applications and are a vital part of security-critical com-

ponents such as input sanitization frameworks. Visible determinism is well suited for

such functions, since the default behavior of the transformation is to compute the

identity function unless the regular expression is matched in which case an alterna-

tive path is triggered. Moreover, such transformations are by definition total and

70

therefore, the class of simple visibly non-deterministic functions looks appropriate for

learning models of such transformations.

Learning algorithm overview. Intuitively, our algorithm views the transducer

as an ensemble of deterministic partial transducers. For each input, exactly one

transducer is reaching an accepting state and the output produced by that transducer

is returned as the output of the transduction. Because the transducer is visibly non-

deterministic, we can use the prefixes of each computation in order to distinguish

which partial transducer (or which non-deterministic transitions) were used for each

input character processed by the transducer.

7.0.5 Extended Classification Tree

As in the deterministic algorithm we use the classification tree data structure in

order to distinguish between different states in the target transducer. However, in

this case, we extend the tree in order to hold information regarding the monotonic

or non-monotonic lookaheads from each transition. More specifically we define the

extended classification tree as follows:

Definition 16. An extended classification tree (ECT) is a binary tree T = (V, L,E)

where:

• V ⇢ (P [(⌃

⇤ ⇥ ⌃⇤ ⇥ B) is the set of internal nodes.

• L ⇢ ⌃⇤ ⇥ ⌃⇤ ⇥ B is the set of leafs.

• E ⇢ V ⇥V ⇥B is the transition relation. A transition (u, v, b) is called a T-child

of u if b = T otherwise, it’s called a F-child.

The ECT operates exactly as the original classification tree, however each state is

holding additional information which determines whether it is part of a non-monotonic

extension as we will describe now.

Path Restricted Output Queries The main way we utilize the additional

information in the leafs of the extended classification tree is to implement a concept

called path restricted output queries. First, define a state (u, L) in a visible transducer

71

to be enabled for an input v if u 2 v and moreover (u � v) 2 L. In other words, a

state is enabled for an input v if some prefix of v is accessing the state and moreover,

the suffix of v is part of the lookahead of the state.

A path restricted output query is given a leaf (u, v, b) 2 L and a string w and is

computed as:

Qpath(u, v, b) =

8<: f(w), if (u, v, b) is enabled on w

?, otherwise.
(7.6)

Given a leaf (u, v, b) and a string w In order to check whether the state represented

by the leaf (u, v, b) is enabled we proceed as follows:

1. Initially, we reduce the string w into a string p 2 w such that u 2 p such that

p 2 nme(u, ()), or in the case that no such prefix exists, we set p = w[1]. If

u 62 w we return ?.

2. Afterwards we check if (v 2 f(p)) = b. If the check is passed we return f(w),

otherwise we return ?.

To reduce the string w into the prefix p we use a variation of the path reconstruction

algorithm (described below) in order to recover all the non-monotonic paths and

select the appropriate one. Now that we have described the path restricted output

queries, we can give a better explanation on the structure of the leafs in the extended

classification tree:

Because of the additional constraints (2),(3) in the definition of the SVND class we

have that for any state all enabling suffixes are of length 1. Therefore, for a state u and

symbol ↵, we can always query f(u) and f(u↵) and obtain the corresponding output.

A tuple (u, v, b) represents the access string u, v represents the prefix generated by the

transducer up to u and b is a boolean value which denotes whether the current state

satisfies (if it’s monotonic) or doesn’t satisfy (non-monotonic) the produced prefix.

Therefore, states which are parts of non-monotonic extensions are always of the form

(u, v,F) while “normal” states are of the form (u, v,T).

72

Initialization. As in the case of the simple classification tree we initialize the

tree with a single domain distinguishing predicate Pdom
✏ . However, in this case we

start with two initial leafs, one containing (✏, ✏,T) being the T-child of the root

node and one containing (↵, f(↵),F) being the F-child of the root node. The second

leaf represents any possible non-monotonic extensions from the initial state (or the

dead-end state if none exist).

Induced NFA construction. Given an extended classification tree, we would

like to construct the NFA induced by the tree in order to invoke the ROLI algorithm

and obtain a transducer model. We proceed similarly as in the deterministic algo-

rithm with two major differences: First, when we compute the transitions from a

source state (u, v, b) we utilize path restricted output queries to determine the target

for the transition. Second, from each final state (i.e. a state of the form (u, vT)),

we generate two set of outgoing transitions, one normal monotonic transition and a

non-monotonic extension, as follows: For the monotonic extension we compute the

outgoing transitions as described above. For the non-monotonic transitions we per-

form the path restricted queries using the tuple (u, v,F) in order to enforce violation

of the monotonicity property.

Extending the classification tree. Extending the extended classification tree

with new distinguishing predicates and queries works exactly as in the case of the

classification tree.

7.0.6 Induced NFA Verification

Once the induced NFA is constructed and before we invoke the ROLI algorithm we

proceed to verify that the model is representing an unambiguous transducer model.

More specifically, we check whether there exists two different paths leading to a final

state. Such paths would violate the single-valuedness property of the transducer and

therefore one of them should be invalid. We process such counterexamples as we

describe in the corresponding section of ambiguity counterexamples below. Once the

NFA model is verified we proceed to invoke the ROLI algorithm, generate a transducer

model, and process any counterexamples resulting from either the ROLI algorithm

73

or the subsequent equivalence queries. We point out that since SVND transducers

presented limited non-determinism, the analysis of the ROLI algorithm can be easily

ported into this class.

7.0.7 Counterexample Processing

In a nutshell, the counterexample processing algorithm first uses the visibility of non-

determinism in order to trace, for each prefix of the counterexample, whether the

transition followed by the next character was towards a non-monotonic extension or

towards a monotonic extension. After the correct path (i.e. the sequence of non-

deterministic choices) are recovered in the target transducer we reduce the problem

to the deterministic setting and use the algorithm from our deterministic transducer

learning algorithm to further process the counterexample and extract a distinguishing

predicate.

Path reconstruction algorithm. We will now proceed to describe our path

reconstruction algorithm, which, given a string u returns a sequence of non deter-

ministic choices p 2 {M,N}⇤ where p[i] = N if the transducer on input u followed a

non-monotonic transition on the target transducer with u[i]. The path reconstruction

algorithm uses violations of the monotonicity of the target function in order to recover

the non-deterministic choices made by the target transducer. The algorithm performs

a linear scan on the outputs obtained from all prefixes of u keeps a set T of intervals

[i, j] denoting that a non-monotonic extension was followed starting at u[i] and up

to u[j]. Because certain prefixes of u might follow different paths in the transducer

than the ones u is following, some of the paths recovered up to some position i may

be invalidated afterwards. More specifically, given a string u the algorithm works as

follows:

1. Initially, for each prefix u[..i� 1] an output query is performed. For simplicity,

denote by ti = f(u[..i� 1]). Moreover the set of intervals is initialized as T = ;.

2. For each i 2 [0, |u|� 1 do:

74

(a) If ti 62 ti+1

, then let l < i be the largest index such that tl 2 ti+1

. We add

the interval [l, i+ 1] in the set of intervals T .

(b) Remove and other intervals from T which have a non empty intersection

with [l, i+ 1].

3. Let p 2 {M,N}|u| be the sequence of non-deterministic choices. Set p[i] = N if

there exists an interval which starts at i and p[i] = M otherwise.

Processing Equivalence query counterexamples. Let s be a counterexam-

ple for a model h produced by the learning algorithm. The overall counterexample

processing algorithm proceeds as follows:

1. Run the path reconstruction algorithm and obtain the path p followed by s in

the target transducer.

2. Trace the execution of the model h on the transition choices followed by the

path p and execute the deterministic counterexample processing algorithm using

path restricted output queries to answer any output queries performed by the

deterministic counterexample processing algorithm.

The reduction to the deterministic learning algorithm is now straightforward: Because

of visibility we can recover the non-deterministic choices in the target transducer and

then invoke the deterministic counterexample processing algorithm, taking care to

restrict the model in the same path as in the target transducer by utilizing path

restricted output queries instead of normal queries. Notice, that because of that, the

resulting model as viewed by the deterministic learning algorithm will be partial and

therefore, our algorithm from section 6.4 is fundamental for the success of the SVND

learning algorithm.

Processing ambiguous input counterexamples. Finally, we now describe a

small variation to the above counterexample processing algorithm which can be used

in order to process counterexample occurring due to violations of the single valuedness

of the model as described above. Given an ambiguous input s for the NFA model h

constructed by the learning algorithm, we proceed as follows: Let p
1

, p
2

be the two

75

distinct ambiguous paths in h. We ran the path reconstruction algorithm for the

input s and recover that path pt in the target. Afterwards, let pi 2 {p
1

, p
2

} such that

pi 6= pt. Finally, we run the counterexample processing described above but instead

of tracing the execution of the model on pt we trace the execution on pi. Notice, that

when restricted to pi, our model h reaching a final state, while the target transducer,

by using path restricted output queries as an oracle, is returning ? as an output.

Therefore, the string s can be processed as a domain counterexample using the same

counterexample processing algorithm we used in the deterministic setting.

7.0.8 Learning Algorithm Summary

Overall, the learning algorithm for SVND follows the same high level loop as the

deterministic learning algorithm with the addition of the verification step for the

induced NFA model. Once the first model is produced, the same iteration is followed

as in the deterministic algorithm where counterexamples (either from ROLI or from

an equivalence query) are used in order to add new distinguishing predicates in the

model until the equivalence query returns T.

The following theorem summarizes the correctness and complexity of our algo-

rithm:

Theorem 8. The class of simple visibly non-deterministic transducers can be learned

with O(mn3|⌃| + nm(n + m)) output queries and n equivalence queries, where n is

the number of states in the target transducer, and m is the length of the longest

counterexample.

The main overhead compared with the deterministic algorithm is the fact that,

in many occasions, we replace normal output queries, with path restricted output

queries which are more expensive since they require us to query all prefixes of the

input string.

76

Chapter 8

Learning Symbolic Automata

8.1 Background

8.1.1 Boolean Algebras and Symbolic Automata

In symbolic automata, transitions carry predicates over a decidable Boolean algebra.

An effective Boolean algebra A is a tuple (D, , [_],?,>,_,^,¬) where D is a set of

domain elements ; is a set of predicates closed under the Boolean connectives, with

?,> 2 ; [_] : ! 2

D is a denotation function such that (i) [?] = ;, (ii) [>] = D,

and (iii) for all ', 2 , [' _] = ['] [[], [' ^] = ['] \ [], and [¬'] = D \ ['].

Example 5 (Equality Algebra). The equality algebra for an arbitrary set D has

predicates formed from Boolean combinations of formulas of the form �c. c = a where

a 2 D. Formally, is generated from the Boolean closure of
0

= {'a | a 2
D} [{?,>} where for all a 2 D, ['a] = {a}. Examples of predicates in this algebra

include �c. c = 5 _ c = 10 and �c.¬(c = 0).

Definition 17 (Symbolic Finite Automata). A symbolic finite automaton (s-FA) M is

a tuple (A, Q, qinit, F,�) where A is an effective Boolean algebra, called the alphabet ;

Q is a finite set of states; qinit 2 Q is the initial state; F ✓ Q is the set of final states ;

and � ✓ Q⇥ A ⇥Q is the transition relation consisting of a finite set of moves or

transitions.

77

Characters are elements of DA, and words or strings are finite sequences of char-

acters, or elements of D⇤
A. The empty word of length 0 is denoted by ✏. A move

⇢ = (q
1

,', q
2

) 2 �, also denoted by q
1

'�! q
2

, is a transition from the source state

q
1

to the target state q
2

, where ' is the guard or predicate of the move. For a state

q 2 Q, we denote by guard(q) the set of guards for all moves from q. For a character

a 2 DA, an a-move of M , denoted q
1

a�! q
2

is a move q
1

'�! q
2

such that a 2 ['].

An s-FA M is deterministic if, for all transitions (q,'
1

, q
1

), (q,'
2

, q
2

) 2 �, q
1

6=
q
2

! ['
1

^'
2

] = ;—i.e., for each state q and character a there is at most one a-move

out of q. An s-FA M is complete if, for all q 2 Q, [

W
(q,'

i

,q
i

)2� 'i] = dom—i.e.,

for each state q and character a there exists an a-move out of q. Throughout the

paper we assume all s-FAs are deterministic and complete, since determinization and

completion are always possible [39]. Given an s-FA M = (A, Q, qinit, F,�) and a state

q 2 Q, we say a word w = a
1

a
2

· · · ak is accepted at state q if, for 1  i  k, there

exist moves qi�1

a
i�! qi such that qinit = q and qk 2 F .

For a deterministic s-FA M and a word w, we denote by Mq[w] the state reached in

M by w when starting at state q. When q is omitted we assume that execution starts

at qinit. For a word w = a
1

· · · ak, we use w[i..] = ai · · · ak, w[..i] = a
1

· · · ai, w[i] = ai

to denote the suffix starting from the i-th position, the prefix up to the i-th position

and the character at the i-th position respectively. We use B = {T,F} to denote the

Boolean domain. A word w is called an access string for state q 2 Q if M [w] = q.

For two states q, p 2 Q, a word w is called a distinguishing string, if exactly one of

Mq[w] and Mp[w] is final.

8.2 Learning Algorithm Overview

From a mathematical point of view, learning a symbolic state machine amounts to

learning the underlying equivalence relation and moreover, learning the predicates

that represent the guards between the transitions of the s-FA. In order to provide a

general solution to this problem we will assume the existence of an additional learning

algorithm for the underlying predicates. Naturally, the ability to learn the underlying

78

predicates of the target s-FA is a necessary condition in order to guarantee the learn-

ability of the overall s-FA. Next we will discuss two models of learning algorithms for

the underlying predicate learning algorithms.

8.2.1 Partition Learning Algorithms

Since we are learning deterministic s-FAs, the set of predicates in the outgoing tran-

sitions from any state forms a partition of the symbolic alphabet. Therefore, it is

natural to consider algorithms which, given query access to a partition using predi-

cates from the Boolean algebra, are able to recover the partition. As we will see in

the MAT ⇤ algorithm, we can use such algorithms as building blocks for our MAT ⇤

algorithm. We will now formally define the problem of learning partitions using

queries.

For the following we will consider a partition S to be a set S = {�
1

, . . . ,�k} of

predicates from a Boolean algebra A such that _�2S = T and for any �i,�j 2 S with

i 6= j we have that �i ^ �j = F.

Definition 18. In the partition learning problem, query access is given to a target

partition S = {�
1

, . . . ,�k}. Queries to the target partition can be performed as

follows:

• Membership Queries: In a memebership query the input is a symbol c 2 D

and the output returned is

S(c) def
= i > 0 : c 2 [�i] (8.1)

In other words, given a symbol c the index of the predicate satisfied by the

symbol is given.

• Equivalence Queries: In an equivalence query, a model H of the target par-

tition is provided and the equivalence oracle returns either T if H = S, or a

symbol c such that H(c) 6= S(c).

79

qinit q
1

T¬(c =‘a’)

c =‘a’

Figure 8-1: An s-FA over equality algebra.

Now that we defined the partition learning problem, we will proceed to define

a partition learning algorithm, which is a MAT learning algorithm for the partition

learning problem.

Definition 19. A partition learning algorithm PA for a boolean algebra A is a MAT

learning algorithm which can learn partitions using predicates from the Boolean alge-

bra A. We will assume that partition learning algorithms perform proper equivalence

queries, i.e. all models S 0 submitted for equivalence checking will satisfy the partition

definition.

8.2.2 Predicate Learning Algorithm

While partition learning algorithms are a natural candidate for learning the transitions

of the target s-FA they have a significant disadvantage. They do not directly relate

the learnability of the underlying predicates with the learnability of the target s-

FA. In other words, given an algorithm which is able to learn predicates from the

underlying Boolean algebra efficiently, can we guarantee the efficient learnability of a

target s-FA which uses predicates from the same Boolean algebra?

Next, we will describe the MAT ⇤ algorithm which provides an answer to this

fundamental question. Also we will see that MAT ⇤ can be easily adapted in order to

utilize an underlying partition learning algorithm.

