FlowPuter: A Cluster Architecture Unifying Switch,
Server and Storage Processing

Alfred V. Aho, Angelos D. Keromytis, Vishal Misra, Jason Nieh, Kenneth A. Ross, Yechiam Yemini
Department of Computer Science
Columbia University
{aho,angelos,misra,nieh,kar,yemini }@cs.columbia.edu

Abstract—We present a novel cluster architecture that unifies disk access times will continue to be relatively slow while
switch, server and storage processing to achieve a level ofsequential I/0 access speeds outstrip CPU-memory speeds.
price-performance and simplicity of application development not Growth in storage capacity and in respective content flows
achievable with current architectures. Our architecture takes - - . -
advantage of the increasing disparity between storage capacity, has been stimulating commensura}ble growth in the sizes
network switching on the one hand, and processing power of Of data sets. Sensors are producing an enormous amount
modern processors and architectures on the other. We propose of data that can be manipulated and processed, multimedia
the use of Network Processors (NPUs), which can apply simple documents are many times richer and larger than their plain

classify/act/forward operations on data packets at wire speeds, 10 eyt counterparts, streaming media is becoming increasingly
split processing of operations such as complex database queries

across a network. We quantify the theoretical benefits of such cOMmMon, high-definition imaging and visualization is increas-

an architecture over traditional server-cluster approaches using ingly common for medical and scientific applications, and
warehouse database queries as a motivating application. We large databases and data warehousing applications are a multi-

also discuss the challenges such an architecture presents topjllion dollar business. With the first multi-TB drives expected
programming language design and implementation, performance j, 2005 and with numerous application scenarios requiring
analysis, and security. . . ; o .
processing data in real-time with its flow to storage, processing
KeyWords: Dataflow processing, Network Processors, Dataulti-TB at 10 Gbps or more is not an unrealistic expectation

Warehouses, Security, Compilers, Performance. for applications needs by the end of the decade.
The confluence of changing hardware technology and in-
|. INTRODUCTION creasing /O application demands requires a fundamental shift

- . in computing technology. We propose Flow Computing, a new
. Traditional computing assumes that /O spegds are substg proach to computing that leverages the continuing rapid
tially slower than C_PU-memory speed. E_mergl_ng network_ari1 rovements in network and storage speeds. Our proposed
_stor_ag_e tech_nolog|_es have been stretchlng_th|s assumptlorb %roach uses a switch-like architecture to circulate data
its limits. th|ca| wire-speeds alregdy range in the 1(.)'40 qu ‘peatedly through a high-speed network to and from disks.
on pgrl_thh CP2U émGebmorth\)lgtrr:d\t/)w?;h, Wh'le ha(rjd—dls(,jk dtr'veérimary computations on data flowing through the switch
are gelivering £.o bps. WIt both wire-speed and Storagg.iaqyyre classify and filter data in a highly parallelized and
density technologies improving faster than silicon spee lgelined manner to provide a high cycle budget to process a

It 'St. not 'l[mreatsonabIgPtL(J) assume that C;aV\t/h_I/Od spededsT igh-speed sequential flow of structured data units. To pro-
continue 1o outgrow -memory speeds this decade. (}i e the necessary processing cycles, the architecture utilizes
speed inversion will have a profound impact on computing.

éhip—level parallelism provided by generic network processors

D?.Sp'te these d_ramatlc |mprovem_ents in raw /O spee RIPUS) or FPGA-based approaches. Network flows are then
traditional computing approaches will not be able to tal

advantage of these advances in hardware technology. Currr;fal
applications are often structured assuming fast random acce
to data. While raw bandwidth is increasing at a dramatic rate
access times are not. Consider disk storage technologyb

il(r)loexamplet. Disk storageh c]ilentsnytr:s mlc\:/lreasn?glat aErateqo nse-blade servers are already organized into a switch-like
oo percent a year, much faster than Moores 1aw. EVeN Jiopiiectyre to provide scalable cycle budget and switching
disk rotatlonal speed remains con_stant, this |mpr0ver_nentdg acity to handle network flows; switches, likewise, have
density can translate info an equivalent percentage mcre%%n incorporating higher-layer processing functions and using

in sequential throughput rate since there is that much mqy, Us/FPGAS to provide the cycle-budget, with some switches

data thatt_ can be accles_sed in gach td'Sk rtotat]ionb H(t)vzgver, ﬁ}éady integrating server blades; both could be used to
access imes are only Increasing at a rate ot abou Perc port Flowputing software architectures. There is thus a

ayear. As aresult, random l/O access patterns that each N to develop better Flowputing software technologies that

