A Study of the Relative Costs of Network Security Prototols

Stefan Miltchev Sotiris loannidis
miltchev@dsl.cis.upenn.edu sotiris@dsl.cis.upenn.edu
University of Pennsylvania University of Pennsylvania

Angelos D. Keromytis
angelos@cs.columbia.edu
Columbia University

Abstract part of a secure system. In this paper, we aim to quantify
the costs of specific mechanisms and clarify the options
While the benefits of using IPsec to solve a significantavailable to system and network architects. In particular,
number of network security problems are well knownwe wish to quantify the performance implications of us-
and its adoption is gaining ground, very little is known ing various security protocols that are either widely used
about the communication overhead that it introduces(e.g.,SSL and SSH) or are expected to be in wide use
Quantifying this overhead will make users aware of the(e.g.,IPsec).
price of the added security, and will assist them in mak- Compared to other network security mechanisms,
ing well-informed IPsec deployment decisions. IPsec offers many architectural advantages. Firstly, he
In this paper, we investigate the performance of IPsealetails of network security are usually hidden from ap-
using micro- and macro-benchmarks. Our tests explorglications, which therefore automatically and transpar-
how the various modes of operation and encryption al-ently take advantage of whatever network-layer secu-
gorithms affect its performance and the benefits of usingity services their environment provides. More impor-
cryptographic hardware to accelerate IPsec processingantly, IPsec offers a remarkable flexibility not possible
Finally, we compare against other secure data transfeat higher or lower network layers: security can be con-
mechanisms, such as SScp(1) , andsftp(l) . figured end-to-end (protecting traffic between two hosts),
route-to-route (protecting traffic passing over a particular
set of links), edge-to-edge (protecting traffic as it passes
1 Introduction between “trusted” networks via an “untrusted” one, sub-
suming many of the current functions performed by net-
The increasing need for protecting data communicaWork firewalls), or in any other configuration in which
tions has led to the development of several protocol§i€twork nodes can be identified as appropriate security
that provide very similar services, most notably data seendpoints. However, a perception of complekiayd re-
crecy/integrity and origin authentication. Examples ofduced performance have acted as deterring factors in its
such protocols include IPsec, SSL/TLS, and SSH[8, 2deploymentand use. The former pointis being addressed
11]. While each of the protocols is based on a differ-by new APIs and refinement of administrative interfaces
ent set of assumptions with respect to its model of usethat make configuration and use of IPsec easier. How-
implementation characteristics, and supporting applica€ver, the performance issue has not received adequate
tions, they all fundamentally address the same problemrgXamination.
namely to protect the secrecy and integrity of data trans- In this paper, we investigate the performance of IPsec
ferred over an untrustworthy network such as the Interusing micro- and macro-benchmarks. Our tests are de-
net. signed to explore how the various modes and encryp-
Securing the data while in transit is not sufficient by it- tion algorithms affect its performance, the benefits of
self in building a secure network: data storage, key manusing hardware accelerators to assist the IPsec crypto-
agement, user interface, and backup security must als@raphic framework, and finally compare against other se-
be addressed to provide a comprehensive security po§ure transfer mechanisms, such as Sstp(1) , and

ture. These are often overlooked, yet are an essentigftP(1) . We use the OpenBSD operating system as
our experimental platform, because of its support for

*This work was supported by DARPA under Contract F39502-99-
1-0512-MOD P0001. LIn particular with respect to configuration tools, and PKI support.

cryptographic hardware accelerators and its native IPsec e The policy module governs the handling of pack-
implementation[9]. ets on their way into or out of an IPsec-compliant
host. Even though the security protocols protect
the data from tampering, they do not address the

2 System Architecture issue of which host is allowed to exchange what
kind of traffic with what other host. This module
In this section we briefly describe the OpenBSD is in fact split between the kernel (which decides

IPsec and Kernel Cryptographic Framework architecture. what level of security incoming or outgoing packets
Since the goal of this paper is not to discuss the imple- should have) and user space (making higher-level
mentation details, we refrain from going into too much decisions,e.g., which user is allowed to establish
depth. SAs and with what parameters).