8.3 The MAT ⇤ Algorithm

Overview. The main idea behind the MAT ⇤ algorithm is simple: We utilize the

traditional L⇤algorithm in order to approximate the Nerode congruence of the target

80

Algorithm 7 s-FA-Learn(O, E ,⇤) // s-FA Learning algorithm
Require: O: membership oracle, E : equivalence oracle, ⇤: algebra learning algo-

rithm.
T InitializeClassificationTree(O)
S
⇤

 InitializeGuardLearners(T,⇤)
H GetSFAModel(T, S

⇤

,O)
while E(H) 6= T do

w GetCounterexample(H)
T, S

⇤

 ProcessCounterexample(T, S
⇤

, w,O)
H GetSFAModel(T, S

⇤

,O)
return H

s-FA and then, we utilize either the partition or the predicate learning algorithms in

order to learn the underlying predicates and build an s-FA model. The main challenge

in utilizing the underlying partition or predicate learning algorithms is the lack of a

membership and an equivalence oracle for the corresponding target predicates. To

address this problem we will show how to utilize the partial congruence relation in

order to simulate membership queries to the underlying predicates and moreoveer,

utilize the s-FA equivalence oracle to simulate equivalence queries for the underlying

predicates.

The pseudocode for the overall MAT ⇤ algorithm can be found in algorithm 7. Ob-

serve that the high level structure of the algorithm is identical with the L⇤algorithm.

The algorithm starts by constructing a simple congruence which is used in order to

built the s-FA model. Once a model is built, we submit it for equivalence testing.

However, given a counterexample we use it to either extend the congruence or in order

to refine the predicates in the s-FA model.

We will now describe each module of the MAT ⇤ algorithm in more detail.

8.3.1 Contructing an s-FA model

Assume we are given a classification tree T = (V, L,E). Our next task is to use

the tree along with the underlying algebra learning algorithm ⇤ to produce an s-FA

model. The main idea is to spawn an instance of the ⇤ algorithm for each potential

transition and then use the classification tree to answer membership queries posed

81

by each ⇤ instance. Initially, we define an s-FA H = (A, QH, q✏, FH,�H), where

QH = {qs | s 2 L}—i.e. we create one state for each leaf of the classification tree T .

Finally, for any q 2 QH, we have that q 2 FH if and only if O(q) = T. Next, we will

show how to build the transition relation for H. As mentioned above, our construction

is based on the idea of spawning instances of ⇤ for each potential transition of the s-

FA and then using the classification tree to decide, for each character, if the character

satisfies the guard of the potential transition thus answering membership queries

performed by the underlying algebra learner.

Constructing a model using a predicate learning algorithm

Guard inference. To infer the set of guards in the transition relation �H, we spawn,

for each pair of states (qu, qv) 2 QH⇥QH, an instance ⇤(q
u

,q
v

) of the algebra learning

algorithm. We answer membership queries to ⇤(q
u

,q
v

) as follows. Let ↵ 2 D be a

symbol queried by ⇤(q
u

,q
v

). Then, we return T as the answer to O(↵) if sift(u↵) = v

and F otherwise. Once ⇤(q
u

,q
v

) submits an equivalence query E(�) using a model �,

we suspend the execution of the algorithm and add the transition (qu,�, qv) in �H.

Partition verification. Once all algebra learners have submitted a model through

an equivalence query, we have a complete transition relation �H. However, at this

point there is no guarantee that for each state q the outgoing transitions from q

form a partition of the domain D. Therefore, it may be the case that our s-FA

model H is in fact non-deterministic and, moreover, that certain symbols do not

satisfy any guard. Using such a model in an equivalence query would result in an

improper learning algorithm and potential problems in the counterexample processing

algorithm in Section 8.3.2. To mitigate this issue we perform the following checks:

1. Determinism check: For each state qs 2 QH and each pair of moves

(qs,�1

, qu), (qs,�2

, qv) 2 �H, we verify that [�
1

^ �
2

] = ;. Assume that a

character ↵ is found such that ↵ 2 [�
1

^ �
2

] and let m = sift(s↵). Then,

it must be the case that the guard of the transition qs ! qm must satisfy ↵.

Therefore, we check if m = u and m = v and provide ↵ as a counterexample to

82

⇤

(q
s

,q
u

) and ⇤(q
s

,q
v

) respectively if the corresponding check fails.

2. Completeness check. For each state qu 2 QH let S = {� | (q,�, p) 2 �H}.
We check that [

W
�2S �] = D. If a symbol h 62 [

W
�2S �] is found then, let

v = sift(uh). Following the same reasoning as above, we provide h as a

counterexample to ⇤(q
u

,q
v

).

These checks are iterated for each state until no more counterexamples are found. In

figure 8-2 we demonstrate instances of failed determinism and completeness checks

while learning our running example from figure 8-1 along with the corresponding

updates on the predicates. For details regarding the equality algebra learner, see

section 8.5.

Optimizing the number of algebra learning instances. Note that in the description

above, MAT ⇤ spawns one instance of ⇤ for each possible transition between states

in H. To reduce the number of spawned algebra learning instances, we perform the

following optimization: For each state qs we initially spawn a single algebra learning

instance ⇤(q
s

,?). Let ↵ be the first symbol queried by ⇤(q
s

,?) and let u = sift(s↵). We

return > as a query answer for ↵ to ⇤(q
s

,?) and set the target state for the instance

to qu, i.e. we convert the algebra learning instance to ⇤(q
s

,q
u

). Afterwards, we keep a

set R = {qv | v = sift(s�)} for all � 2 D queried by the different algebra learning

instances and generate new instances only for states qv 2 R for which the guards

are not yet inferred. Using this optimization, the total number of generated algebra

learning instances never exceeds the number of transitions in the target s-FA.

Constructing a model using a partition learning algorithm

When we are given access to a partition learning algorithm instead of a predicate

learning algorithm, the construction of the s-FA model is much simples, since the

partition verification step performed above can be skipped as all models produced by

the partition learning algorithm P will already be partitions of the alphabet.

Building the model. In order to build the s-FA model, from each state qu 2 Q

we spawn a single instance of the predicate learning algorithm P (q
u

) and answer

83

Figure 8-2: (left) Classification tree and corresponding learned states for our running
example. (right) Two different instances of failed partition verification checks that
occured during learning and their respective updates on the given counterexamples
(CE).

membership queries as follows:

O(c) = sift(u↵) (8.2)

In other words, we answer membership queries in the same exact way, but instead of

answering with a Boolean {T,F} we forward as the label of the target predicate to

be the accessing string for the state accessed using the queried symbol c.

Once an equivalence query is performed by the partition learning algorithm P (q
u

),

we inspect the generated partition H and for each predicate �v 2 H we add the

transition (u,�v, v) in the s-FA model. Once this process is repeated for all states,

we have a complete s-FA model.

8.3.2 Counterexample Processing

In a nutshell, our algorithm works similarly to the classic Rivest-Schapire algo-

rithm [75] and the TTT algorithm [51] for learning DFAs, where a binary search

is performed to locate the index in the counterexample where the executions of the

model automaton and the target one diverge. However, once this breakpoint index is

found, our algorithm performs further analysis to determine if the divergence is caused

by an undiscovered state in our model automaton or because the guard predicate that

84

consumes the breakpoint index character is incorrect.

Error localization. Let w be a counterexample for a model H generated as described

above. For each index i 2 [1..|w|], let qu = H[w[..i]] be the state accessed by w[..i] in

H and let �i = uw[i+ 1..]. In other words, �i is obtained by first running w in H for

i steps and then, concatenating the access string for the state reached in H with the

word w[i + 1..]. Note that, because initially the model H and the target s-FA start

at the same state accessed by ✏, the two machines are synchronized and therefore,

O(�
0

) = O(w). Moreover, since w is a counterexample, we have that O(�|w|) 6= O(w).

It follows that, there exists an index j, which we will refer to as breakpoint, for which

O(�j) 6= O(�j+1

). The counterexample processing algorithm uses a binary search on

the index j to find such a breakpoint.

Breakpoint analysis. Once we find an index j such that O(�j) 6= O(�j+1

) we can

conclude that the transition taken in H from H[w[..j]] with the symbol w[j + 1] is

incorrect. In traditional algorithms for learning DFAs, the sole reason for having

an incorrect transition would be that the transition is actually directed to a yet

undiscovered state in the target automaton. However, in the symbolic setting we

have to explore two different possibilities. Let qu = H[w[..j]] be the state accessed in

H by w[..j], qv = sift(uw[j+1]) be the result of sifting uw[j+1] in the classification

tree and consider the transition (qu,�, qv) 2 �H. We use the guard � to determine

if the counterexample was caused by an invalid predicate guard or an undiscovered

state in the target s-FA.

Case 1. Incorrect guard. Assume that w[j + 1] 62 [�]. Note that, � was generated as

a model by ⇤(q
u

,q
v

) and therefore, a membership query from ⇤

(q
u

,q
v

) for a character ↵

returns T if sift(u↵) = v. Moreover, we have that sift(uw[j + 1]) = v. Therefore,

if w[j + 1] 62 [�], then w[j + 1] is a counterexample for the learning instance ⇤(q
u

,q
v

)

which produced �. We proceed to supply ⇤(q
u

,q
v

) with the counterexample w[j + 1],

update the corresponding guard or partition and proceed to generate a new s-FA

model.

Case 2. Undiscovered state. Assume w[j + 1] 2 [�]. It follows that � is behaving as

85

Figure 8-3: (left) A minimal s-FA. (right) The s-FA corresponding to the classification
tree of MAT ⇤ with access strings for qinit and q

2

and a single distinguishing string ✏.

expected on the symbol w[j+1] based on the current classification tree. We conclude

that the state accessed by w[..j + 1] is in fact an undiscovered state in the target

s-FA which we have to distinguish from the previously discovered states. Therefore,

we proceed to add a new leaf in the tree to access this state. More specifically, we

replace the leaf labelled with v with a sub-tree consisting of three nodes: the root is

the word w[j+1..], which is the distinguishing string for the states accessed by v and

uw[j + 1]. The T-child and F-child of this node are labelled with the words v and

uw[j] based on the results of O(v) and O(uw[j + 1]).

Finally, we have to take care of one last point: Once we add another state in the

classification tree, certain queries that were previously directed to v may be directed

to uw[j] once we sift them down in the tree. This change implies that certain previous

queries performed by algebra learning instances ⇤(q
s

,q
v

) may be given invalid results

and therefore, we can no longer guarantee correctness of the generated predicates.

To solve this problem, we terminate all instances ⇤(q
s

,q
v

) for all qs 2 QH and replace

them with fresh instances of the algebra learning algorithm.

8.4 Correctness and Completeness of MAT ⇤

Given a learning algorithm ⇤, we use C⇤

m(n) to denote the number of membership

queries and C⇤

e (n) to denote the number of equivalence queries performed by ⇤ for

a target concept with representation size n. In our analysis we will also use the

following definitions:

Definition 20. Let M = (A, Q, q
0

, F,�) over a Boolean algebra A and let S ✓ A.

86

Then, we define:

– The maximum size of the union of predicates in S as U(S) def
= max

�✓S |
W

�2� �|.

– The maximum guard union size for M as B(M)

def
= maxq2Q U(guard(q)).

The value B(M) denotes the maximum size that a predicate guard may take in any

intermediate hypothesis produced by MAT ⇤ during the learning process. Contrary

to traditional L⇤-style algorithms, the size of the intermediate hypothesis produced

by MAT ⇤ may fluctuate as we demonstrate in the following example.

Example 6. Consider the s-FA in the left side of figure 8-3. When we execute

the MAT ⇤ algorithm in this s-FA, and after an access string for q
2

is added to the

classification tree, the tree will correspond to the s-FA shown on the right, in which

the transition from qinit is taken over the union of the individual transitions in the

target. Certain sequences of answers to equivalence queries can force MAT ⇤ to first

learn a correct model of �
1

_ �
2

_ �
3

before revealing a new state in the target s-FA.

We now state the correctness and query complexity of our algorithm.

Theorem 9. Let M = (A, Q, q
0

, F,�) be an s-FA, ⇤ be a learning algorithm A
and let k = B(M). Then, MAT ⇤ will learn M using ⇤ with O(|Q|2|�|C⇤

m(k) +

|Q|2|�|C⇤

e (k) logm) membership and O(|Q||�|C⇤

e (k)) equivalence queries, where m is

the length of the longest counterexample given to MAT ⇤.

Proof. First, we note that our counterexample processing algorithm only splits a leaf

if there exists a valid distinguishing condition separating the two newly generated

leafs. Therefore, the number of leafs in the discrimination tree is always at most

|Q|. Next, note that each counterexample is processed using a binary search with

complexity O(logm) to detect the breakpoint and, afterwards, either a new state is

added or a counterexample is dispatched to the corresponding algebra learner.

Each classification tree T = (V, L,E) defines a partition over dom

⇤ and, therefore,

an s � FA HT . In the worst case, MAT ⇤ will learn HT exactly before a new state

in the target s-FA is revealed through an equivalence query. Since HT is the result of

87

merging states in the target s-FA, we conclude that the size of each predicate in HT is

at most k. It follows that, for each classification tree T , we can get at most |�H
T

|C⇤

e (k)

counterexamples until a new state is uncovered on the target s-FA. Note here, that our

counterexample processing algorithm ensures that each counterexample will be either

a valid counterexample for a predicate guard in HT or it will uncover a new state.

For each membership query performed by an underlying algebra learner, we have to

sift a string in the classification tree which requires at most |Q| membership queries.

Therefore, the total number of membership queries performed for each candidate

model H is bounded by O(|�|(|Q|C⇤

m(k) + C⇤

e (k) logm) where m is the size of the

longest counterexample so far. The number of equivalence queries is bounded by

O(|�|C⇤

e (k)). When a new state is uncovered, we assume that, in the worst case, all

the algebra learners will be restarted (this is an overestimation) and therefore, the

same process will be repeated at most |Q| times giving us the stated bounds.

Note that the bounds on the number of queries stated in theorem 9 are based on

the worst-case assumption that we may have to restart all guard learning instances

each time we discover a new state. In practice, we expect these bounds to be closer

O(|�|C⇤

m(k)+(|�|C⇤

e (k)+ |Q|) logm) membership and O(|�|C⇤

e (k)+ |Q|) equivalence

queries.

Minimality of learned s-FA.

Since the MAT ⇤ will only add a new state in the s-FA if a distinguishing sequence

is found it follows that the total number of states in the s-FA is minimal. Moreover,

MAT ⇤ will not modify in any way the predicates returned by the underlying algebra

learning instances. Therefore, if the size of the predicates returned by the ⇤ instances

is minimal, MAT ⇤ will maintain their minimality.

The following theorem shows that it is indeed not possible to learn s-FAs over a

Boolean algebra that is not itself learnable.

Theorem 10. Let ⇤s�FA be an efficient learning algorithm for the algebra of s-FAs

over a Boolean algebra A. Then, the Boolean algebra A is efficiently learnable.

88

Which s-FAs are efficiently learnable?

Theorem 10 shows that efficient lernability of an s-FA requires efficient learnability

of the underlying algebra. Moreover, from theorem 9 it follows that efficiently learn-

ability using MAT ⇤ depends on the following property of the underlying algebra:

Corollary 1. Let A be an efficiently learnable Boolean algebra and consider the class

Rs�FA
A of s-FAs over A. Then, Rs�FA

A is efficiently learnable using MAT ⇤ if and

only if, for any set S ✓ A such that for any distinct �, 2 S =) [� ^] = ;, we

have that U(S) = poly(|S|,max�2S |�|).

At this point we would like to point out that the above condition arises due

to the fact that MAT ⇤ is a congruence-based algorithm which successively computes

hypothesis automata based on refining a set of access and distinguishing strings which

is a common characteristic among all L⇤-based algorithms. Therefore, this limitation

of MAT ⇤ is expected to be shared by any other algorithm in the same family. Given

the fact that after three decades of research, L⇤-based algorithms are the only known,

provably efficient algorithms for learning DFAs (and subsequently s-FAs), we expect

that expanding the class of learnable s-FAs is a very challenging task.

8.5 Learnable Boolean Algebras

We will now describe a number of interesting effective Boolean algebras which are

efficiently learnable using membership and equivalence queries.

Boolean Algebras over finite domains. Let A be any Boolean Algebra over a finite

domain dom. Then, any predicate � 2 can be learned using |dom| membership

queries. More specifically, the learning algorithm constructs a predicate � accepting

all elements in dom for which the membership queries return true as � = {c | c 2
dom ^ O(c) = T}. Plugging this algebra learning algorithm into our algorithm,

we get the TTT learning algorithm for DFAs without discriminator finalization [51].