Part of this research was funded by NSF CAREER award ANI-023826821 €xploit and guide these emerging hardware architectures
and NSF Contracts CCR-TC-0208972 and 11S-01-20939. in accomplishing cycle-efficient, software-efficient and flow-

ulticast and routed among NPUs to enable processing by

lﬂﬁtiple applications. We call such such a hardware/software
anization dlowputer.

'Emerging server, switch and storage architectures have
2n converging to support flowputer scalability. Specifically,

efficient flow processing. potentially tap into the same network, thus sharing a single

In the remainder of this paper, we explore the vision of thdata flow for different operations.
flowputer architecture in more detail, using data warehousingCompared with a cluster of commodity processors, the
as a motivating example, explained in detail in Section Il. THRatacycle system scales better with respect to the query
warehouse example is generic and its considerations generalipekload. As the query workload increases, one needs only
easily to other 1/O-intensive processing application scenarids,add processors and interfaces to the shared network. The
including streaming media and image processing, databaselerlying data storage and pump infrastructure does not
processing, XML document-store processing, and speech pneed to get bigger. Further, as recognized by the Datacycle
cessing. In particular, we discuss the potential benefits aochitects, the overall system is easier to manage. Indexes are
be had from such an architecture (Sections Il and 1V), ambt used, since all a processor has to do is set a filter for the
the challenges from the security, programming language, asopropriate data and it will be captured as it flows past on the
performance analysis standpoints (Sections V, VI, and \Metwork. Similarly, query processors do not have to concern
respectively). themselves with issues of physical layout of data on disks. As
a result, there are far fewer parameters, and management of
the whole system is simpler.

Like much of the “database machine” research of that pe-
riod [14], the Datacycle architecture suffered from a fatal flaw:

A large organization can gather all of its data into a singl¢ used special-purpose fabricated hardware. As commodity
very large database for the purpose of analyzing various @focessors rapidly improved in performance, any performance
pects of its enterprise. This activity is calldéta warehousing advantages provided by the special hardware quickly evapo-

and there is currently a multi-billion dollar market for datgated, unless expensive design and fabrication was undertaken
warehousing systems. The value of the data warehouse is thah each new VLSI technology.

it can provide access to detailed information about currentwe argue that the time has come to revisit this kind

activities that enable the organization to adjust its behavigf architecture, because commodity switches now have the
The data warehouse is optimized for fast query performang@pability to provide the filtering capabilities provided by
with updates happening in batches. Since most queries toyg8 VLS| interfaces in the Datacycle system. As a result, a
large quantities of data, and since answers are not requirggmmodity flowputer” can provide all of the advantages that
in real-time, the overall performance metric is typically quenhe Datacycle architecture promised, without its fatal flaw.
throughput. In fact, we believe that a flowputer can go beyond the
Most current data warehousing systems are based on lagg@abilities of the Datacycle architecture in several important
clusters of commodity processors [1]. Such systems have tygys. Ironically, the Datacycle system predates the entire
potential weaknesses. The first weakness is how the SYSt®dy of data warehousing, and so people have not studied in

scales with increases in the query workload, given a fixefbpth how complex query processing could utilize such an
large data set. Because disks and data are highly distributgghitecture.