For more details on their implementation in
2.1 Ipsec OpenBSD, see [3].
The IP Security architecture [8], as specified by the In-
ternet Engineering Task Eorce (IETF), i§ comprised gf @2 OpenBSD IPsec Implementation
set of protocols that provide data integrity, confidential-
ity, replay protection, and authentication at the networkln the OpenBSD kernel, IPsec is implemented as just an-
layer. This positioning in the network stack offers con- other pair of protocols (AH and ESP) sitting on top of IP.
siderable flexibility in transparently employing IPsec for Thus, incoming IPsec packets destined to the local host
different roles €.g., building Virtual Private Networks, are processed by the appropriate IPsec protocol through
end-to-end security, remote accestg,). Such flexibility ~ the protocol switch structure used for all protocasy(,
is not possible at higher or lower levels of the network TCP and UDP). The selection of the appropriate proto-

stack. col is based on the protocol number in the IP header. The
The overall IPsec architecture is very similar to previ- SA needed to process the packet is found in an in-kernel
ous work [5] and is composed of three modules: database using information retrieved from the packet it-

self. Once the packet has been correctly processed (de-
e The data encryption/authentication protocols [6, 7].crypted, authenticity verifiedetc), it is re-queued for
These are the “wire protocols,” used for encapsu-further processing by the IP module, accompanied by ad-
lating IP packets to be protected. They simply pro-ditional information (such as the fact that it was received
vide a format for the encapsulation; the details ofunder a specific SA) for use by higher protocols and the
the bit layout are not particularly important for the socket layer.
purposes of this paper. Outgoing packets require somewhat different process-

Outgoing packets are authenticated, encrypted, an@g' ‘.’Vhef‘ a packetis handed to th? P modgle for trans-
ission (inip -output), a lookup is made in the Se-

encapsulated just before being sent to the networIJ,n : . .
and incoming packets are decapsulated, verified(,:umy Policy Database (SPD) to determine whether that

and decrypted immediately upon receipt. Thes acket needs to be processed by IPsec. The SPD in

protocols are typically implemented inside the ker—OpenBSD IS |mplemented as an gxte_nsmn o the stan-
nel, for performance and security reasons. A briefdard BSD rout|r_19 t"?‘b'e- The decision is made based on
overview of the OpenBSD kernel IPsec architecturethe source/destination addressgs, t.ransport protocol, and
is given in Section 2.2. pc_)rt numbers._ If IPsec processing is needed, the lookup
will also specify what SA(s) to use for IPsec process-

e A key exchange protocok(g., IKE[4]) is used to ing of the packet (even to the extent of specifying en-
dynamically establish and maintain Security Asso-Cryption/authentication algorithms to use). If no suitable
ciations (SAs). An SA is the set of parametersSA is currently established with the destination host, the
necessary for one-way secure communication bePacketis dropped and a message is sent to the key man-
tween two hosts€.g., cryptographic keys, algo- 2agementdaemon through tR&_KEY interface [10]. It
rithm choice, ordering of transformetc). Al- is then the key management’s task to negotiate the nec-
though the wire protocols can be used on their own€Ssary SAs. Otherwise, the packet is processed by IPsec
using manual key management, wide deploymen@nd passed t _output again for transmission. The
and use of IPsec in the Internet requires automated?@cket also carries an indication as to what IPsec process-
on-demand SA establishment. Due to its complexdNd has already occured to it, to avoid infinite processing

ity, the key management protocolis typically imple- 2gpecifically, the destination IP address, the 32-bit SPI field from
mented as a user-level process. the IPsec header, and the IPsec protocol (ESP or AH) number.

loops. Applications queue requests on sessions, and the cryp-
tographic framework, running as a kernel thread and pe-
riodically processing all requests, routes them to the ap-
propriate driver. Once the request has been processed, a
To improve the performance of the cryptographic oper-callback function provided by the application is invoked,
ations in IPsec, we developed a framework for crypto-which continues processing (in the IPsec case, passes the
graphic services in OpenBSD that abstracts the detailpacket toip _output() for transmission). A software
of specific cryptographic hardware accelerator cards bepseudo-driver registers with the framework as a driver of
hind a kernel-internal API. The details of the frameworklast resort (if any other driver can process the session, it
are beyond the scope of this paper. However, we give avill be preferred).
brief description here so the reader has the proper context User-level applicationse(g.,the OpenSSL library or
within which to consider our measurements. the SSH daemon) can access the hardware through the
Besides abstracting the API for accessing these card#lev/cryptadevice, which acts as another kernel applica-
the framework was designed with these goals in mind: tion to the framework, using the same API. Public key
operations are modeled in the same way.