This simple example demonstrates that algorithms for DFAs can be viewed as special

cases of our s-FA learning algorithm for finite domains.

89

Equality Algebra. Consider the equality algebra defined in example 5. Predicates

in this algebra of size |�| = k can be learned using 2k equivalence queries and no

membership queries. Initially, the algorithm outputs the empty set ? as a hypothesis.

In any subsequent step, the algorithm keeps a list of the counterexamples obtained

so far in two sets P,N ✓ dom such that P holds all the positive examples received

so far and N holds all the negative examples. Afterwards, the algorithm finds the

smallest hypothesis consistent with the counterexamples given. This hypothesis can

be found efficiently as follows:

1. If |P | > |N | then, � = �c.¬(
W

d2N c = d).

2. If |P |  |N | then, � = �c. (
W

d2P c = d).

It can be easily shown that the algorithm will find a correct hypothesis after at most

2k equivalence queries.

Other Algebras. The following Boolean algebras can be efficiently learned using mem-

bership and equivalence queries. All these algebras also have approximate finger-

prints [14], which means that they are not learnable by equivalence queries alone.

1. BDD algebra. The algebra of ordered binary decision diagrams (OBDDs) is

efficiently learnable using a variant of the L⇤ algorithm [66].

2. Tree automata algebra. Deterministic finite tree automata form an algebra

which is also learnable using membership and equivalence queries [44].

3. s-FA algebra. s-FAs themselves form an effective Boolean algebra and there-

fore, s-FAs over s-FAs over learnable algebras are also learnable.

8.6 Learning Equality Partitions from Data

In this section we are going to explore algorithms with which we can solve the par-

tition learning problem using the corpus of data C. Specifically, we will describe a

maximum likehood estimation (MLE) algorithm for the partition learning problem.

90

An advantage of our algorithm is that it works for any predicate family, since we

assume no specific structure in the predicates themselves.

A first approach in order to compute the MLE partition would be, given the

training set, to directly compute the most likely partition given the corpus C, by

taking each partition as an individual element and find the partition with the highest

likehood. However, the number of different partitions for large sets is huge and

therefore, this approach is unlikely to yield any practical results.

A more natural and practical approach is to assume that the occurrence of each

set in a partition is independent from the others sets in the same partition conditioned

on the fact the collection of sets still forms a partition.

Definition 21. In the Partition Learning Maximum Likehood Estimation problem

(PL-MLE) the input is a tuple (T,⌃,P , fP (·)) where, fP is a partial function fP : P !
[0, 1] of probabilities over subsets of ⌃ and T = {s

1

, s
2

, . . . , sk} is the training data.

The goal in the PL-MLE is to find a set Pm = {S
1

, S
2

, . . . , Sk}, Si 2 P such that:

1. 8i 2 [k], Si ◆ si.

2.
S

i2[k] Si = ⌃.

3. 8i, j s.t i 6= j =) Si \ Sj = ;.

4. max

Q
i2[k] Pr[Si] = max

Q
i2[k] fP (Si) = max

P
i2[k] log fP (Si).

The first condition implies that when generalizing the observations we will retain

the already known symbols into the correct set, the second and third conditions imply

that the sets we will select will indeed form a partition of our alphabet while the last

condition asserts that we will select the sets that maximize the overall likehood. One

technical point that one should take into account is defining the function fP (·) which

defines the probability of each predicate in P . Since the domain of the function is

|P|  2

|⌃| defining each individual value will require the same amount of space to be

given as input. To avoid this exponential blowup in terms of the size of the input

we assume that any point in the function not specified in the input is being given an

equal uniform value, normalized in order to satisfy
P

S2P fP (S) = 1.

91

Unfortunately, finding such a partition is a computationally intractable problem

as we prove in the following theorem.

Theorem 11. The decision PL-MLE problem is NP-Complete.

8.6.1 A Greedy MLE algorithm

Algorithm 8 Greedy partition learning MLE algorithm.
Require: T is a set of tuples (q, Sq) where q is a label and Sq ✓ ⌃, P ✓P(⌃) is a

predicate family and fP is a function fP : P ! [0, 1].

1: function GreedyPL-MLE(T,⌃,P , fP)
2: P ;
3: M ;
4: D

[
(q,S

q

)2T
Sq

5: while |T | > 1 do
6: for (q, Sq) 2 T do
7: �q argmax

�2P
I{Sq ✓ � ^ � \D \ Sq = ;}fP (�)

8: M M [{(Sq,�q)}
9: if max

(S
q

,�
q

)2M fP (�q) = min_prob then
10: Sq

M

,�M argmin

(S
q

,�
q

)2M
|Sq|

11: else
12: Sq

M

,�M argmax

(S
q

,�)2M
fP (�)

13: P P [{�M}
14: D D [�M

15: T T \ {(qM , Sq
M

)}
16: P P [{⌃ \D}
17: return P

Given the NP-Hardness of computing the MLE for the partition learning problem

we will now describe a greedy algorithm which repeatedly assigns the label with the

highest probability that is consistent with the data to the corresponding set.

Technical Description.

The pseudocode for the algorithm is presented in algorithm 8. We will now describe

each step of the algorithm in more detail. Initially, the algorithm will initialize a set

92

D = [
(q,S

q

)

Sq which contains all the symbols available in the training data (line 4).

The goal here is collect all symbols which are already assigned into a label by the

training data in order to avoid reassigned them. The next step (line 7) is to select, for

each label q the set with the maximum likehood that is compatible with the currently

assigned data D and is a superset of the training data available for the label q. The

expression I{S ✓ � ^ � \D \ Sq = ;} denotes an indicator variable, taking a value

1/0 depending on whether the specified expression holds.

After this process is repeated for all labels, we select the predicate with the highest

overall probability (line 13). In case that the maximum (and therefore, all other

labels) is equal to the minimum uniform probability, then the algorithm will choose

the label with the smallest training data size and generate a predicate containing only

the training data and assign it to the corresponding label.

Once this label is assigned, we add all symbols belonging to the newly assigned

predicate to the set D in order to exclude them from further selection in the future,

remove the label we just assigned from the training data and repeat the process (lines

15-17).

Finally, once all but one labels are assigned, we break out of the main loop and

assign the final label to the remaining symbols (line 19). This avoids many technical

difficulties since we can guarantee completeness in our partition regardless of the

assignment of the first n�1 sets. Notice, that this assignment assumes that {⌃\D} 2
P which may require the assumption that P = P(⌃).

Correctness and analysis.

The correctness of our algorithm is evident from the technical description above.

Indeed, the way we select the predicate with the maximum likehood (line 7) ensures

that each selected predicate is a superset of the training data and also that it does

not intersect with any other predicates already selected. Finally, the way the last

predicate is selected (line 19) ensures that the final set of predicates will partition the

alphabet ⌃.

The next natural question is how close is our greedy algorithm to the optimal

93

likehood. It is very easy to show that we will always be within a factor |T | from the

log-likehood of the optimal solution.

Theorem 12. Let (⌃, T,P , fP (·)), where |T | = k, be an instance of the PL-MLE

problem. Also, let COPT = max

P
i2[k] log fP (Si) be the optimal log-likehood to the

PL-MLE instance and CG be the log-estimate of the greedy MLE algorithm. Then,

COPT  k · CG.

We can also show that this simple analysis is tight. In the following we denote by

negl(x) to be a negligible function of x, i.e. a function smaller than any polynomial.

Theorem 13. There exists an instance of the PL-MLE problem such that COPT =

kCG � negl(COPT).

Nevertheless, in practice, the average number of transitions in the SFAs we en-

countered both in our training set as well as in our test set, have small number of

transitions, around |T | = 2 on average, and therefore, this greedy algorithm tends to

perform well in practice.

8.6.2 A frequency based GuardGen algorithm

We will now use our greedy MLE algorithm in order to built a simple frequency based

GuardGen algorithm, called MLEGuardgen, for inferring the transitions of an SFA. Our

algorithm presents a very simple, yet efficient, construction which demonstrates the

possibilities of our hybrid learning model and our MLE framework.

Training the GuardGen algorithm.

Let C be a corpus of SFAs and Mi = (Qi, F, q0,P ,�) 2 C be an SFA om C. Then,

we collect the multiset of predicate guards as

G =

[
M

i

2C

[
q2Q

i

[
�2guard(q)

�

Notice here, that G is a multiset thus, repetitions of members are allowed. Given

the multiset of all predicate guards we are going to create a probability distribution

94

over all predicate guards in the predicate family P . Next, we process each predicate

from G and assign a score as score(�) = countG(�), where the countG(�) function

counts the number of occurences of element � in the multiset G. For all predicates

� which are not found in our training data we set score(�) = 0. Finally, converting

the generated scores to a probability distribution is simply a matter of normalization

which can be achieved by using the softmax function as:

Pr[�] = �(score(�)) =
escore(�)P

�
i

2P escore(�i

)

(8.3)

We point out however that, unless a confidence value is required, the score by

itself is enough in order to run the greedy MLE algorithm and generate the predicate

guards.

Technical Description.

After obtaining the probability distribution from the training phase, the algorithm

will initially make a membership query for a random symbol in the alphabet and

use the MLE algorithm in order to produce a set Pg of predicate guards for which we

submit an equivalence query. Each time a counterexample is given, the corresponding

symbol is added to the training data given to the MLE algorithm and a new set of

guards is produced until a correct partition is produced.

Analysis. It is evident that for any finite set ⌃ and a predicate family P over

⌃ our algorithm will learn any partition of ⌃ over P using at most ⌃ equivalence

queries since, at that point, every element of ⌃ will be labelled by the equivalence

queries made by the algorithm. Proving better bounds on the query complexity of

our algorithm depends on the quality of the corpus of SFAs given to the algorithm.

95

Chapter 9

Applications

Now that we have discussed a large body of learning algorithms for automata and

transducers, we will switch gears into algorithms that allow us to use our novel learn-

ing algorithms in order to perform black-box testing of large systems.

9.1 Code Injection Attacks

The main application of our techniques lies in the detection of code injection attacks

in Web applications. Code injection attacks occur when the application, while pro-

cessing input data from an utrusted source (typically the user), is confusing part

of the data for code a fact which may alter the code executed in various runtimes

within the application such as the database, LDAP directories, XML or client side

code such as HTML/Javascript. The impact of such attacks can be severe and ranges

from the execution of untrusted code into either the Web application server or the

client’s browser, leaking of sensitive information and others. The OWASP Top Ten,

is an annual document which categorizes the top 10 security vulnerabilities for Web

Applications in terms of severity. We note that for 2017 the most dangerous vulner-

ability for Web applications was code injection attacks while the seventh place was

also taken by Cross Site Scripting (XSS) another popular code injection vulnerability

class.

96

9.2 Web Application Firewalls and String Sanitizers

There are many different ways with which an application can defend against a code

injection attack, but in this chapter we will focus on the two most popular defenses

and formalize them in order to fit into our formal models framework.

Web Application Firewalls (WAFs) and Filters. Web Application Firewalls

(WAFs) are system which preprocess the input to a Web application and try to

detect whether the input contains any malicious data such as an injection attack. If

a malicious input is detected, then the request is dropped (or in certain cases just

logged). In more general terms we say that WAFs are a type of filter. Formally, a

filter is defined as a Boolean function f : ⌃! B, such that for any string s, f(s) = T

only if s belongs to a set of malicious inputs. A filter can either be a system such as a

WAF which pre-processes the input to the application or a security module within the

application that processes the input before it is passed to security critical components.

An important aspect of Web Application Firewalls is that they are required by Web

applications in order to comply to the PCI standard which set the requirements for

web applications which process credit card information. Therefore, it is evident that

WAFs are very common systems in industrial environments.

String sanitizers While filters are a common first line of defense, eventually, we

would like the Web application to be able to process all requests without having to

drop requests which may be malicious: indeed, it is difficult to precisely determine

the inputs which contain malicious data and therefore, dropping requests may have

the effect of failing to process benign requests which are incorrectly deemed malicious

(false positives). A more natural approach is to build functions which clean the input

from potentially malicious data and then the application can proceed to process the

sanitized input normally. In practice, such functions are implemented through a series

of string transformations in the original input such as encoding potentially dangerous

characters, removing malicious parts of the inputs and other similar transformations.

More formally, we define a string sanitizer to be a function f : ⌃⇤ ! ⌃

⇤ which takes

as input any string s and produces a string u = f(s) such that u does not contain

97

any malicious substring.

In the following sections, we will describe algorithms which can be utilized in order

to evaluate the robustness of filters and string sanitizers in a black-box manner, i.e.

given only query access to the target application.

9.3 Grammar Oriented Filter Auditing

In this section, we will define the Grammar Oriented Filter Auditing (GOFA) problem

and present a learning based algorithm for solving the problem. Intuitevely, the

GOFA problem asks one to assess the robustness of a sanitizer or filter with respect

to a context free grammar G which contains a set of attack strings.

Definition 22. In the Grammar Oriented Filter Auditing (GOFA) problem the input

is a context free grammar G and query access to an unknown function f such that:

1. If f : ⌃

⇤ ! ⌃

⇤ is a sanitizer function then, the GOFA problem asks to find

s 2 G such that there exists an input u 2 ⌃⇤ such that f(u) = s.

2. If f : ⌃

⇤ ! B is a filter function then, the GOFA problem asks to find u 2 G

such that f(u) = F.

One can easily prove that in the general case the GOFA problem requires an

exponential number of queries. Simply consider the CFG L(G) = ⌃

⇤ and a DFA F

such that L(F) = ⌃

⇤ \{random-large-string}. Then, the problem reduces in guessing

a random string which requires an exponential number of queries in the worst case.

A formal proof of a similar result was presented by Peled et al. [70].

Our algorithm for the GOFA problem uses a learning algorithm for SFAs utilizing

as an equivalence oracle the algorithm in Algorithm 9. The algorithm takes as input

a hypothesis machine H. It then finds a string s 2 L(G) such that s 62 L(H). If

the string s is an attack against the target filter, the algorithm outputs the attack-

string and terminates. If it is not it returns the string as a counterexample. On the

other hand if there is no string bypassing the hypothesis, the algorithm terminates

accepting the hypothesis automaton H. Note that, this is the point where we trade

98

completeness for efficiency since, even though L(G\H) = ;, this does not imply that

L(G \ F) = ;.

Algorithm 9 GOFA Algorithm
Require: Context Free Grammar G, membership oracle O

function Equivalence Oracle(H)
GA G \H
if L(GA) = ; then

return Done
else

s L(GA)

if O(s) = True then
return Counterexample, s

else
return Attack, s

Adaptation to sanitizers. The technique above can be generalized easily to

sanitizers. Assume that we are given a grammar G as before and a target transducer

T implementing a sanitization function. In this variant of the problem we would like

to find a string sA such that there exists s 2 L(G) for which sA[T]s holds.

In order to determine whether such a string exists, we first construct a pushdown

transducer TG with the following property: A string s will reach a final state in TG

if and only if s 2 L(G). Moreover every transition in TG is the identity function, i.e.

outputs the character consumed. Therefore, we have a transducer which will generate

only the strings in L(G). Finally, given a hypothesis transducer H, we compute the

pushdown transducer H � TG and check the resulting transducer for emptiness. If

the transducer is not empty we can obtain a string sA such that sA[H � TG]s. Since

TG will generate only strings from L(G) it follows that sA when passed through the

sanitizer will result in a string s 2 L(G). Afterwards, the GOFA algorithm continues

as in the DFA case.

Comparison With Random Testing. Regarding the usefulness of GOFA al-

gorithm as a security auditing method it is important to consider it in comparison to

random testing/fuzzing. Currently, most tools in the black-box testing domain, such

as web vulnerability scanners, work by fuzzing the target filter with various attack

99

strings until a bypass is found or the set of attack strings is exhausted.

We argue that our GOFA algorithm is superior to fuzzing for two reasons:

1. The number of queries of the GOFA algorithm is independent of the size of the

grammar. On the other hand, when producing random strings from a grammar

in order to test a filter a very large number of strings has to be produced.

Moreover, testing for modern vulnerabilities such as XSS is very complex, since

there is a large number of variations that one should consider(cf. [8]).

2. Random testing produces no information on the structure of the filter if no at-

tack is found. Consider the case where one produces a large number of candidate

attack strings, but no bypass is found. Then, the auditor is left with no addi-

tional information for the filter, other than it rejected the set of strings that was

tested. One approach would be to try to infer the structure of an automaton

from that set of strings. Unfortunately, inferring the minimal automaton which

is consistent with a set of strings is NP-Hard to approximate even within any

polynomial factor [72]. On the other hand, as we demonstrate our GOFA algo-

rithm is able to recover on average 90% of the states of the target filter in cases

where no attack exists and an expressive enough grammar is given as input.