it is hard to share work (such as I/O) between queries. As
a result, the hardware resources, from the CPU to the disks,
need to scale in proportion to the aggregate query workload.
The second weakness is manageability. Query processEmerging clusters redefine computing in terms of stack pro-
ing and optimization is a very complex process, and quecgssing, and redefine switching in terms of classify/act/forward
optimizers for commercial data warehousing systems asperations that use any packet header (and even contents)
extremely intricate pieces of software. Query optimizatioas filters. Furthermore, they redefine storage access in terms
depends on a very large number of parameters, includiofrouting I/O accesses within virtual storage spaces. There
(potentially for each column of each table) information abous, therefore, an emerging confluent semantic of computing,
physical layout, index availability, replication, etc. The resulswitching and 1/O whereby data, tagged by multiple layers,
ing complexity makes managing such a data warehouse laflows through engines that apply classify/act/forward pro-
intensive. Despite recent efforts such as the SQL server indmssing to these tags. We call this unifying semantic flow-
selection wizard [8], choosing good parameters for a largeocessing and the engine that handles iflawputer. A
database installation remains an art that requires highly skilldowputer that processes a database stream views the task
administrators. The management costs of database installatiassclassifying and processing nested tags—whether these are
have begun to dominate the overall cost of ownership [11].implicit in the structure of TCP/IP headers, explicit in the
An alternative, visionary perspective was provided as eatyTTP headers, or defined by SOAP and other XML libraries,
as the late 1980s by the Datacycle system [12], [5], [6.nd represent fields of a database record, or a virtualization
which resembles a flowputer. A data pump cycles through theapping that indicates storage routing. A flowputer manipu-
entire database, transmitting it over a network. Data processlates flows of such tagged data at all layers using a common
tap into the network through a custom-built VLSI interfaceplatform.
The interface is capable of performing filtering operations in The hardware architecture of a flowputer is depicted in
hardware, so that processors see only data relevant to thegure 1. Flowputer blades incorporate powerful Network
gueries. Many processors, each with their own interface, coltdocessor (NPU) hardware to provide the cycle budget needed

Il. DATA WAREHOUSING USINGFLOW
COMPUTING

IIl. THE FLOWPUTER ARCHITECTURE

for wire-speed processing of tagged flows; network flows afer superior performance over farm architecture. Table | con-
delivered to/from a flowputer blade through interface hardrasts the scaling features of a flowputer against a more tradi-
ware. Flowputer blades are interconnected by a fast switchitignal server-cluster in processing a warehouse. We consider

fabric. four scenarios (rows 2-5) through which the size of the ware-
house(c2) and the number of applications that proces&4t)

Control management-plane Wire-speed grow, while the processing time to complete these applications
data-plane (c3) shrinks. The table makes the following assumptions:

Server blade = « The NPU offers 8 pipelines of 4 stages, operating at

250 Mhz, for a total cycle budget of 8 Ghz, contrasted
with 1 Ghz CPUs of the server-cluster. Both the server-

Flowputer blade

Flowputer blare cluster and the flowputer are operated at 50% utilization
— FABRIC to minimize queuing.
« The server-cluster CPUs requires 4,000 cycles to process
a warehouse record (500 to classify, 500 for handling
Fig. 1. FlowPuter hardware architecture. and 3k overheads) while the flowputer takes 1,000 cy-
cles, by reducing the overheads and using fast classi-
fiers/forwarders.

The software architecture of a flowputer is organized along
a data-plane and control/management-plane separation. The
control-plane software has a standard server architecture; its
main function is to manage and configure tag-processing
functions of the data-planee(., maintain and load tag
libraries, configure routing relationships among data-plane
modules, configure shared data of data-plane modetes3,

The data-plane software consists of a light-weight run-time
execution environment to process tagged flows through clas-
sify/act/forward modules and channels.

In a typical scenario, a database flow arrives at a flowputer
blade through a network connection. The flowputer processes
the network stack to direct the database flow to respective _ L
processing channels. The flow may be multicast to multiple Undgr these assumptions, 't. IS S|mple to compare the
applications executing at different flowputer blades. Each su%ﬁalab'“ty features of these architectures: ,
application may process the flow through multiple channels 1) COIumHISCSt anch):S con'gast tf:e rmaul;red 'ITuTbﬁr of
organized as pipelined and/or parallel classify/act/forward op- ~ S€TVer-cluster LFUS/S. Tlowputer S, fiustrating
erations. The database records may be filtered through chan- heir refative efficiency in scaling the cycle budget. Un-
nels that project or select records as defined by an application. €' Scenario B, for example, the server-cluster requires
Thus, a large number of simultaneous queries may be applied ggrf)PDU\/svgYJTg?e?qLIicr)gFuusttei rzeﬂg:/ﬁi tzer';“jvﬂﬁ' G%VEE) LSJCSe'
concurrently to the same database. i - 2 '