2.3 OpenBSD Cryptographic Framework

e Asynchronous operation: The kernel should not
have to wait until the hardware finished the re-
guested operation. 2507

Cryptocard Performance

e Load balancing: If multiple cryptographic accel-
erators are present, they should be utilized such that
throughput is maximized.

8
|

150+
¢ No dependence on hardwareif no hardware ac-

celerators are present, the system should offer the
same services (albeit at lower performance).

Throughput (Mbps)
8
1

e Application independence: Although the frame- 7

work was initially developed for use with IPsec, it
: : o

should be _possmle _to use it to accelerate othgr ker- 18 28 52 10 20 406 e loeasres

nel operationse.g.,filesystem or swap encryption) Packet size (bytes)

and user-level application®.g., the OpenSSL li-

brary).

_) o Figure 1:Cryptographic card performance.
e Support for public key operations. This is cur-

rently work in progress.

Work he f Kis still but th . Smart ethernet cards Although the cryptographic
korl on t € framewor d 'r‘:’ St'b'n progress, ! Ett € MaiN framework does not directly take advantage of ethernet
skeleton is present and has been in use with IPsec SING&ards that support IPsec processing offloading (since they

OpenBSD 2.8. are not general-purpose cryptographic accelerators), we

q _The frarrr]l_e\;]vork presen_tshtvrlo i?terfaces:konedto dev_iceextended the IPsec stack to use them. Unfortunately, at
rivers, which register with the framework and specify yo (ime of writing this paper, driver support for these

what algorlthms. an(_j modes of operations they S‘“L‘pport'cards was not completed and thus we could not measure
and one to application®(g.,IPsec), which create “ses-

X their performance. The cards of this type we are familiar
sions” and then queue requests for these.

with are 100Mbps full-duplex, and it seems reasonable

Slessménbs aLe l:sed to crEet\)te antEXt Il;? spemflchdgve_rgliven our results with dedicated cryptographic proces-
(selected by the framework based on a best-match basi ors) to assume that they can achieve that performance.

with rezgrect to the algOI’IthrI]T]S usedl) and can_fm|gra(tje beynfortunately, at the time this paper was written, we did
tween different cryptographic acceleratcesy,ifacard 1, yave enough information to write a device driver that

fails or is plugged out of the system, as may be the Case,d take advantage of such features
with PCMCIA adaptors, or if a higher-priority session '

arrives). This is achieved by requiring that all necessary

context is provided with every request, regardless of thé3 Evaluation

fact that a session has been created (the context is kept at

the application and inside the accelerator cards and is n@ur test machines are x86 architecture machines run-
cached by the framework itself). ning OpenBSD 3.0. More specifically, they are 1 GHz

Intel PIII machines with 256 MB of registered PC133 H1

SDRAM, 10 GB Western Digital Protege IDE hard 100 Mbps

drives, Intel PRO/1000 F network adapters and some 100Mb 1Gbps
3Com 3c905B 100Mbps network adapters. We chose H2 G H4
Supermicro 370DE6 motherboards based on the Server-

Works Serverset Ill HE-SL chipset with dual PCI buses. H3 | e

Thus we were able to place our gigabit cards and crypto-
cards on separate PCI buses. For some of our experi-
ments we used the Broadcom 582.0 crypto-cards. Th igure 4: 3 Hosts-to-Gateway-to-Host topology. We use
manufacturer of these cards advertises 300Mbps 3DES; 5 - 1 nnel confiqurations. end-to-end (where the 3
our own evaluation showed a peak measured perfor- © g ’
. hosts form tunnels to the end host) and gateway-to-host
mance of around 260Mbps, probably due to operatlng(H4)
system overhead. We summarize our results in Fig-
ure 1. Notice that even in the best case (host-to-host,
large socket buffers), we only get slightly over half the added security has on the performance of the system. For
nominal throughput. We believe this is a deficiency in thethe IPsec experiments, we use manually configured SAs;
device driver, but did notinvestigate in great detail. How-thus, the performance numbers do not include dynamic
ever, given that (a) the performance of all the securitySA setup times. For SSL, scp, and sftp, bulk data trans-
protocols we measure is dominated by the cost of encrypters include the overhead of session setup; however, that
tion, (b) the throughput of those protocols is markedlyoverhead is negligible compared to the cost of the actual
lower than the unencrypted protocdip(http,and unen- data transfer.
cryptedttcp{1]), and (c) we present absolute performance Large filetransfer experiments were repeated 5 times,
numbers, this should not affect the validity of our exper-all other experiments were repeated 10 times and the
iments: better-performing ethernet cards/drivers wouldmean was taken. Error bars in our graphs represent one
only improve the throughput numbers of the unencryptedstandard deviation above and below the mean. Graphs