9.3.1 Approximating a Complete Equivalence Oracle

Although the GOFA algorithm is a suitable equivalence oracle implementation in

the case the goal is to audit a target filter, in some cases one would like to recover

a complete model of the target filter/sanitizer. In such cases, finding a bypass is

not enough. Since we only assume black-box access to the target filter, in order for

this problem to be even solvable we have to assume an upper bound on the size of

the target filter. In this case, The Vasilevskii-Chow(VC) algorithm [27] exists for

checking compliance between a DFA and a target automaton given black-box access

to the second.

However, if the DFA at hand has n states and the upper bound given is m then

the VC algorithm is exponential in m� n. Moreover, the algorithm suffers from the

100

Learning	
algorithm	

Difference	
analysis		

Check	if	the	
differences	are	real	

Counterexamples:	
refuted	differences	Bootstrapping	through	

ini<aliza<on	

Program1	 Program2	 Program	n	

SFA	2	SFA	1	 SFA	n	…

…

Stop	if		
no	difference	

Figure 9-1: SFADiff archtitecture

same limitations in the alphabet size as DFA learning algorithms since every possible

transition of the black-box automaton must be checked. Creating a symbolic version

of the VC algorithm may be possible however, we will again only get probabilistic

guarantees on the correctness of our equivalence oracle.

Another option is to construct a context free grammar describing the input pro-

tocol under which the sanitizer should operate and then use random sampling from

that grammar to test whether the hypothesis and the target programs are complying.

For example, when we test HTML Encoders we might want to construct a grammar

with a number of different character sequences such as encoded HTML entities or

special characters and test the behavior of the encoder under these strings. We em-

ploy this approach in our experiments.Finally, static analysis techniques [85] can be

used to generate a CFG describing the output of another implementation of the same

sanitizer or filter and then cross check the generated CFG with the target sanitizer

using our GOFA algorithm.

101

9.4 Differential Testing with s-FAs

9.4.1 Basic Algorithm

The main idea behind our differential testing algorithm is to leverage automata learn-

ing in order to infer SFA-based models for the test programs and then compare the

resulting models for equivalence as shown in Figure 9-1. As mentioned above, this

technique has a number of advantages such as being able to generalize from comparing

individual input/output pairs and build models for the programs that are examined.

Algorithm 10 provides the basic algorithmic framework for differential testing us-

ing automata learning. The algorithm takes two program implementations as input.

The first function calls, to the GetInitialModel function, are responsible for boot-

strapping the models for the two programs. The initialized models are then checked

for differences using the RCADiff function call. The internals of this function are

described in detail in Section 9.4.2. This function is responsible for categorizing the

differences in the two models and return a sample set of inputs covering all categories

that can cause the two programs to produce different outputs. The algorithm stops if

the two models are equivalent. Otherwise, RCADiff returns a set of inputs that cause

the two SFA models to produce different output.

However, since these differences are obtained by comparing the program models

and not the actual programs, they might contain false positives resulting from inaccu-

rate models. To detect such cases, we verify all differences obtained from the RCADiff

call using the actual test programs. If any input is found not to produce a difference

in the implementations, then that input is used as a counterexample in order to refine

the model through the UpdateModel call. Finally, when a set of differences in the

two models is verified to contain only true positives, the algorithm returns the set of

corresponding inputs back to the user.

The astute reader may notice that, if no candidate differences are found between

the two models, the algorithm terminates. For this reason, model initialization plays

a significant role in our algorithm, since the initialized models should be expressive

enough in order to provide candidate differences. It is interesting to point out that

102

Algorithm 10 Differential SFA Testing Algorithm
Require: P

1

, P
2

are two programs
function GetDifferences(P

1

, P
2

)
M

1

 GetInitialModel(P
1

)
M

2

 GetInitialModel(P
2

)
while true do

S RCADiff(M
1

,M
2

)
if S = ; then

return ;
modelUpdated False
for s 2 S do

if P
1

(s) 6= M
1

(s) then
M

1

 UpdateModel(M
1

, s)
modelUpdated True

if P
2

(s) 6= M
2

(s) then
M

2

 UpdateModel(M
2

, s)
modelUpdated True

if modelUpdated = False then
return S

the candidate differences do not have to be real differences.

9.4.2 Difference Analysis

Assume that we found and verified a number of inputs that cause the two programs

under test to produce different outputs. One fundamental question is whether we

can classify these inputs in certain equivalence classes based on the cause of the

deviant behavior. We will now describe how we can use the inferred SFAs in order

to compute such a classification. Ideally, we would like to assign in two inputs that

cause a difference the same root cause if they follow the same execution paths in the

target programs. Since the program source is unavailable, we trace the execution

path of the inputs in the respective SFA models.

RCADiff algorithm. Given two SFAs M
1

and M
2

, it is straightforward to com-

pute their intersection by adapting the classic DFA intersection algorithm [78]. Let

Mprod = (Q
1

⇥Q
2

, (q
0

, q
0

), {(qi, qj) : qi 2 F
1

^qj 2 F
2

},P ,�) be the, minimal, product

automaton of M
1

,M
2

. Notice initially, that the reason a difference is observed in the

output after processing an input in both SFAs is that the labels of the states reached

103

in the two machines are different. This motivates our definition of points of exposure.

Definition 23. Let Mprod be the intersection SFA of M
1

,M
2

as defined above. We

define the set {(qi, qj)|(qi, qj) 2 Qprod ^ qi 2 Q
1

^ qj 2 Q
2

^ l(q
1

) 6= l(q
2

)} to be the

points of exposure for the differences between M
1

,M
2

.

Intuitively, the points of exposure are the reasons the differences in the programs

are observed through the output of programs. The path to a point of exposure encodes

two different execution paths in machines M
1

and M
2

respectively which, under the

same input, end up in states producing different output. Thus, we say that any simple

path to a point of exposure is a root cause of a difference.

Definition 24. Let M
1

,M
2

be two SFAs and Mprod be the intersection of M
1

,M
2

.

Let Qp ✓ Qprod be the points of exposure for Mprod. We say that the set of simple

paths S = {q
0

⇤! qp|qp 2 Qp} is the set of root causes for the differences between M
1

and M
2

.

Equipped with the set of paths our classification algorithm works as follows: Given

two inputs causing a difference, we first reduce the path followed by each input into a

simple path, i.e. we remove all loops from the path. For example, an input following

the path q
0

! q
4

! q
5

! q
4

! q
10

will be reduced to the path q
0

! q
4

! q
10

.

Afterwards, we classify the two inputs in the same root cause if the simple paths

followed by the inputs are the same.

Algorithm 11 shows the pseudocode for the RCADiff algorithm. The algorithm

works by collecting all the distinct root causes from the product automaton using

the the SimplePaths function call. This function accepts an SFA and a target state

and returns all simple paths from the initial state to the target state using a BFS

search. Afterwards, each path is converted into a sample input through the function

Path2Input. This function works by selecting, for each edge qi ! qj in the path,

a symbol ↵ 2 ⌃ such that (qi,�, qj) 2 � ^ �(↵) = 1. Finally, these symbols are

concatenated in order to form an input that exercise the given path in the SFA.

104

Algorithm 11 Difference Categorization Algorithm
Require: M

1

,M
2

are two SFA Models
function RCADiff(M

1

,M
2

)
Mprod ProductSFA(M

1

,M
2

)
S ;
for (qi, qj) 2 Qprod | l(qi) 6= l(qj) do

S S [SimplePaths(Mprod, (qi, qj))

return Path2Input(S)

9.4.3 Differentiating Program Sets

In this section, we describe how our original differential testing framework can be

generalized into a GetSetDifferences algorithm which works as follows: Instead of

getting two programs as input, the GetSetDifferences algorithm receives two sets

of programs I
1

= {P
1

, . . . , Pn} and I
2

= {P
1

, . . . , Pm}. Assume that the output of

each program is a bit b 2 {0, 1}. The goal of the algorithm is to find a set of inputs

S such that, the following condition holds:

9b 8P
1

2 I
1

, P
1

(s) = b ^ 8P
2

2 I
2

, P
2

(s) = 1� b

While conceptually simple, this extension provides a number of nice applica-

tions. For example, consider the problem of finding differences between the HTM-

L/JavaScript parsers of browsers and those of WAFs. While finding such differences

between a single browser and a WAF will provide us with an evasion attack against

the WAF, the GetSetDifferences algorithm allows us to answer more sophisticated

questions such as: (i) Is there an evasion attack that will bypass multiple different

WAFs? and (ii) Is there an evasion attack that will work across different browsers?

Also, as we describe in Section 9.4.4, this extension allows us to produce succinct

fingerprints for distinguishing between multiple similar programs.

GetSetDifferences Algorithm. We extend our basic GetDifferences algorithm

as follows: First, instead of initializing two program models as before, we initialize

the SFA models for all programs in both sets accordingly. Similarly, when we verify

the candidate differences obtained from the inferred models, all programs in both

105

sets should be checked. Besides these changes, the skeleton of the GetDifferences

algorithm remains the same.

The most crucial and time-consuming part of our extension is the extension to the

RCADiff functionality in order to detect differences between two sets of models. Recall

that RCADiff utilizes the product construction and then finds the simple paths leading

to the points of exposure. Given two sets of models, we compute the intersection

between all the models in the two sets. Afterwards, we set the points of exposure as

follows. Let q = (q
0

, . . . , qm+n) be a state in the product automaton. Furthermore,

assume that state qi corresponds to automata Mi from one of the input sets I
1

, I
2

.

Then, q is a point of exposure if

8Mi 2 I
1

,Mj 2 I
2

=) l(qi) 6= l(qj)

With this new definition of the points of exposure, the modified RCADiff algorithm

proceeds as in the original case to find all simple paths in the product automaton

that lead to the points of exposure.

One potential downside of this algorithm is that, its complexity increases expo-

nentially as we add more models in the sets. For example, computing the intersection

of m DFA with n states each, requires time O(nm
) while, in general, the problem is

PSPACE-complete [56]. That being said, we stress that the number of programs we

have to check in practice will likely be small and many additional heuristics can be

used to reduce the complexity of the intersection computation.

9.4.4 Program Fingerprints

Formally, the fingerprinting problem can be described as follows: given a set I of m

different programs and black-box access to a server T which runs a program PT 2 I,

how can one find out which program is running in the server T by simply querying

the program in a black-box manner, i.e. find P 2 I such that P = PT .

In this section, we present two different fingerprinting algorithms that provide dif-

ferent trade-offs between computational and query complexity. Both these algorithms

106

Algorithm 12 Fingerprint Tree Building Algorithm
Require: I is a set of Programs

function BuildFingerprintTree(I)
if |I| = 1 then

root.data P 2 I
return root

Pi, Pj I
s GetDifferences(Pi, Pj)

root.data s
root.left BuildFingerprintTree(I \ Pi)
root.right BuildFingerprintTree(I \ Pj)
return root

build a binary tree called fingerprint tree that stores strings that can distinguish be-

tween any two programs in I. Given a fingerprinting tree, our first algorithm requires

|I| queries to the target program. If the user is willing to perform extra off-line compu-

tation, our second algorithm demonstrates how the number of queries can be brought

down to logm.

Basic fingerprinting algorithm. The BuildFingerprintTree algorithm (shown

in Algorithm 12) constructs a binary tree that we call a fingerprint tree where each

internal node is labeled by a string and each leaf by a program identifier. In order to

build the fingerprint tree recursively, we start with the set of all programs I, choose

any two arbitrary programs Pi, Pj from I, and use the differential testing framework

to find differences between these programs. We label the current node with the

differences, remove Pi and Pj from I, and call BuildFingerprintTree recursively

until a single program is left in I. If I has only one program, we label the leaf node

with the program and return.

Given a fingerprint tree, we solve the fingerprinting problem as follows: Initially,

we start at the root node and query the target program with a string from the set

that labels the root node of the tree. If the string is accepted (resp. rejected), we

recursively repeat the process along the left subtree (resp. right subtree), until we

reach a leaf node that identifies the target program.

Time/query complexity. For the following we assume an input set of programs

107

I of size |I| = m. Our algorithm has to find differences between all
�
m
2

�
different

program pairs. The fingerprint tree resulting from the algorithm will be a full binary

of height m. Assuming that the complexity of the differential testing algorithm is D,

we get that the overall time complexity of the algorithm is O(2

m�1

+

�
m
2

�
D). The

query complexity of the algorithm is |I|-1 queries, since each query will discard one

candidate program from the list.

Reducing queries using shallow fingerprint trees. Notice that, in the previous

algorithm, we need m queries to the target program in order to find the correct pro-

gram because we discard only one program at each step. We can cut down the number

of queries by shallower fingerprint trees at the cost of higher off-line computational

complexity for building such trees.

Consider the following modification in the BuildFingerprintTree algorithm:

First, we partition I into k subsets I
1

, . . . Ik of size m/k each. Next, we call BuildFingerprintTree

algorithm with the set IS = {I
1

, . . . , Ik} as input programs and replace the call to

GetDifferences with GetSetDifferences. This algorithm will generate a full binary

tree of height k that can distinguish between the programs in the different subsets of

I. We can recursively apply the same algorithm on each of the leafs of the resulting

fingerprinting tree, further splitting the subsets of I until each leaf contains a single

program.

Time/query complexity. It is evident that the algorithm will eventually terminate

since each subset is successively portioned into smaller sets. Let us assume that

Dset(k) the complexity of the GetSetDifferences algorithm when the input program

sets are of size k (see section 9.4.3 for a complexity analysis of Dset(k)). The number

of queries required for fingerprinting an application with this algorithm will be equal

to the height of the resulting fingerprint tree. Note that each subset is of size m/k

and to distinguish between the k subsets using our basic algorithm we need k � 1

queries. Therefore we get the equation T (m) = T (m/k)+(k�1) describing the query

complexity of the algorithm. Solving the equation we get that T (m) = (k� 1) logk m

which is the query complexity for a given k. When k = 2 we will need logm queries

to identify the target program. Since each program provides one bit of information

108

per query (accept/reject), a straightforward decision tree argument [?] provides a

matching lower bound on the query complexity of the problem.

Regarding the time complexity of the problem, we notice that, at the i-th recursive

call to the modified BuildFingerprintTree algorithm, we will have an input set of

size m/ki since the initial set is repeatedly partitioned into k subsets. the overall

time complexity of building the tree is
P

log

k

m
i=1

(2

m/ki
+

�
m/ki

2

�
Dset(m/ki

)). We omit

further details here as the complexity analysis is a straightforward adaptation of the

original analysis.

109

Chapter 10

Evaluation

10.1 Transducer Learning Algorithms Evaluation

10.1.1 Benchmarks

In our evaluation, we focused on real-life benchmarks from web applications and

specifically on string transformations which are used in order to protect web-applications

from code injections attacks such as Cross-Site Scripting (XSS) attacks. XSS is one

of the most important threats for modern web applications according to the recently

released OWASP Top Ten 2017 [69]. We will now discuss the set of benchmarks used

in our experiments. The interested reader can find a detailed description of each

string transformation in the appendix.

– Encoders/Decoders: We include certain basic encoders and decoders used

extensively in web applications such as HTML encoders/decoders and encoders

for quote symbols.

– Browser Filters: We also include filters from The Internet Explorer (IE)

browser which are designed to modify suspicious parts of the input in order to

prevent XSS attacks.

– Browser innerHTML Mutations: Mutation XSS [46], is a type of XSS vul-

nerability that occurs due to the fact that the browser is internally transform-

110

ing a non-malicious string into a malicious one by applying a number of string

transformations internally in the user’s browser after the input is cleaned by the

application. This may result in converting safe inputs back into malicious ones.

Recent work [59] posed the open problem of modeling these transformations as

transducers in order to allow a formal analysis. We collected 5 of these trans-

formations from the literature [45] and demonstrate that these transformations

can be effectively modelled as SVND transducers.

– String Sanitizers: Finally, we include a number of string transformations

found in popular XSS sanitization frameworks which are used by popular appli-

cations in order to prevent XSS attacks. We include filters from Codeigniter [9],

Kses, which is used by Wordpress [10] and the SysPass [11] password manager.

