
1

FlowPuter: A Cluster Architecture Unifying Switch,
Server and Storage Processing

Alfred V. Aho, Angelos D. Keromytis, Vishal Misra, Jason Nieh, Kenneth A. Ross, Yechiam Yemini
Department of Computer Science

Columbia University
{aho,angelos,misra,nieh,kar,yemini }@cs.columbia.edu

Abstract— We present a novel cluster architecture that unifies
switch, server and storage processing to achieve a level of
price-performance and simplicity of application development not
achievable with current architectures. Our architecture takes
advantage of the increasing disparity between storage capacity,
network switching on the one hand, and processing power of
modern processors and architectures on the other. We propose
the use of Network Processors (NPUs), which can apply simple
classify/act/forward operations on data packets at wire speeds, to
split processing of operations such as complex database queries
across a network. We quantify the theoretical benefits of such
an architecture over traditional server-cluster approaches using
warehouse database queries as a motivating application. We
also discuss the challenges such an architecture presents to
programming language design and implementation, performance
analysis, and security.

KeyWords: Dataflow processing, Network Processors, Data
Warehouses, Security, Compilers, Performance.

I. I NTRODUCTION

Traditional computing assumes that I/O speeds are substan-
tially slower than CPU-memory speed. Emerging network and
storage technologies have been stretching this assumption to
its limits. Optical wire-speeds already range in the 10-40 Gbps,
on par with CPU-memory bandwidth, while hard-disk drives
are delivering 2.5 Gbps. With both wire-speed and storage
density technologies improving faster than silicon speeds,
it is not unreasonable to assume that raw I/O speeds can
continue to outgrow CPU-memory speeds this decade. This
speed inversion will have a profound impact on computing.

Despite these dramatic improvements in raw I/O speeds,
traditional computing approaches will not be able to take
advantage of these advances in hardware technology. Current
applications are often structured assuming fast random access
to data. While raw bandwidth is increasing at a dramatic rate,
access times are not. Consider disk storage technology as
an example. Disk storage density is increasing at a rate of
100 percent a year, much faster than Moore’s law. Even if
disk rotational speed remains constant, this improvement in
density can translate into an equivalent percentage increase
in sequential throughput rate since there is that much more
data that can be accessed in each disk rotation. However, disk
access times are only increasing at a rate of about 10 percent
a year. As a result, random I/O access patterns that each incur

Part of this research was funded by NSF CAREER award ANI-0238299
and NSF Contracts CCR-TC-0208972 and IIS-01-20939.

disk access times will continue to be relatively slow while
sequential I/O access speeds outstrip CPU-memory speeds.

Growth in storage capacity and in respective content flows
has been stimulating commensurable growth in the sizes
of data sets. Sensors are producing an enormous amount
of data that can be manipulated and processed, multimedia
documents are many times richer and larger than their plain
text counterparts, streaming media is becoming increasingly
common, high-definition imaging and visualization is increas-
ingly common for medical and scientific applications, and
large databases and data warehousing applications are a multi-
billion dollar business. With the first multi-TB drives expected
in 2005 and with numerous application scenarios requiring
processing data in real-time with its flow to storage, processing
multi-TB at 10 Gbps or more is not an unrealistic expectation
for applications needs by the end of the decade.

The confluence of changing hardware technology and in-
creasing I/O application demands requires a fundamental shift
in computing technology. We propose Flow Computing, a new
approach to computing that leverages the continuing rapid
improvements in network and storage speeds. Our proposed
approach uses a switch-like architecture to circulate data
repeatedly through a high-speed network to and from disks.
Primary computations on data flowing through the switch
architecture classify and filter data in a highly parallelized and
pipelined manner to provide a high cycle budget to process a
high-speed sequential flow of structured data units. To pro-
vide the necessary processing cycles, the architecture utilizes
chip-level parallelism provided by generic network processors
(NPUs) or FPGA-based approaches. Network flows are then
multicast and routed among NPUs to enable processing by
multiple applications. We call such such a hardware/software
organization aflowputer.