protocols. presenting ttcp measurements do not show error bars to
avoid clutter, however the standard deviation is small in
3.1 Benchmark Variables all cases.

We will go into more detail about each experiment in
In order to understand the performance trade-offs of usthe following section.
ing IPsec as well as how it compares to other approaches
we _deS|gned a set o_f perfqrmance benchmarks. Our &3 2 Micro-benchmark Results
periments were designed in such a way as to explore a

multitude of possible setups. In Figures 5, 6, 7 and 8, we explore different network
configurations using the ttcp benchmarking tool. We ex-

H1 1 Ghps H2 plore how the various encryption algorithms affect per-
formance and how much benefit we get out of hardware

cryptographic support. The host-to-host topology is used
as the base case, and should give us the optimal perfor-
mance of any data transfer mechanism in all scenarios.
The other two topologies map typical VPN and “road
LGps warrior” access scenarios. _ _

G2 H2 The key insight from our experiments is that even
though the introduction of IPsec seriously worsens per-
formance, our crypto hardware improves its performance
Figure 3: Host-to-Gateway-to-Gateway-to-Host topology. ~ (relative to pure-software IPsec) by more than 100%, es-

In this case experiments that use IPsec form a tunnel be- Pecially in the case of large packets. For the host-to-
tween gateways. host experiment, we see that throughput over IPsec varies

from 40% of the unencrypted transfer (for small packet
Our experiments take into consideration five variablesSizes) to 30% (for 8KB packet§. We notice a sim-
the type of utility used to measure performance, the typdlar situation in the VPN configuration (host-gateway-
of encryption/authentication algorithm used by IPsec (ordateway-host). In the last two scenarios, the difference

other applications), the network topology, use of cryp- sthjs is the size of the buffer that thitep benchmark is using for
tographic hardware accelerators, and the effects that theading and writing to the network.

Figure 2:Host-to-Host topology.

1Gbps|

H1 — Gl

1Gbps

Throughput (Mbps)

2504

550
TCP host-to-host performance for 65535-byte socketbuffer TCP 3 hosts-to-gateway-to-host (I Psec hosts-to-gateway) performance for 65535-byte socketbuiffer
500 [64-byte packets
4504 200 [512-byte packets
7 %07 g I 1024-byte packets
2 350 2 [1470-byte packets
= = 64-bytepackets S 150+ I 8192-byte packets
= 300 = 512-byte packets g
£ 250 = 1024-bytepackets 2
g o 1470-bytepackets £ 100
= 200 = 8192-hyte packets %
F 50
o