Research questions. The goal of the evaluation of the paper is to provide

answers to the following research questions:

Q1: Can the SVND class of transducers capture real life string transformations from

our benchmark set and are those transformations efficiently learnable?

Q2: What is the effect of the size of the alphabet on the efficiency of the algorithm.

Q3: Can the SVND learning algorithm be used for the evaluation of XSS sanitizers?

10.1.2 Evaluation of SVND transducer learning

In order to evaluate our SVND learning algorithm we used an alphabet of 74 sym-

bols containing most printable ASCII characters. We chose this alphabet because it

was large enough to cover all the character utilized by our benchmarks while at the

same time keeping the performance of the algorithm in a reasonable level. In order

to implement an equivalence oracle, we used a manually created set of test cases

designed to cover all different behaviors of each benchmark and manually inspected

each learned model. Implementing, or approximating, a correct equivalence oracle is

an important aspect in order to utilize query learning algorithms in practice. We dis-

cuss available choices in the related work section. Finally, we implemented two basic

111

B
en

ch
m

ar
k

St
at

es

Lo
ok

ah
ea

d

To
ta

l
Q

ue
rie

s

C
ac

he
d

Q
ue

rie
s

E
qu

iv
al

en
ce

C
ac

he
d

E
qu

iv
al

en
ce

B
en

ch
m

ar
k

St
at

es

Lo
ok

ah
ea

d

To
ta

l
Q

ue
rie

s

C
ac

he
d

Q
ue

rie
s

E
qu

iv
al

en
ce

C
ac

he
d

E
qu

iv
al

en
ce

E
nc

od
er

s

1. E-1 2 0 105 452 1 0

M
ut

at
io

ns

17. M-1 6 1 1101 3471 2 1
2. E-2 2 0 126 683 1 0 18. M-2 9 1 2128 7126 2 3
3. E-3 24 6 11519 35201 4 9 19. M-3 28 1 17951 50225 5 10

B
ro

w
se

r
Fi

lte
rs

4. B-1 25 1 14023 39812 2 10 20. M-4 29 1 17785 52499 5 10
5. B-2 13 1 5736 15032 2 6 21. M-5 12 1 4820 13810 2 5
6. B-3 17 1 7168 21425 2 7

Sa
ni

tiz
er

s

22. S-1 20 1 6703 20820 3 5
7. B-4 17 1 7524 21538 2 7 23. S-2 8 1 1742 5823 2 2
8. B-5 29 1 20425 56251 2 13 24. S-3 12 1 2205 8531 2 2
9. B-6 17 1 7498 21325 2 7 25. S-4 12 1 2951 9951 2 3
10. B-7 13 1 3092 11399 2 4 26. S-5 11 1 4521 12421 2 5
11. B-8 34 1 23428 46150 3 10 27. S-6 44 1 37852 104521 6 15
12. B-9 23 1 1Z289 31541 3 7 28. S-7 4 1 561 2521 2 0
13. B-10 15 9 6650 18275 2 7
14. B-11 9 1 2858 7209 1 4
15. B-12 13 1 4461 13954 2 5
16. B-13 23 1 10273 30499 2 7

Table 10.1: Performance of SVND learning algorithm.

query reduction optimizations: Firstly, whenever an output query is asked by the al-

gorithm we cache the result for future usage. Second, we implement a similar caching

optimization for equivalence queries: Whenever an equivalence query is performed

we check that the supplied model is behaving correctly on the last counterexample,

otherwise we resupply the same counterexample.

Overall results. Table 10.1 presents the results of running our SVND learning

algorithm in the set of experiments. We found that that the filters, despite being

simple in their description they are non-trivial in terms of number states, ranging

from 2 to 44 states. Notice that, caching the membership queries resulted in reusing

a large part of the output queries previously made by the algorithm. Finally, we

notice that most benchmarks have unbounded lookahead, a fact suggests that non-

deterministic models are necessary in order to model real-life programs as transducers,

at least in the domain of string sanitizer programs.

Equivalence queries and counterexamples. When examining the number of

equivalence queries made by the learning algorithm we notice that despite the fact

that the algorithm may perform up to |Q| equivalence queries the number of actual

equivalence queries performed was usually a small fraction of |Q| and many times, a

single equivalence query was made. We attribute this behavior in two facts: First,

many counterexamples were generated by resupplying the same counterexample as

before. This behavior is expected in L⇤ style algorithms since each addition of a distin-

112

Figure 10-1: Total number of output queries made by the learning algorithm for
different alphabet sizes when learning the IE Anti-XSS Form filter (no. 14).

guishing condition will usually discover one additional state and therefore, discovering

all undiscovered states which were accessed by the counterexample may require many

iterations. Moreover, a large number of counterexamples in each benchmark was

detected by checking the models for ambiguity.

Effect of the alphabet size on performance. As we mention in theorem 8, the

number of output queries performed by the algorithm is correlated linearly with the

size of the alphabet. In figure 10-1 we verify this relation by examining the number of

output queries required in order to learn a correct model of the IE Anti-XSS Form (no.

14) filter using alphabets of different sizes. Notice, that even though the correlation is

indeed linear, the actual number of queries tends to increase significantly (in concrete

numbers) as the alphabet grows. Indeed, learning the filter using a small alphabet of

10 symbols requires just 350 queries while learning over an alphabet of 128 symbols

requires more 4500 queries. To mitigate this problem, we are currently working

on adapting our algorithms on the symbolic setting where independent synthesis

algorithms are used in order to infer the set of output labels from a few examples [17,

36].

113

10.1.3 Black-box testing of sanitizer robustness

Learning algorithms can be used to develop testing frameworks. In the context of

testing string sanitizers, one such testing method is the GOFA algorithm [17]. In a

nutshell, the algorithm accepts a set of attack vectors in the form of a context-free

grammar (CFG) G, a learning algorithm for transducers, and checks, in a black-

box manner, whether any string from G can bypass a target string sanitizer. The

interested reader can find more details on the algorithm in the appendix.

Case study. We will now demonstrate that using our SVND transducer learning

algorithm, the GOFA algorithm can uncover sophisticated attacks against sanitizers.

The following example is taken from a vulnerability found in an older version of the

Taskfreak [12] task management application which is affected by an XSS vulnerability.

The taskfreak application used, among others, the following string transformation in

order to remove malicious part of the user input:

“<script[^>]*>[^<]+</script[^>]*>” ! ✏

Using the GOFA algorithm we evaluated whether it is possible to bypass the filtering

and insert a script tag into the response of the application. To do so, we generated

a grammar containing the string <script>s()</script>. Afterwards, we ran the

GOFA algorithm using our VND transducer learning algorithm.

Results. The GOFA algorithm quickly converged to a vulnerability after our learn-

ing algorithm initially inferred a model computing the identity function for which a

candidate attack was produced. The counterexample uncovered the non-deterministic

path that removed suspicious input and after 33 states were added to the model, the

algorithm uncovered the following attack:

“<sc<script>s</script>ript>s()</script>”

The reason this attack works is the fact the sanitization routine is not applied re-

cursively and therefore, once the inner malicious payload is removed another malicious

payload is created. The algorithm converged to this vulnerability after making about

2000 output queries and 1 equivalence query (without counting cached queries). The

114

alphabet used in this experiment was restricted on the characters used in our attack

vector. Notice that the discovered attack is non-trivial: The attack requires to break

a valid attack vector using another valid attack vector in a specific index. Discovering

this attack using random testing or grammar-based testing is unlikely because such

strings have a very small probability of occurring randomly even if sampling from a

grammar.

10.2 MAT ⇤ Evaluation

We have implemented MAT ⇤ in the open-source symbolicautomata library [3], as

well as the learning algorithms for boolean algebras over finite domains, equality

algebras and BDD algebras as discussed in Section 8.5. Our implementation is fully

modular: Once an algebra learning algorithm is defined in our library, it can be

seamlessly plugged in as a guard learning algorithm for s-FAs. Since MAT ⇤ is also

an algebra learning algorithm, this allows us to easily learn automata over automata.

All experiments were ran in a Macbook air with an 1.8 GHz Intel Core i5 and 8 GiB

of memory. The goal of our evaluation is to answer the following research questions:

Q1: How does MAT ⇤ perform on automata over large finite alphabets? (§ 10.2.1)

Q2: How does MAT ⇤ perform on automata over algebras that require both mem-

bership and equivalence queries? (§ 10.2.2)

Q3: How does the size of predicates affect the performance of MAT ⇤? (§ 10.2.3)

10.2.1 Equality Algebra Learning

In this experiment, we use MAT ⇤ to learn s-FAs obtained from 15 regular expressions

drawn from 3 domains: (1) Regular expressions used in web application sanitization

frameworks such as in the CodeIgniter framework, (2) Regular expressions drawn

from popular web application firewall ModSecurity and finally (3) Regular expressions

from [58]. For this set of experiments we utilize as alphabet the entire UTF-16 (216

115

Table 10.2: Evaluation of MAT ⇤ on regular expressions.
ID |Q| |�| Memb Equiv R-CE GU D-CE C-CE
RE.1 11 35 653 17 19 25 106 78
RE.2 24 113 7203 66 45 87 565 479
RE.3 11 15 483 11 16 16 59 45
RE.4 18 40 1745 17 33 32 188 164
RE.5 25 55 3180 22 48 45 244 211
RE.6 52 155 43737 588 104 640 3102 2953
RE.7 179 658 66477 1486 91 1398 7748 6540
RE.8 115 175 929261 299 206 390 28606 28354
RE.9 144 369 844213 699 261 817 30485 30135
RE.10 175 551 3228102 5346 286 5457 172180 170483
RE.11 6 9 3409 281 14 289 723 710
RE.12 10 14 1367 88 8 86 314 291
RE.13 29 46 20903 743 49 764 2637 2550
RE.14 8 13 5949 365 24 381 854 836
RE.15 8 15 661 82 2 76 228 198

characters) and used the equality algebra to represent predicates. Since the alphabet

is finite, we also tried learning the same automata using TTT [51], the most efficient

algorithm for learning finite automata over finite alphabets.

Results Table 10.2 presents the results of MAT ⇤. The Memb and Equiv columns

present the number of distinct membership and equivalence queries respectively. The

R-CE column shows how many times a counterexample was reused, while the GU

column shows the number of counterexamples that were used to update an underlying

predicate (as opposed to adding a new state in the s-FA). Finally, D-CE shows the

number of counterexamples provided to an underlying algebra learner due to failed

determinism checks, while C-CE shows the number of counterexamples due to failed

completeness checks. Note that these counterexamples did not require invoking the

equivalence oracle.

Given the large alphabet sizes, TTT runs out of memory on all our benchmarks.

This is not surprising since the number of queries required by TTT just to construct

the correct model for a DFA with 128 = 2

7 states is at least |⌃||Q| log |Q| = 2

16 ⇤ 27 ⇤
7 ⇡ 2

26. We point out that a corresponding lower bound of ⌦(|Q| log |Q||⌃|) exists

for the number of queries any DFA algorithm may perform and therefore, the size of

116

the alphabet provides a fundamental limitation for any such algorithm.

Analysis. First, we observe that the performance of the algorithm is not always mono-

tone in the number of states or transitions of the s-FA. For example, RE.10 requires

more than 10x more membership and equivalence queries than RE.7 despite the fact

that both the number of states and transitions of RE.10 are smaller. In this case,

RE.10 has fewer transitions, but they contain predicates that are harder to learn—

e.g., large character classes. Second, the completeness check and the corresponding

counterexamples are not only useful to ensure that the generated guards form a par-

tition but also to restore predicates after new states are discovered. Recall that, once

we discover (split) a new state, a number of learning instances is discarded. Usually,

the newly created learning instances will simply output ? as the initial hypothesis.

At this point, completeness counterexamples are used to update the newly created

hypothesis accordingly and thus save the MAT ⇤ from having to rerun a large number

of equivalence queries. Finally, we point out that the equality algebra learner made no

special assumptions on the structure of the predicates such as recognizing character

classes which are used in regular expressions and others. We expect that providing

such heuristics can greatly improve the performance MAT ⇤ in these benchmarks.

10.2.2 BDD Algebra Learning

In this experiment, we use MAT ⇤ to learn s-FAs over a BDD algebra. We run MAT ⇤

on 1,500 automata obtained by transforming Linear Temporal Logic over finite traces

into s-FAs [30]. The formulas have 4 atomic propositions and the height in each

BDD used by the s-FAs is four. To learn the underlying BDDs we use MAT ⇤ with

the learning algorithm for algebras over finite domains (see section 8.5) since ordered

BDDs can be seen as s-FAs over dom = {0, 1}.

Figure 10-2 shows the number of membership (top left) and equivalence (top

right) queries performed by MAT ⇤ for s-FAs with different number of states. For

this s-FAs, MAT ⇤ is highly efficient with respect to both the number of membership

and equivalence queries, scaling linearly with the number of states. Moreover, we

117

Figure 10-2: (Top) Evaluation of MAT ⇤ on s-FAs over a BDD algebra. (Bottom)
Evaluation of MAT ⇤ on s-FAs over an s-FA algebra. For an s-FA Mm,n, the x-axis
denotes the values of n. Different lines correspond to different values of m.

note that the size of the set of transitions |�| does not drastically affect the overall

performance of the algorithm. This is in agreement with the results presented in the

previous section, where we argued that the difficulty of the underlying predicates and

not their number is the primary factor affecting performance.

10.2.3 s-FA Algebra Learning

In this experiment, we use MAT ⇤ to learn 18 s-FAs over s-FAs, which accept strings

of strings. We evaluate the scalability of our algorithms when the difficulty of learning

the underlying predicates increases. The possible internal s-FAs, which we will use as

predicates, operate over the equality algebra and are denoted as Ik (where 2  k 
17). Each s-FA Ik accepts exactly one word a · · · a of length k and has k+1 states and

2k + 1 transitions. The external s-FAs are denoted as Mm,n (where m 2 {5, 10, 15}

118

and 2  n  17). Each s-FA Mm,n accepts exactly one word s · · · s of length m where

each s is accepted by In.

Analysis. For simplicity, let’s assume that we have the s-FA Mn,n. Consider a

membership query performed by one of the underlying algebra learning instances.

Answering the membership query requires sifting a sequence in the classification tree

of height at most n which requires O(n) membership queries. Therefore, the number

of membership queries required to learn each individual predicate is increased by

a factor of O(n). Moreover, for each equivalence query performed by an algebra

learning instance, the s-FA learning algorithm has to pinpoint the counterexample

to the specific algebra learning instance, a process which requires logm membership

queries, where m is the length of the counterexample. Therefore, we conclude that

each underlying guard with n states will require a number of membership queries

which is of the order of O(n3

) at the worst and O(n2

log n) queries at the best (since the

CT has height ⌦(log n)), ignoring the queries required for counterexample processing.

Figure 10-2 shows the number of membership (bottom left) and equivalence (bot-

tom right) queries, which verify the theoretical analysis presented in the previous

paragraph. Indeed, we see that in terms of membership queries, we have a very sharp

increase in the number of membership queries which is in fact about quadratic in the

number of states in the underlying guards. On the other hand, equivalence queries

are not affected so drastically, and only increase linearly.

10.3 GOFA Algorithm Evaluation

10.3.1 Implementation

We have implemented all the algorithms described in the previous sections. In order to

evaluate our SFA learning algorithm in the standard membership/equivalence query

model we implemented a complete equivalence oracle by computing the symmetric

difference of each hypothesis automaton with the target filter. In order to evaluate

regular expression filters we used the flex regular expression parser to generate a

119

IDS RULES DFA LEARNING SFA LEARNING

ID STATES ARCS MEMBER EQUIV MEMBER EQUIV SPEEDUP

1 7 13 4389 3 118 8 34.86
2 16 35 21720 3 763 24 27.60
3 25 33 56834 6 6200 208 8.87
4 33 38 102169 7 3499 45 28.83
5 52 155 193109 6 37020 818 5.10
6 60 113 250014 7 38821 732 6.32
7 66 82 378654 14 35057 435 10.67
8 70 99 445949 15 17133 115 25.86
9 86 123 665282 27 34393 249 19.21
10 115 175 1150938 31 113102 819 10.10
11 135 339 1077315 24 433177 4595 2.46
12 139 964 1670331 29 160488 959 10.35
13 146 380 1539764 28 157947 1069 9.68
14 164 191 2417741 29 118611 429 20.31
15 179 658 770237 14 80283 1408 9.43

AVG= 15.31

Table 10.3: SFA vs. DFA Learning

DFA from the regular expressions and then parsed the code generated by flex to

extract the automaton. In order to implement the GOFA algorithm we used the

FAdo library [2] to convert a CFG into Chomsky Normal Form(CNF) and then we

convert from CNF to a PDA. In order to compute the intersection we implemented the

product construction for pushdown automata and then directly checked the emptiness

of the resulting language, without converting the PDA back to CNF, using a dynamic

programming algorithm [24].