The flowputer accomplishes significant scaling efficiency contrasted with a server-cluster requiring hundreds of
over current clusters. This efficiency arises from several fac- blades. Th? ratlo_ #CPU/#NPU’ measuring the cycle-
tors: tbc:u;giet scaling efficiency of the flowputer, grows from 3

1) The flow processing model eliminates the typical over- 2) Colur:nnsc7 and c8 contrast the storage access band-

heads of synchronizing 1/0O event_s yvith process events. © | idih (BW) required by the two architectures. For
The flowputfar processes are optimized to service flow example, under scenario C the flowputer requires access
events and involve minimal overheads_. , . at 4 Gb/sec, entirely resulting from the need to move

2) The flowputer hardware uses specialized classifica- 4TB in 2 hours. In contrast, the server-cluster requires

tion/f(_)rwarding elements to dramatically accelerate the 196 Gbisec, primarily resulting from the need to support
class!f_y/for_ward parts of processing; thus a tag may be the aggregate storage access needs of 20 applications.
classified in a single processor cyaks. hundreds of 3) Columnsc9 and c10 contrast the number of replicated
cycles needed to Process iton a CPU. copies of the warehouse needed to support the access

3) The'flowputer exploﬂ; the muc;h If':lrger cycle bgdget bandwidth of concurrent applications. A server-cluster

provided by NPUs, which use pipelined/parallel micro- would need to replicate the warehouse creating as many

A (_EI_?]QW;FS- o \abl b ¢ as 147 copies to handle scenario D. The flowputer does
) The flowputer enables a scalable number of concurrent not require replication of the data.

applications to share storage 1/0 access. For example,

thousands of database queries may be processing the 1V. USING FLOWPUTER IN DATA WAREHOUSING

database concurrently by sharing its flow. We focus now on two novel uses of the switch infrastructure
These different scaling efficiencies create a fertile grournd process queries in ways not possible either with a conven-

The warehouse storage systems can be accessed over
the network links at 1 Gb/sec per TB stored; when the
applications demand storage access bandwidth exceeding
the capacity of storage systems, the warehouse is repli-
cated; replication and competition over storage access
add overheads that increase the cycle budget required
by 2% for each additional application. The server-cluster
applications access storage randomly, retrieving 1 MB
chunks per access; the flowputer uses sequential access
to retrieve very large 50 MB) blocks, increasing the
effective bandwidth by minimizing the impact of seek
time.

cl c2 c3 c4 c5 c6 c7 c8 c9 c10
Scenario | Warehouse | Processing| # Apps | #CPU | #NPU | BW Farm | BW Flwptr | #Rplca | #Rplca
Size (TB) | Time (hr) farm Flwptr | (Gb/sec) | (Gb/sec) Farm Flwptr
A 1 4 1 3 1 1.2 0.6 2 1
B 2 4 10 53 2 24 1 12 1
C 4 2 20 487 11 196 4 49 1
D 8 1 30 3334 | 66 1173 18 147 1
TABLE |

Scaling Effects For A Warehouse Processing Example.

tional database cluster, or with the basic Datacyle architectuaecess, it is often very difficult to accurately estimate the size
We then conclude this section by highlighting some additionaf intermediate results. As a result, the allocation of work

research questions we plan to address. among the nodes may be suboptimal, giving too much work
to some, and too little to others, increasing the response time
of the query. Even worse, the derivation of a query processing

) plan usually does not take into account what other queries
Assume a dataflow of records represented in a format “?ﬁéy be running on each node. A single overburdened node

can be interpreted by the switch hardware. The switch c@3, thus slow down the entire query. Shipping sub-queries

extract a database field and perform a filtering operation, §8m one node to another is often impractical due to the large
that records matching a condition are sent along an approprigif, sizes.