NE AES-128 AES192 AES-256 DES 3DES DESHW 3DES-HW NE DES 3DES DES-HW 3DES-HW

Figure 5:The ttcp utility over TCP, for the host-to-host net- Figure 7: The ttcp utility over TCP, for the 3 hosts-to-
work configuration with 65535 bytes of socket buffer. NE gateway-to-host network configuration with 65535 bytes of
means No Encryption. We measure the AES algorithm with socket buffer. In this case we create an IPsec tunnel between
three different key sizes (128, 192, and 256 bits), as well as hosts H1, H2, H3 and the gateway.
DES (56 bits) and 3DES (168 bits). The suffix “-HW” indi-
cated use of a hardware accelerator for that cryptographic
algorithm. In all cases where IPsec is used, we use HMAC- host and host-to-gateway-to-gateway-to-host. In the first
SHA1 as the data integrity/authentication algorithm; when ~ case, IPsec is used in an end-to-end configuration; in the
hardware acceleration is used, HMAC-SHAL is also accel- Second case, IPsec is done between two gateways.
erated. Figures 9 and 10 present our results. Since we are
doing large file transfers, we easily amortize the initial-
ization cost of each protocol. Comparing the two fig-
in performance is less marked between the unencryptegres, we notice that most of the time is actually spent by
and the hardware-accelerated cases, since the aggreggig file system operations, even after we normalize the
throughput of the three hosts on the left is limited to atfjje sizes. Another interesting point is that when we use
most 300 Mbps (due to the topology). IPsec the file transfer is quicker in the gateway network
In our experiments, we also noticed some anomalousopology compared to the direct link. At first this might
behavior with 512 byte packet sizes, we believe that thisseem counter-intuitive, however it is easily explained: in
has to do with buffer mis-alignments in the kernel andthe gateway case, the IPsec tunnel is located between the
will investigate further in the future using profiling. gateways, therefore relieving some processing burden
In our previous experiments we stress-tested IPsec bfrom the end hosts that are already running the ftp pro-
maximizing network traffic using ttcp. In our next set gram. This leads to parallel processing of CPU and I/O
of experiments, we investigate how IPsec behaves undeperations, and consequently better performance, since
“normal” network load and how it compares with other the gateway machines offload the crypto operations from
secure network transfer mechanisms lgap(1) and the end hosts. Note that IPsec is not used for the plaintext
sftp(1) . Ourtests measure elapsed time for a large fileftp, scp, and sftp measurements.
transfer in two different network configurations, host-to- Figures 11 and 12, compare IPsec wii(3) as

250
450 TCP host-to-gateway-to-gateway-to-host performance for 65535-byte socketbuffer TCP 3 hosts-to-gateway-to-host (I Psec host-to-host) performance for 65535-byte socketbuffer

[64-byte packets
[512-byte packets

8
Il

350 2
[l 1024-byte packets
| Q
0] o 64-byte packets s [1470-byte packets
= 512-byte packets 5 150 I 8192-byte packets
250 m 1024-byte packets g "
o 1470-byte packets g
200-] = 8192-byte packets £ 100
£
150 ol
O
°

o
=}
I

NE AES128 AES192 AES-256 DES 3DES DESHW 3DESHW NE DES 3DES DES-HW 3DES-HW

Figure 6: The ttcp utility over TCP, for the host- Figure 8: The ttcp utility over TCP, for the 3 hosts-to-
to-gateway-to-gateway-to-host network configuration with gateway-to-host network configuration with 65535 bytes of
65535 bytes of socket buffer. IPsec is used between the two socket buffer. In this case, all 3 hosts on the left form IPsec
gateways. tunnels to the end host.

Elapsed time (sec)

:

;

g

1400 H

5
8
L

RN

N
8
L

)
1

1 HTTP transfer times for 1GB file

900
3 File transfer times for 1GB file a0 =
mm Filetransfer times for 1GB file through 2 gateways
~ 700 _ p— B =
8
()
£
S 500
B ol
<
O 300
200
100+
0
FTP SCP SFTP AES128 AES192 AES256 DES 3DES DES-HW 3DESHW HTTP HTTPS AES-128 AES-192 AES-256 DES 3DES DESHW3DESHW

Figure 9: Large file transfer using ftp, scp, sftp, and ftp Figure 11:Large file transfer using http, https, and http
over IPsec, over two different network topologies. The file over IPsec, on a host-to-host network topology. The file is
is read and stored in the regular Unix FFS. IPsecis notused read and stored in the regular Unix FFS.

for the plaintext ftp, scp, and sftp examples, in either setup.

260 [File transfer times for 200MB file using MFS 120
240 [File transfer times for 200MB file through 2 gateways using MFS 1104 [HTTP transfer times for 200MB file using MFS
220 100]
200 - 90
180 - ’g 804 =
160 | T 70
140 - £
= 60
120 4
e
100 4
80 o %
60| 30
40 20
20 - 104
0- 0
FTP SCP SFTP AES128 AES192 AES256 DES 3DES DES-HW 3DES-HW HTTP HTTPS AES-128 AES-192 AES256 DES 3DES DES-HW3DESHW

Figure 10: File transfer using ftp, scp, sftp, and ftp over Figure 12: Large file transfer using http, https, and http
IPsec, over two different network topologies. Thefileisread over IPsec, on a host-to-host network topology. The file is
and stored in the Unix memory file system (MFS). read and stored in the Unix memory file system (MFS).