10.3.2 Testbed

Since our focus is on security related applications, in order to evaluate our SFA learn-

ing and GOFA algorithms we looked for state-of-the-art regular expression filters used

in security applications. We chose filters used by Mod-Security [5] and PHPIDS [7]

web application firewalls (WAFs). These systems contain well designed and very com-

plex regular expressions rule sets that attempt to protect against vulnerability classes

120

Figure 10-3: Speedup of SFA vs. DFA learning.

such as SQL Injection and XSS, while minimizing the number of false positives. For

our evaluation we chose 15 different regular expression filters from both systems tar-

geting XSS and SQL injection vulnerabilities. We chose the filters in a way that they

will cover a number of different sizes when they are represented as DFAs. Indeed, our

testbed contains filters with sizes ranging from 7 to 179 states. Using the identifiers

from the figure, one can retrieve the rules from the source code of the systems. Our

sanitizer testbed is described in detail in section 10.3.5.

For the evaluation of our SFA and DFA learning algorithms we used an alphabet of

92 ASCII characters. We believe that this is an alphabet size which is very reasonable

for our domain. It contains all printable characters and in addition some non printable

ones. Since many attacks contain Unicode characters we believe that alphabets will

only tend to grow larger as the attack and defense technologies progress.

10.3.3 SFA Learning Algorithm Evaluation

We first evaluate the performance of our SFA learning algorithm using the L⇤ al-

gorithm as the baseline. We implemented the algorithms as we described them in

the paper using only an additional optimization both in the DFA and SFA case: we

121

DFA LEARNING SFA LEARNING
ID MEMBER EQUIV LEARNED MEMBER EQUIV LEARNED SPEEDUP

1 3203 2 100.00% 81 5 100.00% 37.27
2 18986 2 100.00% 521 11 100.00% 35.69
3 52373 5 100.00% 1119 7 96.00% 46.52
4 90335 5 96.97% 2155 10 96.97% 41.73
5 176539 4 98.08% 4301 38 80.77% 40.69
6 227162 5 96.67% 5959 32 96.67% 37.92
7 355458 12 98.48% 8103 17 98.48% 43.78
8 420829 13 98.57% 11013 34 98.57% 38.10
9 634518 25 98.84% 15221 30 98.84% 41.61
10 1110346 29 99.13% 27972 54 99.13% 39.62
11 944058 19 94.81% 100522 955 93.33% 9.30
12 1645751 28 100.00% 113714 662 96.40% 14.39
13 1482134 26 97.95% 45494 143 93.15% 32.48
14 1993469 24 90.85% 45973 32 90.85% 43.33
15 14586 5 8.94% 428 22 8.94% 32.42

AVG= 91.95 AVG= 89.87% 35.66

Table 10.4: SFA vs. DFA Learning + GOFA

cached each query result both for membership and equivalence queries. Therefore,

whenever we count a new query we verify that this query wasn’t asked before. In

the case of equivalence queries, we check that the automaton complies with all the

previous counterexamples before issuing a new equivalence query.

In table 10.3 we present numerical results from our experiments that reveal a

significant advantage for our SFA learning over DFA: it is approximately 15 times

faster on the average. The speedup as the ratio between the DFA and the SFA

number of queries is presented in Figure 10-3. An interesting observation here is that

the speedup does not seem to be a simple function of the size of the automaton and

it possibly depends on many aspects of the automaton. An important aspect is the

size of the sink transition in each state of the SFA. Since our algorithm learns lazily

the transitions, if the SFA incorporates many transitions with large size, then the

speedup will be less than what it would be in SFAs were the sink transition is the

only one with big size.

122

Figure 10-4: Speedup of SFA vs. DFA learning with GOFA.

Finally, we conducted we evaluated the overall speedup of the SFA algorithm in

different alphabet sizes. Specifically, we found the minimal alphabet size such that all

transitions of the filters tested are present; this requires an alphabet with 34 symbols.

Then, we run the DFA and SFA algorithm with different alphabet sizes starting from

34 symbols up to our full alphabet of 92 symbols. The results of the experiments

are shown in figure 10-5. We notice that the speedup is a monotonically increasing

function as the alphabet size gets larger.

10.3.4 GOFA algorithm

In this section we evaluate the efficiency of our GOFA algorithm. In our evalua-

tion we used both the DFA and the SFA algorithms. Since our SFA algorithm uses

significantly more equivalence queries than the L⇤ algorithm, we need to evaluate

whether this additional queries would influence the accuracy of the GOFA algorithm.

Specifically, we would like to answer the following questions:

1. How good is the model inferred by the GOFA algorithm when no attack string

exists in the input CFG?

2. Is the GOFA algorithm able to detect a vulnerability in the target filter if one

123

Figure 10-5: Speedup of SFA vs DFA algorithms for different alphabet sizes.

exists in the input CFG?

Making an objective evaluation on the effectiveness of the GOFA algorithm in

these two questions is tricky due to the fact that the performance of the algorithm

depends largely on the input grammar provided by the user. If the grammar is too

expressive then a bypass will be trivially found. On the other hand if no bypass exists

and moreover, the grammar represents a very small set of strings, then the algorithm

is condemned to make a very inaccurate model of the target filter. Next, we tackle

the problem of evaluating the two questions about the algorithm separately.

DFA model generation evaluation. Intuitively, the GOFA algorithm is effi-

cient in recovering a model for the target filter if the algorithm is in possession of the

necessary information in order to recover the filter in the input CFG and is able to

do so. Therefore, in order to evaluate experimentally the accuracy of our algorithm

in producing a correct model for the target filter independently of the choice of the

grammar we used as input grammar the target filter itself. This choice is justified

124

as setting as input grammar the target filter itself we have that a grammar that,

intuitively , is a maximal set without any vulnerability.

In table 10.4 we present the numerical results of our experiments over the same

set of filters used in the experiments of Section 10.3.3. The learning percentage of

both DFA and SFA with simulated equivalence oracle via GOFA is quite high (close

to 90% for both cases). The performance benefit from our SFA learning is even more

dramatic in this case reaching an average of ⇡ 35 times faster than DFA. The speedup

is also pictorially presented in Figure 10-4. We also point out the even though the

DFA algorithm checks all transitions of the automaton explicitly (which is the main

source of overhead), the loss in accuracy between the L⇤ algorithm and our SFA

algorithm is only 2%, for a speedup gain of approximately x35.

Vulnerability detection evaluation. In evaluating the vulnerability detection

capabilities of our GOFA algorithm we ran into the same problem as with the model

generation evaluation; namely, the efficiency of the algorithm depends largely on the

input grammar given by the user. If the grammar is much wider than the targeted

filter then a bypass can be trivially found. On the other hand if it is too restrictive

maybe no bypass will exist at all.

In our first experiment we test the GOFA algorithm using a regular grammar

against the union of two rules targeting SQL Injection attacks from PHPIDS. Specif-

ically, we start with a small grammar which contains the combination of some attack

vectors and, whenever a vector bypassing the filter is found, we remove the vector

from the grammar and rerun it with a smaller grammar until no attack is possible.

Here we would like to find out whether the GOFA algorithm can operate under re-

stricted grammars that require many updates on the hypothesis automaton. To check

whether a vulnerability exists in the filter we computed the symmetric difference be-

tween the input grammar and the targeted filters. We note that this step is the reason

we did not perform the same experiment on live WAF installations, since we do not

have the full specification as a regular expression and thus cannot check if a bypass

exists in an attack grammar.

We notice that in this case, GOFA was successful in updating the attack vectors

125

in order to generate new attacks bypassing the filter. However, in this case the GOFA

algorithm generated as many as 61 states of the filter in the DFA case and 31 states

in the SFA case until a successful attack vector was detected. Against we notice that

the speedup of using the SFA algorithm is huge.

For our second experiment we used the GOFA algorithm against a live WAF

installation. We utilized a handcrafted grammar containing valid suffixes for SQL

statements. This grammar is efficiently modeling many different types of SQL in-

jection attacks. For our target we use the latest version of Mod-Security, version

3.0.0. Table 10.6 presents the results from our experiment. We found many, previ-

ously unknown, SQL Injection attacks that could be used for evading Mod-Security

while allowing the attacker to bypass authentication or retrieve data from the back-

end database. In order to find different attacks we use the same technique as in the

previous experiment, i.e. we successively remove attacks found from the grammar.

We notice that many vulnerabilities were found without discovering any state of the

WAF. This fact suggests that state of the art WAFs are still not mature enough in

order to defend even against popular vulnerability classes such as SQL injection. Fur-

thermore, we notice that after detecting some vulnerabilities for which no rules exist,

the algorithm discovered more complex vulnerabilities which required to iterate a few

failed attack attempts from the input grammar.

To conclude with the evaluation of the GOFA algorithm, even though any GOFA

algorithm is necessarily either incomplete or inefficient in the worst case, our algorithm

performs well in practice detecting both vulnerabilities when they exist and inferring

a large part of the targeted filter when it is not able to detect a vulnerability.

10.3.5 Cross Checking HTML Encoder implementations

To demonstrate the wide applicability of our sanitizer inference algorithms we re-

consider the experiment performed in the original BEK paper [48]. The authors,

payed a number of freelancer developers to develop HTML encoders. Then they took

these HTML encoders, along with some other existing implementations and manually

converted them to BEK programs. Then, using BEK the authors were able to find

126

GRAMMAR DFA LEARNING SFA LEARNING VULNERABILITY

ID STATES ARCS FOUND STATES MEMB EQUIV FOUND STATES MEMB EQUIV SPEEDUP EXISTS FOUND

1 128 175 61 155765 3 31 1856 8 83.56 TRUE union select
load_file(’0\0\0’)

2 111 146 61 155765 3 31 1811 7 85.68 TRUE union select
0 into outfile
’0\0\0’

3 92 120 61 155765 3 31 1793 6 86.58 TRUE union select
case when (select
user_name()) then
0 else 1 end

4 43 54 61 155764 3 31 1770 7 87.65 FALSE None
AVG= 85.87

Table 10.5: Attacks found by succesively reducing the attack grammar rules PHPIDS
76 & 52 composed

STATES MEMB EQUIV VULNERABILITY

0 3 1 a for update
0 3 1 a limit 1
0 3 1 a ; select a
0 3 1 a join a on a
10 118 2 a group by a desc
0 3 1 a procedure a (a)
0 3 1 a and exists select a
7 67 2 a and a > any select a
7 90 2 a and a like 1

Table 10.6: Vulnerabilities discovered using the GOFA algorithm on Mod-Security
3.0.0.

differences in the sanitizers and check properties such as idempotence.

Using our learning algorithms we are able to perform a similar experiment but

this time completely automated and in fact, without any access to source code of

the implementation. For our experiments we used 3 different encoders from the PHP

language, the HTML encoder from the .net AntiXSS library [4] and then, we also

inferred models for the HTML encoders used by Twitter, Facebook and Microsoft

Outlook email service.

We used our transducer learning algorithms in order to infer models for each of the

sanitizers which we then converted to BEK programs and checked for equivalence and

idempotence using the BEK infrastructure. A function f is idempotent if 8x, f(x) =

f(f(x)) or in other words, reapplying the sanitizer to a string which was already

127

sanitized won’t change the resulting string. This is a nice property for sanitizers

because it means that we easily reapply sanitization without worrying about breaking

the correct semantics of the string.

In our algorithm, we used a simple form of symbolic transducer learning where

we generalized the most commonly seen output term to all alphabet members not

explicitly checked. As an alphabet, we used a subset of characters including standard

characters that should be encoded under the HTML standard and moreover, a set

of other characters, including Unicode characters, to provide completeness against

different implementations. For the simulation of the equivalence oracle we produced

random strings from a predefined grammar including all the characters of the alphabet

and in addition many encoded HTML character sequences. The last part is important

for detecting if the encoder is idempotent.

Figure 10-6 shows the results of our experiment. We found that most sanitizers are

different and only one sanitizer is idempotent. All the entries of the figure represent

the character or string that the two sanitizers are different or a tick if they are equal.

One exception is the entries labelled with u8249 which denotes the Unicode character

with decimal representations ‹. We included the decimal representation in the

table to avoid confusion with the “<” symbol. The idempotent sanitizer is a version

of htmlspecialcharacters function with a special flag disabled, that instructs the

function not to re-encode already encoded html entities. We would like to point out

that although in general html encoders can be represented by single state transducers,

making the encoder idempotent requires a large amount of lookahead symbols to

detect whether the current character is part of an already encoded HTML entity.

This adds a significant amount of complexity to the encoder which is a possible

reason for not being used in practice.

Another surprising result is that the .net HTML encode function did not match

the one in the MS Outlook email service. The encoder in the outlook email seems

to match an older encoder of the AntiXSS library which was encoding all HTML

entities in their decimal representations. For example, this encoder is the only one

encoding the semicolon symbol. On the other hand the .net AntiXSS implementation

128

PHP1 PHP2 PHP3 .NET TW FB MS Idempotent
PHP1 3 u8249 & u8429 3 3 ; 7
PHP2 3 u8249 u8294 u8429 u8429 ; 7
PHP3 3 & & & ; 3
.NET 3 u8429 u8429 ; 7
TW 3 3 ; 7
FB 3 ; 7
MS 3 7

Figure 10-6: Equivalence Checking of HTML encoder implementations.

will encode Unicode characters in their decimal representations but will skip encoding

the semicolon, as did every other sanitizer that we tested.

At this point, we would like to stress that our results are not conclusive. For

example, the fact that we found that the Twitter and Facebook encoders are equal

does not mean that there is no string in which these two functions differ. This is

fundamental limitation of all black-box testing algorithms. In fact, even the results

on differences between sanitizers might be incorrect in principle. However, in this

case we can easily verify the differences and, if necessary, update the corresponding

models for the encoders.

Black-box Cross Compilation: Once we have obtained models of our encoders

and converted them to BEK programs, we can use the BEK backend to compile the

generated models in a different language. For example, since twitter and facebook

seem to use the htmlspecialcharacters fuction, we show in the appendix the corre-

sponding BEK program inferred by our algorithm and the generated JavaScript code

produce by BEK.

10.3.6 Bug in BEK HTML Decoder Example

While developing and debugging our implementation we found a bug in an example

implementation of a simplified HTML decoder in the online BEK tutorial. The pro-

gram in question is the program named decode from the second part of the BEK

tutorial [1]. We won’t present the whole program here due to space constraints, but

the problem occurs in the following case:

129

case (s == 1) : //memorized &

if (c == ’&’) { yield (’&’); }

else if (c == ’l’) { s := 2; }

else if (c == ’g’) { s := 3; }

else { yield (’&’,c); s := 0; }

Here as the comments suggests, the transducer has already processed the letter “&”

and checks if any of the letter “l” or “t” follows which would complete the html entities

“<” or “>”. In the opposite case that no match with these two characters is found,

the memorized symbol is being added to the output along with the current symbol.

Unfortunately, if the new character is also part of an HTML entity, for example “&”,

then the program will fail to start scanning for the next symbols of the entity, rather

it will just output the same character and return to initial state. Therefore, the

program will fail to correctly decode sequences such as “&<”.

We detected this bug during the development of our lookahead learning algorithm

and our conversion algorithm to BEK programs. Specifically, we coded an HTML

decoder like the decode BEK program and used the equivalence checking function of

BEK in order to check whether the inferred BEK programs we were producing were

correct. At some point, we detected the bug we described as a counterexample to the

equivalence of the two implementations.

We believe that this bug demonstrates the complexity of writing sanitizers that

make heavy use of lookahead transitions in BEK. One should implement a large

number of nested if-then-else statements, like we describe in our conversion algorithm

in section 10.3.5. We believe that the BEK language could become much simpler

with the introduction of a string compare function to allow the programmers to

easily handle lookaheads. This may require extra work on the backend of the BEK

compiler, however we believe that this is a feasible task, that will greatly simplify the

language.

130

Figure 10-7: The performance (no. of equivalence and membership queries) of the
SFA learning algorithm with and without initialization for different rules from two
WAFs (ModSecurity OWASP CRS and PHPIDS).