proce_:ssing path. Cascades of filters can be programmed intg flowputer, on the other hand, sees a single unified input
a SW'tCh'_) i . data stream, and can divide up the work dynamically based
In addition to filters, some query processing can also b ¢\rrent workload statistics. For example, suppose that we
perfor_med in the switch itself. For example, consider the, o four CPUs C1 through C4 processing an aggregate query.
following query-: The switch divides the input into four disjoint streams, one per

A. Aggregation in the Switch

SELECT US_State, Sum(sales) CPU, using a hash function H on the input data stream. Each
FROM transaction-table CPU computes aggregates over its input. In a final step, the
WHERE date > 01-01-2002 values from each of the four CPUs are combined to answer
GROUP BY US State the query. Using four CPUs gives us a degree of parallelism,

))) as well as four times the net bandwidth of a single CPU.
One way to perform this query is to filter the records on In a flowputer, we can adjust the hash function H dynam-

“date” and then send the maiching records to a CPU fRfrally. If C1 is getting more than its share of records due

aggregation. An alternative way to execute this query is 18 s,me hias in the data distribution, we can modify H so

compute the aggregatea the switch Since there are 50 that a smaller range of hash values gets mapped to C1, and a

States in the US, the switch needs to allocate memory fl%rrger range gets mapped to other processors. Similarly, if C2

50 accumulators, which are initialized to zero. 50 filters ane, pens to be running slowly because of other queries in the

created, one per _State. Records_ that mgtch the d_ate crlteré_ tem, the switch may dynamically increase the proportion
are then run against these 50 filters. Since the filters are

- i €oflrecords mapped to C1, C3 and C4 by adjusting H. Note
associative memory, the filters on State take only one unit fhf

i) at adjustments due to data skew or machine overloads are
time. When a State filter matches, .the local accumulator IS \qied in the same way, at query-processing time.
incremented by the value of “sales” in the current record.
The advantage of this alternative plan is that both network
traffic and computational work is removed from the CPUs. V. FLOWPUTER SECURITY
The extra bandwidth and processing capacity can be used for .)]
other queries. Such a plan requires certain resources, nameljhe flowputer architecture is, by nature, exposed to certain
memory for filters and accumulators. Modern switches ha{i§ks not present in a traditional warehouse. In particular, since
the capacity for millions of filters and accumulators. ThedB® warehouse records are transmitted over a network and

resources must be allocated in a fashion that maximizes tHéeries are evaluated in a distributed manner across a number
benefits for overall query processing. of NPUs, we are concerned both about data confidentiality

and integrity {.e., preventing an outsider from obtaining the
data by placing a tap one of the network links), as well as
access control (ensuring that legitimate users can access only
In a conventional clustered database system there is data for which they are authorized). Currently, data warehouses
extensive reliance on parallel processing among the nodesate typically protected from outsiders by firewalls and physical
order to maximally utilize resources, query processing plangeasures; access control is performed by the database server,
must have access to data distribution statistics. Even with sumhrestricting the database tables to which a query has access.

B. Dynamic Load Balancing

A. Data Security A inside the warehouse perimeter. The query optimizers of

To the extent that the entire flowputer can be kept physicall ditional databases performs a very similar task in selecting
and virtually isolated from the public network, similar meathe order in which a query’s sub-expressions are evaluated.
sures against outside attackers will be equally (in)effective®: in this example, nodes A, B, and C would be configured
However, when we consider a distributed enterprise, whetdch that they would maximally prune Data Flow A.
each branch needs access to specific tables and records, v COmplementary approach is to encrypt each_table sep-
must treat the interconnecting links as part of the public neéifately, as part of a separate data flow. Assuming all the
work. The only currently-known practical security mechanisifjowputer components have some encryption functionality (as
for protecting data confidentiality and integrity over such link§'® 1XP425 network processor does), it may be possible to
is cryptography. configure nodes A, B_, and C to encrypt 3 |_ndependent Qata