used by HTTPS, the network configuration is host-to-
host. We usedturl(1) to transfer a large file from run while constantly using the network. We tested the
the server to the client. Once again IPsec proves to be gnpact of a number of protocols to the performance of
more efficient way of ensuring secure communication. other jobs (in this case, the sieve) running on the system.
Figure 13 provides insight on the latency overhead in-In Figure 14, we present the execution times of our CPU
duced by IPsec and HTTPS. We usedli(1) totrans- intensive job while there is constant background network
fer a very small file from the server to the client. The traffic. To understand the results of Figure 14, one needs
file contained just an opening and closing html docu-to understand how the BSD scheduler works. In BSD,
ment tag. We timed 1000 consecutive transfers. The lacPU intensive jobs that take up all their quanta have their
tency overhead introduced by IPsec over cleartext HT TRyriority lowered by the operating system. When execut-
is only 10%. There was practically no difference be-ing the sieve while using ftp, the sieve program gets its
tween using manual keying amshkmpd as the cost of priority lowered and therefore ends up taking more time
key and security association management gets amortized finish. In the case where it is run wigtp(l) or
over many successive connections. The need to perforgftp(1) , which are themselves CPU intensive because
a handshake for each connection clearly hurts perforef the crypto operations, the sieve finished faster. When
mance in the case of HTTPS. the sieve is run with IPsec traffic, the crypto operations
In our final set of experiments, we explore the impactare performed by the kernel and therefore the sieve gets
IPsec has on the operation of the system. We selectefdwer CPU cycles. With hardware cryptographic sup-
a CPU-intensive jobSieve of Eratosthenéswhich we port, the kernel takes up less CPU which leaves more
a5 . . . i cycles for the sieve. In the case of HTTPS background
ieve of Eratosthenes is an algorithm for computing prime num-

bers. We rurprimes(6) , a program that uses this algorithm which _network traffic, the CPU cycles spent i_n crypto process-
is CPU intensive, to emulate a loaded gateway machine ing were not enough to affect the priority of the sieve.

300 204
[] Repeated HTTP transfer of small file . [wget mirror of www.openbsd.com
250 I =
30+
’g 200-| ’g
K r
£ 0 E »l
i i
u—gj 100+ o
104
50 o
[— | —1 0
0
2 Q 23 o N P g &
& & s 7 & o & & F & 5 P & LSS
< 7 & AR S X 5 .
N @ & & & & RS L < ég é\&e \;éq
N \rfL L

Figure 13: Small file transfer using http, https, and Figure 15: Mass transfer of a web tree hierarchy using
http over IPsec (using manual and automatic keying via wget.

isakmpd, on a host-to-host network topology. We timed

1000 transfers of the file. The 3DES algorithm was used ol compie
for encryption. ™~

[OpenBSD generic kernel compile

10 - 8
130 [Sieveof Eratosthenes runtime o 30

=3
120+

o
E

110 iL = [T ‘ém,
100 &
w

Elapsed time (cycles* 10"9)
oB38588388
1 1 1 1 1 1 1 1 1
888
@,
<
=
P
‘CY‘?
Y
R
‘“\;‘%
%,
R
%,
%

& & Y&@KQ‘«K@‘« &S & & féqpé’éqé)@”&f&ﬁ Figure 16.:C0mpilati0n of the OpenBSD kernel over NFS,
TG & & with and without use of IPsec.

Figure 14:IPsec introduced overhead on the normal per-
formance of a system. Impact on the execution time of CPU
intensive job (sieve) on a system that uses IPsec.