Emerging server, switch and storage architectures have
been converging to support flowputer scalability. Specifically,
dense-blade servers are already organized into a switch-like
architecture to provide scalable cycle budget and switching
capacity to handle network flows; switches, likewise, have
been incorporating higher-layer processing functions and using
NPUs/FPGAs to provide the cycle-budget, with some switches
already integrating server blades; both could be used to
support Flowputing software architectures. There is thus a
need to develop better Flowputing software technologies that
can exploit and guide these emerging hardware architectures
in accomplishing cycle-efficient, software-efficient and flow-



2

efficient flow processing.
In the remainder of this paper, we explore the vision of the

flowputer architecture in more detail, using data warehousing
as a motivating example, explained in detail in Section II. The
warehouse example is generic and its considerations generalize
easily to other I/O-intensive processing application scenarios,
including streaming media and image processing, database
processing, XML document-store processing, and speech pro-
cessing. In particular, we discuss the potential benefits to
be had from such an architecture (Sections III and IV), and
the challenges from the security, programming language, and
performance analysis standpoints (Sections V, VI, and VII
respectively).

II. DATA WAREHOUSING USINGFLOW

COMPUTING

A large organization can gather all of its data into a single
very large database for the purpose of analyzing various as-
pects of its enterprise. This activity is calleddata warehousing,
and there is currently a multi-billion dollar market for data
warehousing systems. The value of the data warehouse is that
it can provide access to detailed information about current
activities that enable the organization to adjust its behavior.
The data warehouse is optimized for fast query performance,
with updates happening in batches. Since most queries touch
large quantities of data, and since answers are not required
in real-time, the overall performance metric is typically query
throughput.

Most current data warehousing systems are based on large
clusters of commodity processors [1]. Such systems have two
potential weaknesses. The first weakness is how the system
scales with increases in the query workload, given a fixed
large data set. Because disks and data are highly distributed,
it is hard to share work (such as I/O) between queries. As
a result, the hardware resources, from the CPU to the disks,
need to scale in proportion to the aggregate query workload.

The second weakness is manageability. Query process-
ing and optimization is a very complex process, and query
optimizers for commercial data warehousing systems are
extremely intricate pieces of software. Query optimization
depends on a very large number of parameters, including
(potentially for each column of each table) information about
physical layout, index availability, replication, etc. The result-
ing complexity makes managing such a data warehouse labor
intensive. Despite recent efforts such as the SQL server index
selection wizard [8], choosing good parameters for a large
database installation remains an art that requires highly skilled
administrators. The management costs of database installations
have begun to dominate the overall cost of ownership [11].

An alternative, visionary perspective was provided as early
as the late 1980s by the Datacycle system [12], [5], [6],
which resembles a flowputer. A data pump cycles through the
entire database, transmitting it over a network. Data processors
tap into the network through a custom-built VLSI interface.
The interface is capable of performing filtering operations in
hardware, so that processors see only data relevant to their
queries. Many processors, each with their own interface, could

potentially tap into the same network, thus sharing a single
data flow for different operations.

Compared with a cluster of commodity processors, the
Datacycle system scales better with respect to the query
workload. As the query workload increases, one needs only
to add processors and interfaces to the shared network. The
underlying data storage and pump infrastructure does not
need to get bigger. Further, as recognized by the Datacycle
architects, the overall system is easier to manage. Indexes are
not used, since all a processor has to do is set a filter for the
appropriate data and it will be captured as it flows past on the
network. Similarly, query processors do not have to concern
themselves with issues of physical layout of data on disks. As
a result, there are far fewer parameters, and management of
the whole system is simpler.

Like much of the “database machine” research of that pe-
riod [14], the Datacycle architecture suffered from a fatal flaw:
it used special-purpose fabricated hardware. As commodity
processors rapidly improved in performance, any performance
advantages provided by the special hardware quickly evapo-
rated, unless expensive design and fabrication was undertaken
with each new VLSI technology.