10.4 SFADiff Evaluation

10.4.1 Initialization evaluation

Our first goal is to evaluate the efficiency of our observation table initialization algo-

rithm as a method to reduce the number of equivalence queries while inferring similar

models. The experimental setup is motivated by our assumptions that the initializa-

tion model and the target model would be similar. For that purpose, we utilized 9

regular expression filters from two different versions of ModSecurity (versions 3.0.0

and 2.2.7) and PHPIDS WAFs (versions 0.7.0 and 0.6.3). The filters in the newer ver-

sions of the systems have been refined to either patch evasions or possibly to reduce

false positive rate.

For our first experiment we used an alphabet of 92 symbols, the same one used

in our next experiments, which contains most printable ASCII characters. Since, in

this experiment, we would like to measure the reduction offered by our initialization

algorithm in terms of equivalence queries, we simulated a complete equivalence oracle

by comparing each inferred model with the target regular expression.

Results. Table 10-7 shows the results of our experiments. First, notice that in most

cases the updated filters contain more states than their previous versions. This is

expected, since most of the times the filters are patched to cover additional attacks,

which requires the addition of more states for covering these extra cases. We can see

131

OS States Queries
OSX Yosemite (version 14.5.0) 7 858
Debian Linux (Kernel v3.2.0) 9 1100
FreeBSD 10.3 9 1100

Table 10.7: Results for different TCP implementations: Number of states in each
model and number of membership queries required to infer the model.

that, in general, our algorithm offers a massive reduction of approximately 50⇥ in the

number of equivalence queries utilized in order to infer a correct model. This comes

with a trade-off since the number of membership queries are increased by a factor

of 1.15⇥, on average. However, equivalence queries are usually orders of magnitude

slower than membership queries. Therefore, the initialization algorithm results in

significant overall performance gain. We notice that 2/3 cases where we observed a

large increase (more than 1.2⇥) in membership queries (filters PHPIDS 50 & PHPIDS

56) are filters for which states were removed in the new version of the system. This

is expected since, in that case, SFADiff makes redundant queries for an entry in

the observation table that does not correspond to an access string. Another possible

reason for an increase in the number of the membership queries is the chance that

the distinguishing set obtained by the SFA learning algorithm is smaller than the

one obtained by the initialization algorithm which is always of size n � 1 where n

is the number of states in a filter. Exploring ways to obtain a distinguishing set of

minimum size is an interesting direction in order to further develop our initialization

algorithm. Nevertheless, in all cases, the new versions of the filters were similar in

structure with the older versions and thus, our initialization algorithm was able to

reconstruct a large part of the filter and massively reduce the number of equivalence

queries required to obtain the correct model.

10.4.2 TCP state machines

For our experiments with TCP state machines, we run a simple TCP server on the

test machine while the learning algorithm runs as a client on another machine in the

same LAN. Because the TCP protocol will, possibly, emit output for each packet

sent, the ASKK algorithm is not suited for this case. Thus, we used our algorithm for

132

Input Linux OSX FreeBSD
S, S SA, RA SA, RA, RA SA
S, A, F SA, A, FA SA SA
S, RA, A SA, R SA, R SA

Table 10.8: Some example fingerprinting packet sequences found by SFADiff across
different TCP implementations. The TCP flags that are set for the input packets are
abbreviated as follows: SYN(S), ACK(A), FIN(F), and RST(R).

Figure 10-8: State machine inferred by SFADiff for Mac OSX TCP implementation.
The TCP flags that are set for the input packets are abbreviated as follows: SYN(S),
ACK(A), FIN(F), PSH(P), URG(U), and RST(R).

learning deterministic transducers in order to infer models of the TCP state machines.

Alphabet. For this set of experiments, we focus on the effect of TCP flags on the

TCP protocol state transitions. Specifically, we select an alphabet with 11 symbols

including 6 TCP flags: SYN(S), ACK(A), FIN(F), PSH(P), URG(U), and RST(R)

along with all possible combinations of these flags with the ACK flag, i.e., SA, FA,

PA, UA, and RA.

Membership queries. Once our learning algorithm formulates a membership query,

our client implementation creates a sequence of TCP packets corresponding to the

symbols and sends them to the server.

Our server module is a simple python script which works as follows: The script is

listening for new connections on a predefined port. Once a connection is established

our server module makes a single recv call and then actively close the connection.

In addition, for each different membership query we spawn a new server process on

a different port to ensure that packets belonging to different membership queries will

not be mixed together.

The learning algorithm handles the sequence and acknowledgement numbers in

133

the outgoing TCP packets in the following way: a random sequence number is used as

long as no SYN packet is part of a membership query; otherwise, after sending a SYN

packet we set the sequence and acknowledgement numbers of the following packets in

manner consistent with the TCP protocol specification. In case the learning algorithm

receives a RST packet during the execution of a membership query, we also reset the

state of the sequence numbers, i.e. we start sending random sequence numbers again

until the next SYN packet is send.

After sending each packet from a membership query, the learning algorithm waits

for the response for each packet using a time window. If the learning algorithm

receives any re-transmitted packets during that time, it ignores those packets. We

detect re-transmitted packets by checking for duplicate sequence/acknowledgement

numbers. Ignoring the re-transmitted packets is crucial for the convergence of the

learning algorithm as it helps us avoid any non-determinism caused by the timing of

the packets.

Initialization. As TCP membership queries usually outputs more information in

terms of packets than one bit, our algorithm worked efficiently for the TCP imple-

mentations even without any initialization. Thus, for this experiment, we start the

learning algorithm without any initial model.

Results. We used SFADiff in order to infer models for the TCP implementations

of three different operating systems: Debian Linux, Mac OSX and FreeBSD. The

inferred models contain all state transitions that are necessary to capture a full TCP

session. Figure 10-8 shows the inferred state machine for Mac OSX. States in green

color are part of a normal TCP session while states in red color are reached when

an invalid TCP packet sequence is sent by the client. The path q
0

! q
1

! q
3

is

where the TCP three-way handshake takes place and it is leading to state q
3

where

the connection is established, while the path q
3

! q
6

! q
0

close the connection and

returns to the initial state (q
0

). Table 10.7 shows that the inferred model for Mac

OSX contain fewer states than the respective FreeBSD and Linux models. Manual

inspection of the models revealed that these additional states are due to different

handling of invalid TCP packet sequences. Finally, in Table 10.8, we present some

134

Web	browser	 WAF	

SFADiff	
HTTP		

request/	
response	

Web	Sockets	

M
em

bership	queries	

M
em

bership	queries	

Ini>alize	SFA	for		
Web	Browser	&	WAF	

Figure 10-9: The setup for SFADiff finding differences between the HTML/-
JavaScript parsing in Web browsers and WAFs.

sample differences found by SFADiff. Note that, even though the state machines of

Linux and FreeBSD contain the same number of states, they are not equivalent, as

we can see in Table 10.8, since the two implementations produce different outputs for

all three inputs.

10.4.3 Web Application Firewalls and Browsers

In this setting, we perform two sets of experiments: (i) we use SFADiff to explore

differences in HTML/JavaScript signatures used by different WAFs for detecting XSS

attacks; and (ii) we use SFADiff to find differences in the JavaScript parsing imple-

mentation of the browsers and the WAFs that can be exploited to launch XSS attacks

while bypassing the WAFs.

For these tests, we configure the WAFs to run as a server and the learning algo-

rithm executes as a client on the same machine. The browser instance is also running

on the same machine. The learning algorithm communicates with the browser in-

stance through WebSockets. The learning algorithm can test whether an HTML

page with some JavaScript code is correctly parsed by the browser and if the embed-

ded JavaScript is executed or not by exchanging messages with the browser instance.

The overall setup is shown in Figure 10-9.

Alphabet. We used an alphabet of 92 symbols containing most printable ASCII

characters. This allows us to encode a wide range of Javscript attack vectors.

Membership queries to the browser. In order to allow the learning algorithm

to drive the browser, we make the browser connect to a web server controlled by

135

True%/%False%

Membership%%
query%

DOM%Element%
Insert%string%in%a%DOM%

element%

Trigger%Events%

JS%Variable%

Check%%
JS%variable%

Payload%manipulates%%
JS%variable%

Web%browser%

Figure 10-10: The implementation of membership queries for Web browsers.

the learning algorithm. Next, the learning algorithm sends a message to the browser

over WebSockets with the HTML/JavaScript content corresponding to a membership

query as the message’s payload. Upon receiving such a message, the browser sets the

query payload as the innerHTML of a DOM element and waits for the DOM element

to be loaded. The user’s browser dispatches a number of events (such as “click”) on

the DOM element and examines if the provided string led to JavaScript execution.

These events are necessary for triggering the JavaScript execution in certain payloads.

In order to examine if the JavaScript execution was successful, the browser monitors

for any change in the value of a JavaScript variable located in the page. The payload,

when executed, changes the variable value in order to notify that the execution was

successful. Furthermore, in order to cover more cases of JavaScript execution, the

user’s browser also monitors for any JavaScript errors that indicate JavaScript exe-

cution. After testing the provided string, the user’s browser sends back a response

message containing a boolean value that indicates the result. The results of the

membership queries are cached by the learning algorithm in order to be reused in the

future. The details of our implementation of membership queries for the browsers is

shown in Figure 3.

Membership queries to the WAF. SFADiff sends an HTTP request to the

WAFs containing the corresponding HTML/JavaScript string as payload to perform

a membership request, The WAF analyzes the request, decides whether to allow/block

the payload, and communicates the decision back to SFADiff. SFADiff caches the

results of the membership queries in order to be reused in the future.

Equivalence queries. We perform equivalence queries in two ways: first, when-

136

ever an equivalence query is sent either to the browser or to a WAF, we check that

the model complies to the answers of all membership queries made so far. This en-

sures that simple model errors will be corrected before we perform more expensive

operations such as cross-checking the two models against each other. Afterwards,

we proceed to collect candidate differences and verify them against the actual test

programs.

Initialization. We initialize the observation tables for both the browser and the

WAF using a small subset of filters that come bundled with PHPIDS and ModSecu-

rity, two open-source WAFs in our test set. However, in the case of the browser we

slightly modify the filters in order to execute our JavaScript function call if they are

successfully parsed by the browser.

Fingerprinting WAFs. In order to evaluate the efficiency of our fingerprint gen-

eration algorithm we selected 4 different WAFs. Furthermore, To demonstrate the

ability of our system to generate fine-grained fingerprints we also include 4 different

versions of PHPIDS in our test set. As an additional way to avoid blowup in the

fingerprint tree size we employ the following optimization: Whenever a fingerprint is

found for a pair of firewalls, we check whether this fingerprint is able to distinguish

any other firewalls in the set and thus further reduce the remaining possibilities. This

simple heuristic significantly reduces the size of the tree: Our basic algorithm creates

a full binary tree of height 8 while this heuristic reduced the size of the tree to just 4

levels.

Figure 10.4.3 presents the results of our experiment. The resulting fingerprinting

tree also provides hints on how restrictive each firewall is compared to the others.

An interesting observation is that we see the different versions of PHPIDS to be in-

creasingly restrictive in newer versions, by rejecting more of the generated fingerprint

strings. This is natural since newer versions are usually patching vulnerabilities in

the older filters. Finally, we would like to point out that some of the fingerprints are

also suggesting potential vulnerabilities in some filters. For example, the top level

string, union select from, is accepted by all versions of PHPIDS up to 0.6.5, while

being rejected by all other filters. This may raise suspicion since this string can be

137

easily extended into a full SQL injection attack.

Evading WAFs through browser parser inference. For our last experiment we

considered the setting of evaluating the robustness of WAFs against evasion attacks.

Recall, that, in the context of XSS attacks, WAFs are attempting to reimplement

the parsing logic of a browser in order to detect inputs that will trigger JavaScript

execution. Thus, finding discrepancies between the browser parser and the WAF

parser allows us to effectively construct XSS attacks that will bypass the WAF. In

order to accomplish that, we used the setup described previously. However, instead

of cross-checking the WAFs against each other, we cross-checked WAFs against the

web browser in order to detect inputs which are successfully executing JavaScript in

the browser, however they are not considered malicious by the WAF.

Table 10.9 shows the result of a sample execution of our system in the setting of

detecting evasions. The execution time of our algorithm was about 6 minutes, in which

53 states were discovered in the browser parser and 36 states in PHPIDS. Our system

converged fast into a vulnerability after improving the generated SFA models using

the cached membership queries. This optimization was very important in order to

correct invalid transitions generated by the learning algorithm in the inferred models.

The number of invalid attacks that were attempted was 4. Each failed attack led to

the refinement of the SFA models and the generation of new candidate differences.

At some point the vector “<p onclick=-a()></p>” was reported as a difference by

SFADiff.

We were able to detect the same vulnerability using all major browsers and fur-

thermore, the same problem was found to affect the continuation of PHPIDS, the

Expose WAF. Finally, we point out that our algorithm also found three more varia-

tions of the same attack vector, using the characters “!”, and “;”.

Evasion analysis. Figures 10-11 and 10-12 shows simplified models of the parser

implemented by the WAF and the browser respectively. These models contain a

minimal number of states in order to demonstrate the aforementioned evasion attack.

Notice that, intuitively, the cause for the vulnerability is the fact that from state qp
1

the parser of PHPIDS will return to the initial state with any non alphanumeric input,

138

Figure 10-11: PHPIDS 0.7 parser (simplified version).

Figure 10-12: Google Chrome parser (simplified version).

while the Google Chrome parser has the choice to first transition to qc
2

and then to

an accepting state qc
3

using any alphanumeric character. For example, with an input

“=!a” the product automaton will reach the point of exposure (qp
0

, qc
3

). Furthermore,

using our root cause analysis, all different evasions we detected are grouped under a

single root cause. This is intuitively correct, since a patch, which adds the missing

state in the PHPIDS parser will address all evasion attacks at once.

10.4.4 Comparison with black-box fuzzing

To the best of our knowledge there is no publicly available black-box system which is

capable of performing black-box differential testing like SFADiff. A straightforward

approach would be to use a black-box fuzzer (e.g. the PEACH fuzzing platform [6])

and send each input generated by the fuzzer to both programs. Afterwards, the

outputs from both programs are compared to detect any differences. Note that, like

SFADiff, fuzzers also start with some initial inputs (seeds) which they mutate in

order to generate more inputs for the target program. We argue that our approach

is more effective in discovering differences for two reasons:

Adaptive input generation. Fuzzers incorporate a number of different strategies

in order to mutate previous inputs and generate new ones. For example, PEACH

139

Figure 10-13: Fingerprint tree for different web application firewalls.

supports more than 20 different strategies for mutating an input. However, assuming

that a new input does not cause a difference, no further information is extracted from

it; the next inputs are unrelated to the previous ones. On the contrary, each input

submitted by SFADiff to the target program provides more information about the

structure of the program and its output determines the next input that will be tested.

For example, in the execution shown in table 10.9, SFADiff utilized the initialization

model and detected the additional state in Chrome’s parser (cf. figures 10-11, 10-12).

Notice that, the additional state in Chrome’s parser was not part of the model used

for initialization. This allowed SFADiff to quickly discover an evasion attack after

a few refinements in the generated models. Each refinement discarded a number of

candidate differences and drove the generation of new inputs based on the output of

previous ones.

Root cause analysis. In the presence of a large number of differences, black-

box fuzzers are unable to categorize the differences without some form of white-box

access to the program (e.g. crash dumps). On the other hand, as demonstrated in

the evasion analysis paragraph of section 10.4.3, our root cause analysis algorithm

140

Attributes Browser Model WAF Model

Membership 6672 4241
Cached Membership 448 780

Equivalence 0 3
Cached Equivalence 40 106

Learned States 53 36
Cross-Check Times 4 4

Provided Browser Model (<(p|div|form|input) onclick=a()>)
(</(p|div|form|input)>)

Vulnerability Discovered <p onclick=;a()></p>

Execution Time 382.12 seconds

Table 10.9: A sample execution that found an evasion attack for PHPIDS 0.7 and
Google Chrome on MAC OSX.

provides a meaningful categorization of the differences based on the execution path

they follow in the generated models.