Although the current generation of cryptographic accelerflows that are all destined for Branch 1; similarly, decryption
tors cannot sustain the flowputer’s data rates, future versidi®! be staggered among nodes D, E, F, and G: node D can
that can accommodate data rates of 10 Gbps have b&&STYPt the daFa stream (corresp_ondlng to a particular table)
announced by different vendors. However, as is shown in [13]at node E will need, node E will do likewise for the data
the limiting factor often is not the hardware itself. Rather, théiréam node F will neeatc. The same encryption/decryption
combination of the PCI (shared bus) architecture and trad{@99ering can be performed for one flow: if Data Flow
tional operating-system design (which abstract device drivefs,iS composed of only one table’s data, nodes A, B, and
network protocolsetc., by using general-purpose APISs) placé3 can interleave their encryption processing to achieve the
a ceiling on the maximum achievable throughput long befoR€St performance. Thus, a longer path inside the Warehouse
the hardware limits are reached (for example, the maximup§twork will allow more data to be encrypted at the cost of
achievable data-encryption rate on a 4.22 Gbps 64-bit/66Mf bandwidth and processing capacity. Other such tradeoffs
PCI bus is only 840 Mbps [13]). As was discussed in [17EXISt, ar_1d they must be taken_lnFo c_0n3|derat|0_n when flow
one way to improve performance is to farm-out encryptio%ChedU“”Q is don_e. Such opt|m|zat|o.n. strategies have not
to a dedicated node (akin to a firewall). Even in that cas@éen considered in the realm of traditional database query
however, storage capacity and network bandwidth are likely R0cessing, and thus pose an interesting and open problem.
increase faster than cryptographic processing capacity (which,

in general, is limited by the same constrains as general—purpgseACC("’SS Control

CPUs). Mechanisms for determining access rights to tables and
records in the database (access control) have been the fo-

@ rrowPuter component cus of considerable research [21], [10], [16], [7], [2], [4].
Branch 1 (O Edge FlowPuter component Beyond the simplistic and inadequate binary access control

model (.e., properly authenticated users have access to all
the records), modern databases offer considerable flexibility
in defining security (access control) policies: administrators
may specify user- and group-specific access control lists
(ACLs) that control which tables users have access to, and
of what type €.g., read-only, read-updategtc) [3]. One
common implementation of this is by definingews and then
specifying GRANT and REVOKE privileges on these views
for each user or group [20]. A view is formed by joining
and selecting specific columns from different tables, based on
some predicate, usually defined via an SQL predicate. For
example, the following SQL code snippet defines a new view,
smalltransactionsanonymizedthat contains data from two
other tables:
CREATE VIEW \

transactions_anonymized(city,amount) AS
SELECT branch.city, transaction.amount
Fig. 2. FlowPuter infrastructure distributed across 3 branches FROM branch, transaction

of a company. WHERE branch.city == transaction.city AND
transaction.amount < 1000;

Branch 2
\| External link 1

1For the remainder of this discussion, we only use the term encryptid|$, called amate”al_'zed V'eWAItemat'Velyv V'rtu?‘l V'_ewscan
integrity-protection transforms are implied. be formed at the time a user query on that view is evaluated.

Virtual views can be considered a form fiter, defining has worked admirably for resource contention systems, the
which database records the user's queries are allowedflawputer has certain traits that necessitate new paradigms for
operate on, in a manner similar to “predicate routing” [19]. It iperformance analysis. On the one hand, the constant stream of
this observation that makes this approach particularly attractwetwork data to process suggests that the non-linearity at 0, the
for use in our flowputer: rather than try to determine eadtane of traditional queuing analysis, can be ignored, making
user’s access rights at the time the query is submitted, we dé@ simpler. On the other hand, the typical assumption of
simply rewrite the query to operate in a virtual view defined bylarkovian (memoryless) arrivals used in queuing theory, devi-
the user’s privileges. The virtual view definition and the user&tes from the arrival pattern we expect to see in the flowputer
query can be combined by the (trusted) flowputer controllefades. As the example in Section Il suggests, different blades
into a larger,interweavedquery, which is then passed on toof the flowputer would perform different subtasks based on
the query optimizer and translator. The interweaved querytlee installed filters. As the stream progresses between blades,
then broken up into sub-queries and filters that are distributége computational tasks become more and more specific and
among the appropriate flowputer processing units. “easier” in some sense.