the OpenBSD source over NFS (see Figure 16). We

present results for 3DES with and without hardware sup-

port, as well as AES. As expected, using hardware sup-

port for the encryption is particularly useful when the

3.3 Macro-benchmark Results system is burdened with intensive CPU and filesystem
loads.

All the experiments we run so far were designed to ex-

plore specific aspects of the security protocols, under

a variety of configurations. In this section we present4 DiScuUSSIion

benchmarks that reflect a more realistic use of these pro-

tocols. One lesson that can be drawn from our experiments is
For our first macro-benchmark, we created a local mir-that the current generation of hardware cryptographic ac-
ror of thewww.openbsd.com site, 728 files and a to- celerators is not sufficient to support ubiquitous use of
tal of 21882048 bytes, to a server machine. We therencryption. Figure 1 points to one problem: the nominal
usedwget(l) from a client machine to transfer the performance of crypto cards is only achieved for large
whole tree hierarchy over the Intel PRO/1000F networkbuffer/packet sizes. Since a large percentage (up to 40%)
adapters. We usediget(1) instead ofcurl(1) be- of the packets in a TCP bulk-transfer is 40 bytes, we can
cause of its support for recursive web transfers. Four dif-see that much of the benefit of such hardware is lost: the
ferent ciphers/modes were used for HTTPS. The HTTPSost of card and DMA initialization, PCI transfers, and
tests used server certificates. The IPsec tests were coimterrupt handling is roughly comparable to the cost of
ducted using manual keying with DES, 3DES, AES andpure-software encryption, especially as processor speeds
hardware accelerated DES and 3DES. Finally, for comincrease. This observation suggests that one possible so-
pleteness, we also included ephemeral Diffie-Hellmanution is a hybrid approach, where the system uses soft-
results for HTTPS. We present the results in Figure 15. ware encryption for small packets, and hardware encryp-
Our second macro-benchmark is the compilation oftion for large ones. Another possible solution could be

integrating cryptographic functionality with the network
interface, which would also improve CPU utilization by
offloading the encryption.

[7] S. Kent and R. Atkinson. IP Encapsulating Security Pay-

load (ESP). Request for Comments (Proposed Standard)
2406, Internet Engineering Task Force, November 1998.

One argument against this is the versatility of sepa- [8] S.Kentand R. Atkinson. Security Architecture for the In-

rate cryptographic components, which allows their use
by many other application®(g.,filesystem encryption,
database and other user-level processes that do crypto,

ternet Protocol. Request for Comments (Proposed Stan-
dard) 2401, Internet Engineering Task Force, November
1998.

etc). While this may be a valid argument in the case of [9] A. D. Keromytis, J. loannidis, and J. M. Smith. Imple-

user-level processes, we believe that cryptographic accel-
erators can be integrated with other 1/0O devices that can

use them more efficiently (in particular, disk and tape[10]

controllers). The declining cost of high-performance
cryptographic chips makes this a viable alternative to
dedicated processors.

(11]

5 Concluding Remarks

In this paper, we investigated the costs of network secu-
rity protocols. We used a variety of benchmarks to deter-
mine how IPsec performs under a wide range of scenar-
ios. Our experiments (and in particular our macrobench-
marks) have shown that IPsec outperforms all other pop-
ular schemes that try to accomplish secure network com-
munications. Even though this safety comes at a price,
which is present no matter which protocol one uses, it is
possible to get enough performance for practical use by
using dedicated cryptographic hardware. This price may
easily be acceptable for many applications and environ-
ments, given the remarkable flexibility and transparency
offered by IPsec.

References

[1] TTCP: a test of TCP and UDP Performance.
1984.

[2] T. Dierks and C. Allen. The TLS protocol version 1.0.
Request for Comments (Proposed Standard) 2246, Inter-
net Engineering Task Force, January 1999.

USNA,

[3] Niklas Hallgvist and Angelos D. Keromytis. Implement-
ing Internet Key Exchange (IKE). IfProceedings of
the Annual USENIX Technical Conference, Freenix Track
pages 201-214, June 2000.

[4] D. Harkins and D. Carrel. The Internet Key Exchange
(IKE). Request for Comments (Proposed Standard) 2409,
Internet Engineering Task Force, November 1998.

[5] John loannidis and Matt Blaze. The Architecture
and Implementation of Network-Layer Security Under
Unix. In Fourth Usenix Security Symposium Proceedings
USENIX, October 1993.

[6] S. Kent and R. Atkinson. IP Authentication Header. Re-
quest for Comments (Proposed Standard) 2402, Internet
Engineering Task Force, November 1998.

menting IPsec. IProceedings of Global Internet (Globe-
Com) '97, pages 1948 — 1952, November 1997.

D. McDonald, C. Metz, and B. Phan. ¥EY Key Man-
agement API, Version 2. Request for Comments (In-
formational) 2367, Internet Engineering Task Force, July
1998.

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and

S. Lehtinen. SSH Protocol Architecture. Internet Draft,
Internet Engineering Task Force, February 1999. Work in
progress.