141

Chapter 11

Conclusions

In this thesis we studied the idea of extracting formal models from programs using

novel automata and transducer learning algorithms with the goal of checking security

properties such as robustness against code injection attacks. In order to achieve this

goal, we have developed a number of novel learning algorithms, namely the MAT ⇤

algorithm for learning symbolic automata and new algorithms for learning partial and

non-deterministic functional transducers. In terms of applications we presented the

GOFA algorithm for evaluating the robustness of filters and sanitizers against code

injection attacks and differential automata learning and sfadiff a technique and tool

which can be used when the specification which is required by the GOFA algorithm

is either unavailable or imprecise. We evaluated our algorithms against state of the

art web application firewalls and found a large number of new attacks.

In terms of future work, we need to consider both short term as well as long term

goals: Short terms goals include finding more applications for our techniques as well

as extending our current learning algorithms into more expressive models to allow

us to check if more complicated filter and sanitizer routines. A concrete application

which requires more expressive models is path normalization functions which usually

require pushdown transducers in order to model effectively.

Finally, in terms of long term research goals, we believe that the problem of learn-

ing the proper abstractions will play a significant role in order to develop effective

program analysis systems. As we demonstrated in our evaluation it is common to find

142

vulnerabilities were common heuristics such as code and basic block coverage will fail

to uncover the underlying problems and addressing the problems in the right abstrac-

tion layer (in our case using transducers) is of fundamental importance. Therefore,

we believe that developing systems which are capable of abstracting away irrelevant

information and reason about the parts of code which are relevant to the security

property to be checked is very important. Taking this concept further, we believe

that an important long term goal is to develop systems that can infer proper abstrac-

tions which can be used in order to reason about different systems. While this goal

seems out of reach using current technologies we believe that working towards this

direction may bring important new insights in the field of program analysis.

143

Bibliography

[1] Bek guide. http://www.rise4fun.com/Bek/tutorial/guide2. Accessed: 2015-
11-10.

[2] Fado library. https://pypi.python.org/pypi/FAdo. Accessed: 2015-11-10.

[3] lorisdanto/symbolicautomata: Library for symbolic automata and sym-
bolic visibly pushdown automata. https://github.com/lorisdanto/
symbolicautomata/. (Accessed on 01/29/2018).

[4] Microsoft antixss library. https://msdn.microsoft.com/en-us/security/
aa973814.aspx. Accessed: 2015-11-10.

[5] Mod-security. https://www.modsecurity.org/. Accessed: 2015-11-10.

[6] Peach fuzzer. http://www.peachfuzzer.com/. (Accessed on 08/10/2016).

[7] Phpids source code. https://github.com/PHPIDS/PHPIDS. Accessed: 2015-11-
10.

[8] Xss cheat sheet. https://www.owasp.org/index.php/XSS_Filter_Evasion_
Cheat_Sheet. Accessed: 2016-01-10.

[9] Codeigniter web framework. https://codeigniter.com/, 2018. (Accessed on
06/16/2018).

[10] Data validation - wordpress codex. https://codex.wordpress.org/Data_
Validation, 2018. (Accessed on 06/16/2018).

[11] syspass :: Systems password manager. http://syspass.org/index-en.html,
2018. (Accessed on 11/16/2017).

[12] Taskfreak! web based task manager and todo list, project management made
easy. http://www.taskfreak.com/, 2018. (Accessed on 16/16/2018).

[13] Fides Aarts, Paul Fiterau-Brostean, Harco Kuppens, and Frits Vaandrager.
Learning register automata with fresh value generation. In International Collo-
quium on Theoretical Aspects of Computing, pages 165–183. Springer, 2015.

[14] Dana Angluin. Learning regular sets from queries and counterexamples. Infor-
mation and computation, 75(2):87–106, 1987.

144

[15] Dana Angluin, Sarah Eisenstat, and Dana Fisman. Learning regular languages
via alternating automata. In Proceedings of the 24th International Conference
on Artificial Intelligence, IJCAI’15, pages 3308–3314. AAAI Press, 2015.

[16] Dana Angluin and Michael Kharitonov. When wonâĂš t membership queries
help? Journal of Computer and System Sciences, 50(2):336–355, 1995.

[17] G. Argyros, I. Stais, A. Keromytis, and A. Kiayias. Back in black: Towards
formal, black-box analysis of sanitizers and filters. In Security and privacy (S&P),
2016 IEEE symposium on, 2016.

[18] José L Balcázar, Josep Díaz, Ricard Gavalda, and Osamu Watanabe. Algo-
rithms for learning finite automata from queries: A unified view. In Advances in
Algorithms, Languages, and Complexity, pages 53–72. Springer, 1997.

[19] Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. Saner: Composing static and dynamic
analysis to validate sanitization in web applications. In Security and Privacy,
2008. SP 2008. IEEE Symposium on, pages 387–401. IEEE, 2008.

[20] Therese Berg, Bengt Jonsson, and Harald Raffelt. Regular inference for state ma-
chines with parameters. In International conference on fundamental approaches
to software engineering, pages 107–121. Springer, 2006.

[21] Nikolaj Bjorner, Pieter Hooimeijer, Ben Livshits, David Molnar, and Margus
Veanes. Symbolic finite state transducers, algorithms, and applications. In IN:
PROC. 39TH ACM SYMPOSIUM ON POPL., 2012.

[22] Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker. Angluin-
style learning of nfa. In Proceedings of the 21st International Jont Conference
on Artifical Intelligence, IJCAI’09, pages 1004–1009, San Francisco, CA, USA,
2009. Morgan Kaufmann Publishers Inc.

[23] Matko Botinčan and Domagoj Babić. Sigma*: symbolic learning of input-output
specifications. In ACM SIGPLAN Notices, volume 48, pages 443–456. ACM,
2013.

[24] Arnaud Carayol and Matthew Hague. Saturation algorithms for model-checking
pushdown systems. EPTCS, 151:1–24, 2014.

[25] Sofia Cassel, Falk Howar, Bengt Jonsson, Maik Merten, and Bernhard Steffen.
A succinct canonical register automaton model. Journal of Logical and Algebraic
Methods in Programming, 84(1):54–66, 2015.

[26] Chia Yuan Cho, Eui Chul Richard Shin, Dawn Song, et al. Inference and analysis
of formal models of botnet command and control protocols. In Proceedings of the
17th ACM conference on Computer and communications security, pages 426–439.
ACM, 2010.

145

[27] Tsun S. Chow. Testing software design modeled by finite-state machines. IEEE
transactions on software engineering, (3):178–187, 1978.

[28] Corinna Cortes, Leonid Kontorovich, and Mehryar Mohri. Learning languages
with rational kernels. In International Conference on Computational Learning
Theory, pages 349–364. Springer, 2007.

[29] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Prin-
ciples of programming languages, pages 238–252. ACM, 1977.

[30] Loris D’Antoni, Zachary Kincaid, and Fang Wang. A symbolic decision procedure
for symbolic alternating finite automata. arXiv preprint arXiv:1610.01722, 2016.

[31] Loris D’Antoni and Margus Veanes. Minimization of symbolic automata. In
ACM SIGPLAN Notices, volume 49, pages 541–553. ACM, 2014.

[32] Loris D’Antoni, Margus Veanes, Benjamin Livshits, and David Molnar. Fast: A
transducer-based language for tree manipulation. In ACM SIGPLAN Notices,
volume 49, pages 384–394. ACM, 2014.

[33] Colin De la Higuera. Grammatical inference: learning automata and grammars.
Cambridge University Press, 2010.

[34] Joeri De Ruiter and Erik Poll. Protocol state fuzzing of tls implementations. In
USENIX Security Symposium, pages 193–206, 2015.

[35] François Denis, Aurélien Lemay, and Alain Terlutte. Residual finite state au-
tomata. Fundamenta Informaticae, 51(4):339–368, 2002.

[36] Samuel Drews and Loris DâĂŹAntoni. Learning symbolic automata. In Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 173–189. Springer, 2017.

[37] Loris DâĂŹAntoni and Margus Veanes. Equivalence of extended symbolic finite
transducers. In Computer Aided Verification, pages 624–639. Springer, 2013.

[38] Loris DâĂŹAntoni and Margus Veanes. Extended symbolic finite automata and
transducers. Formal Methods in System Design, July 2015.

[39] Loris DâĂŹAntoni and Margus Veanes. The power of symbolic automata and
transducers. In International Conference on Computer Aided Verification, pages
47–67. Springer, 2017.

[40] Paul Fiterău-Broştean, Toon Lenaerts, Erik Poll, Joeri de Ruiter, Frits Vaan-
drager, and Patrick Verleg. Model learning and model checking of ssh implemen-
tations. In Proceedings of the 24th ACM SIGSOFT International SPIN Sympo-
sium on Model Checking of Software, pages 142–151. ACM, 2017.

146

[41] Zoltán Fülöp and Heiko Vogler. Syntax-directed semantics: Formal models based
on tree transducers. Springer Science & Business Media, 2012.

[42] E Mark Gold. Complexity of automaton identification from given data. Infor-
mation and control, 37(3):302–320, 1978.

[43] Alex Groce, Doron Peled, and Mihalis Yannakakis. Adaptive model checking.
In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 357–370. Springer, 2002.

[44] Amaury Habrard and Jose Oncina. Learning multiplicity tree automata. In
International Colloquium on Grammatical Inference, pages 268–280. Springer,
2006.

[45] Mario Heiderich. Web Application Obfuscation:-/WAFs.. Evasion.. Filters//alert
(/Obfuscation/)-. Elsevier, 2011.

[46] Mario Heiderich, Jörg Schwenk, Tilman Frosch, Jonas Magazinius, and Edward Z
Yang. mxss attacks: Attacking well-secured web-applications by using innerhtml
mutations. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, pages 777–788. ACM, 2013.

[47] Pieter Hooimeijer, Benjamin Livshits, David Molnar, Prateek Saxena, and Mar-
gus Veanes. Fast and precise sanitizer analysis with bek. In Proceedings of the
20th USENIX conference on Security, pages 1–1. USENIX Association, 2011.

[48] Pieter Hooimeijer, Prateek Saxena, Benjamin Livshits, Margus Veanes, and
David Molnar. Fast and precise sanitizer analysis with bek. In In 20th USENIX
Security Symposium, 2011.

[49] Falk Howar, Bernhard Steffen, Bengt Jonsson, and Sofia Cassel. Inferring canon-
ical register automata. In VMCAI, volume 7148, pages 251–266. Springer, 2012.

[50] Falk Howar, Bernhard Steffen, and Maik Merten. Automata learning with au-
tomated alphabet abstraction refinement. In International Workshop on Veri-
fication, Model Checking, and Abstract Interpretation, pages 263–277. Springer,
2011.

[51] Malte Isberner, Falk Howar, and Bernhard Steffen. The ttt algorithm: A
redundancy-free approach to active automata learning. In RV, pages 307–322,
2014.

[52] Michael Kearns and Leslie Valiant. Cryptographic limitations on learning
boolean formulae and finite automata. Journal of the ACM (JACM), 41(1):67–
95, 1994.

[53] Michael J Kearns and Umesh Virkumar Vazirani. An introduction to computa-
tional learning theory. MIT press, 1994.

147

[54] Ali Khalili and Armando Tacchella. Learning nondeterministic mealy machines.
In International Conference on Grammatical Inference, pages 109–123, 2014.

[55] Leonid Kontorovich. A universal kernel for learning regular languages. In MLG,
2007.

[56] D. Kozen. Lower bounds for natural proof systems. In FOCS, 1977.

[57] Harry R Lewis and Christos H Papadimitriou. Elements of the Theory of Com-
putation. Prentice Hall PTR, 1997.

[58] Nuo Li, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte.
Reggae: Automated test generation for programs using complex regular expres-
sions. In Automated Software Engineering, 2009. ASE’09. 24th IEEE/ACM In-
ternational Conference on, pages 515–519. IEEE, 2009.

[59] Anthony W Lin and Pablo Barceló. String solving with word equations and
transducers: towards a logic for analysing mutation xss. In ACM SIGPLAN
Notices, volume 51, pages 123–136. ACM, 2016.

[60] Oded Maler and Irini-Eleftheria Mens. Learning regular languages over large
alphabets. In International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 485–499. Springer, 2014.

[61] Konstantinos Mamouras, Mukund Raghothaman, Rajeev Alur, Zachary G Ives,
and Sanjeev Khanna. Streamqre: modular specification and efficient evaluation
of quantitative queries over streaming data. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
pages 693–708. ACM, 2017.

[62] Yasuhiko Minamide. Static approximation of dynamically generated web pages.
In Proceedings of the 14th international conference on World Wide Web, pages
432–441. ACM, 2005.

[63] Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, and
Michal Szynwelski. Learning nominal automata. In Proceedings of the 44th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), 2017.

[64] Mehryar Mohri. Finite-state transducers in language and speech processing.
Computational linguistics, 23(2):269–311, 1997.

[65] Mehryar Mohri. Minimization algorithms for sequential transducers. Theoretical
Computer Science, 234(1-2):177–201, 2000.

[66] Atsuyoshi Nakamura. An efficient query learning algorithm for ordered binary
decision diagrams. Information and Computation, 201(2):178–198, 2005.

148

[67] José Oncina and Pedro Garcia. Identifying regular languages in polynomial
time. In Advances in Structural and Syntactic Pattern Recognition, pages 99–
108. World Scientific, 1992.

[68] José Oncina, Pedro García, and Enrique Vidal. Learning subsequential transduc-
ers for pattern recognition interpretation tasks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15(5):448–458, 1993.

[69] OWASP. Top ten 2017. https://www.owasp.org/index.php/Top_10_
2017-Top_10. (Accessed on 11/15/2017).

[70] Doron Peled, Moshe Y Vardi, and Mihalis Yannakakis. Black box checking. In
Formal Methods for Protocol Engineering and Distributed Systems, pages 225–
240. Springer, 1999.

[71] PHP. preg_replace - manual. http://php.net/manual/en/function.
preg-replace.php, 2018. (Accessed on 07/11/2018).

[72] Leonard Pitt and Manfred K Warmuth. The minimum consistent dfa problem
cannot be approximated within any polynomial. Journal of the ACM (JACM),
40(1):95–142, 1993.

[73] Harald Raffelt, Bernhard Steffen, and Therese Berg. Learnlib: A library for
automata learning and experimentation. In Proceedings of the 10th international
workshop on Formal methods for industrial critical systems, pages 62–71. ACM,
2005.

[74] Henry Gordon Rice. Classes of recursively enumerable sets and their decision
problems. Transactions of the American Mathematical Society, 74(2):358–366,
1953.

[75] Ronald L Rivest and Robert E Schapire. Inference of finite automata using
homing sequences. Information and Computation, 103(2):299–347, 1993.

[76] Olli Saarikivi and Margus Veanes. Minimization of symbolic transducers. In In-
ternational Conference on Computer Aided Verification, pages 176–196. Springer,
2017.

[77] Muzammil Shahbaz and Roland Groz. Inferring mealy machines. FM, 9:207–222,
2009.

[78] Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson
Course Technology Boston, 2006.

[79] Suphannee Sivakorn, George Argyros, Kexin Pei, Angelos D Keromytis, and
Suman Jana. Hvlearn: Automated black-box analysis of hostname verification
in ssl/tls implementations. In Security and Privacy (SP), 2017 IEEE Symposium
on, pages 521–538. IEEE, 2017.

149

[80] Frits Vaandrager. Model learning. Commun. ACM, 60(2):86–95, January 2017.

[81] Margus Veanes. Symbolic string transformations with regular lookahead and
rollback. In International Andrei Ershov Memorial Conference on Perspectives
of System Informatics, pages 335–350. Springer, 2014.

[82] Margus Veanes, Peli de Halleux, and Nikolai Tillmann. Rex: Symbolic regu-
lar expression explorer. In Proceedings of the 2010 Third International Confer-
ence on Software Testing, Verification and Validation, ICST ’10, pages 498–507,
Washington, DC, USA, 2010. IEEE Computer Society.

[83] Margus Veanes, Todd Mytkowicz, David Molnar, and Benjamin Livshits. Data-
parallel string-manipulating programs. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
139–152. ACM, 2015.

[84] Juan Miguel Vilar. Query learning of subsequential transducers. In International
Colloquium on Grammatical Inference, pages 72–83. Springer, 1996.

[85] Gary Wassermann and Zhendong Su. Sound and precise analysis of web appli-
cations for injection vulnerabilities. In ACM Sigplan Notices, volume 42, pages
32–41. ACM, 2007.

[86] Bruce W Watson. Implementing and using finite automata toolkits. Natural
Language Engineering, 2(4):295–302, 1996.

150