Here, the tools of Information Theory and Signal Processing
VI. PROGRAMMING LANGUAGES AND seem appropriate for performance analysis. Each blade can
COMPILERS FORFLOWPUTERS be modeled as having a certain cycle budget, denoting its

The architecture and application space of flowputers prbandwidth. The data-flow stream has a cycle budget for each
vides a rich research area for exploring new algorithmarriving packet. Carrying the analogy further, we can associate
programming languages, and compilation techniques to facal-“power spectral density” of the data stream in terms of the
itate software development for flow-computing application€PU cycles required per classify/act/forward operation — note
Processing in the flowputer is done in the data-plane atitht this also depends on the nature of the filter installed at a
involves classifying and manipulating nested tags at mulparticular blade. The blade is then modeled as a bandpass filter.
gigabit per second rates across several layers of the protodsl the filter/classify/forward actions become more specific,
stack. the “bandwidth” of the flow becomes increasingly narrower.

This type of classify-act-forward processing is ideal fomn that sense, we should be able to identify the computational
the development and refinement of pattern-action orientedpacity of a flowputer system, much like the Shannon capac-
scripting languages such as Netscript or Awk for the rapid aiit§ of a communication channel. The problem of scheduling
robust development of flowputer applications. A critical aspedtta in a flowputer environment is then mapped to the problem
in the development of flowputer software and languages is tbdesigning efficient codes to achieve the Shannon capacity
development of compilers that can translate the tag-processgiiga communication chanrfel
functions into ultra-efficient code for the computational ele- This new approach to performance analysis will also lead
ments on the flowputer blades. to a better understanding of the connection between compu-

There are several challenges to the development of theggonal complexity, networking, and information theory [9],
kinds of high-performance compilers. One is the creation gf question that has been the pursuit of researchers for quite
efficient pattern-matching algorithms to locate the relevagbme time. This is elucidated by a phenomenon observed last
fields of the nested tags. We anticipate that the classificatigidar. The spread of Code Red and Nimda viruses led to a
processing and routing of the flows needs to be accomplish@gdjor disruption of the Internet routing infrastructure [18].
in one or two processor cycles. The second and perhapge of the conjectured causes was that the infected machines
most difficult challenge is the development of code generatigfere scanning random IP addresses on the Internet for attacks,
and optimization techniques for the network processors usged the edge routers next to the infected machines could
in our system architecture. The use of network processeigt keep up with classify/act/forward demands of the wildly
has the potential advantage of very high-performance stre@iittuating destination IPs of the scan probes. A router linecard
processing, but network processors are notoriously difficult { the simplest example of a flowputer. In the Information
program. theory/Signal processing model we have for performance

For example, current code generation and register allocati@falysis of the flowputer, the random IP probe data stream
techniques cannot handle the idiosyncratic register banks @tresponds to a high bandwidth flow, beyond the cycle budget
the IXP1200 (two general-purpose banks, two SRAM-memogy the bandwidth of a linecard (blade). Simple signal theoretic
interface banks, and two SDRAM-memory interfaces bankghalysis can then reveal the vulnerability of the linecard to
with the quirky data-path arrangements between the banlata streams having a spectrum beyond its capabilities. On the
Transactions to memory must be performed in sets of adjaceffier hand, flows with correlated destination networks.,
registers - a problem that is well-known to increase theCP window bursts, are much easier to handle, carry a much
difficulty of optimal code generation even in simple machingwer cycle budget and would correspond to a low bandwidth
architectures. flow.

VIl. PERFORMANCEANALYSIS In summary, we .believe that the performan.ce analysis of
' the emerging architecture of the flowputer yields both re-
The performance analysis of the flowputer unveils several

intriguing challenges. Traditional analy.SiS of c.omputer SYS-2Note that the emphasis on throughput rather than latency makes this
tems has employed queuing theory. While queuing theory [Ldradigm particularly appropriate.

search challenges as well as promising avenues for a degp@rD. Moore, C. Shanning, and K. Claffy. Code-Red: a case study on

understanding of the connection between computational and the spread and victims of an Interet worm. fmoceedings of the
. . 2nd Internet Measurement Workshop (IM\Wages 273-284, November
communication complexity. 2002.
[19] T. Roscoe, S. Hand, R. Isaacs, R. Mortier, and P. Jardetzky. Predicate
Routing: Enabling Controlled Networking. IRroceedings of the First
VIIl. CONCLUSION Workshop on Hot Topics in Networks (HotNets@ctober 2002.
] . _[20] P. Selinger. Authorizations and Views. Distributed Data Bases
We have described a new cluster architecture that unifies Cambridge University Press, New York, NY, 1990.

switch, server and storage processing. Our architecture fed4 B. Wade and P. Griffiths. An Authorization Mechanism for a Relational
g€ p 9 Database SystenACM Transactions on Database Systepeges 243—

significant scalability advantages over existing approaches. 55 september 1976.
It offers the potential to provide wire-speed processing to
applications, to give rapid access to huge increases in data
capacity and to incorporate new advances in security.

The architecture provides significant advantages to applica-
tion developers as well. It simplifies applications development
by unifying switch, server and storage processing. It also
allows application developers to take advantage of wire-speed
processing, build greater resiliency and security into their
applications, and exploit finer-grain parallelism than with
current architectures.

REFERENCES

[1] TPC-H Benchmark results. http://www.tpc.org/.

[2] E. Bertino, S. Jajodia, and P. Samarati. Supporting Multiple Access
Control Policies in Database Systems. Rmnoceedings of the IEEE
Symposium on Security and Privadytay 1996.

[3] E. Bertino, S. Jajodia, and P. Samarati. A Flexible Authorization Mech-
anism for Relational Data Management Syste®8M Transactions on
Information Systemsl7(2):101-140, April 1999.

[4] E. Bertino, P. Samarati, and S. Jajodia. An Extended Authorization
Model for Relational DatabasedEEE Transactions on Knowledge Data
Engineering 9(1):85-101, January-February 1997.

[5] T. F. Bowen, M. Cochinwala, G. Gopal, G. E. Herman, T. M. Hickey,
K. C. Lee, W. H. Mansfield, and J. Raitz. Achieving throughput and
functionality in a common architecture: The Datacycle experiment. In
PDIS, page 178, 1991.

[6] T.F. Bowen, G. Gopal, G. E. Herman, T. M. Hickey, K. C. Lee, W. H.
Mansfield, J. Raitz, and A. Weinrib. The Datacycle architect@&CM,
35(12):71-81, 1992.

[7] S. Castano, S. Fugini, M. Martella, and P. Samarfatitabase Security
ACM Press/Addison-Wesley Publ. Co., New York, NY, 1995.

[8] S. Chaudhuri and V. R. Narasayya. An efficient cost-driven index
selection tool for Microsoft SQL Server. IRroceedings of the 23rd
VLDB Conferencepages 146-155, 1997.

[9] A. Ephremides and B. Hajek. Information theory and communication
networks: An unconsummated uniofEEETIT: IEEE Transactions on
Information Theory 44, 1998.

[10] R. Fagin. On an Authorization MechanismACM Transactions on
Database System8(3):310-319, 1978.

[11] J. Gray. What next?: A dozen information-technology research goals.
JACM, 50(1):41-57, 2003.

[12] G. E. Herman, G. Gopal, K. C. Lee, and A. Weinrib. The Datacycle
architecture for very high throughput database systemsSIGMOD
Conferencepages 97-103, 1987.

[13] A. D. Keromytis, J. L. Wright, and T. de Raadt. The Design of the
OpenBSD Cryptographic Framework. Froceedings of the USENIX
Annual Technical Conferencdune 2003.

[14] M. Kitsuregawa and H. TanakaDatabase Machines and Knowledge
Base Machinesvolume 43 ofBook Series: The Kluwer International
Series in Engineering and Computer ScienceKluwer Academic
Publisher, Boston, MA, USA, January 1988.

[15] L. Kleinrock. Queueing Systems, Volume I: Thedwiley-Interscience,
1975.

[16] T. Lunt. Access Control Policies for Database System®dtabase Se-
curity 1l: Status and Prospectpages 41-52. North-Holland Publishing
Co., Amsterdam, The Netherlands, 1989.

[17] S. Miltchev, S. loannidis, and A. D. Keromytis. A Study of the Relative
Costs of Network Security Protocols. Proceedings of the USENIX
Annual Technical Conference, Freenix Trapages 41-48, June 2002.