We argue that the time has come to revisit this kind
of architecture, because commodity switches now have the
capability to provide the filtering capabilities provided by
the VLSI interfaces in the Datacycle system. As a result, a
“commodity flowputer” can provide all of the advantages that
the Datacycle architecture promised, without its fatal flaw.

In fact, we believe that a flowputer can go beyond the
capabilities of the Datacycle architecture in several important
ways. Ironically, the Datacycle system predates the entire
field of data warehousing, and so people have not studied in
depth how complex query processing could utilize such an
architecture.

III. T HE FLOWPUTER ARCHITECTURE

Emerging clusters redefine computing in terms of stack pro-
cessing, and redefine switching in terms of classify/act/forward
operations that use any packet header (and even contents)
as filters. Furthermore, they redefine storage access in terms
of routing I/O accesses within virtual storage spaces. There
is, therefore, an emerging confluent semantic of computing,
switching and I/O whereby data, tagged by multiple layers,
flows through engines that apply classify/act/forward pro-
cessing to these tags. We call this unifying semantic flow-
processing and the engine that handles it aflowputer. A
flowputer that processes a database stream views the task
as classifying and processing nested tags–whether these are
implicit in the structure of TCP/IP headers, explicit in the
HTTP headers, or defined by SOAP and other XML libraries,
and represent fields of a database record, or a virtualization
mapping that indicates storage routing. A flowputer manipu-
lates flows of such tagged data at all layers using a common
platform.

The hardware architecture of a flowputer is depicted in
Figure 1. Flowputer blades incorporate powerful Network
Processor (NPU) hardware to provide the cycle budget needed



3

for wire-speed processing of tagged flows; network flows are
delivered to/from a flowputer blade through interface hard-
ware. Flowputer blades are interconnected by a fast switching
fabric.

FABRIC

interfaceNPU

Control/management−plane
servers

Server blade

Flowputer blade

Wire−speed
data−plane

Flowputer blade

Fig. 1. FlowPuter hardware architecture.

The software architecture of a flowputer is organized along
a data-plane and control/management-plane separation. The
control-plane software has a standard server architecture; its
main function is to manage and configure tag-processing
functions of the data-plane (e.g., maintain and load tag
libraries, configure routing relationships among data-plane
modules, configure shared data of data-plane modules,etc.).
The data-plane software consists of a light-weight run-time
execution environment to process tagged flows through clas-
sify/act/forward modules and channels.

In a typical scenario, a database flow arrives at a flowputer
blade through a network connection. The flowputer processes
the network stack to direct the database flow to respective
processing channels. The flow may be multicast to multiple
applications executing at different flowputer blades. Each such
application may process the flow through multiple channels
organized as pipelined and/or parallel classify/act/forward op-
erations. The database records may be filtered through chan-
nels that project or select records as defined by an application.
Thus, a large number of simultaneous queries may be applied
concurrently to the same database.

The flowputer accomplishes significant scaling efficiency
over current clusters. This efficiency arises from several fac-
tors:

1) The flow processing model eliminates the typical over-
heads of synchronizing I/O events with process events.
The flowputer processes are optimized to service flow
events and involve minimal overheads.

2) The flowputer hardware uses specialized classifica-
tion/forwarding elements to dramatically accelerate the
classify/forward parts of processing; thus a tag may be
classified in a single processor cyclevs. hundreds of
cycles needed to process it on a CPU.

3) The flowputer exploits the much larger cycle budget
provided by NPUs, which use pipelined/parallel micro-
engines.

4) The flowputer enables a scalable number of concurrent
applications to share storage I/O access. For example,
thousands of database queries may be processing the
database concurrently by sharing its flow.

These different scaling efficiencies create a fertile ground

for superior performance over farm architecture. Table I con-
trasts the scaling features of a flowputer against a more tradi-
tional server-cluster in processing a warehouse. We consider
four scenarios (rows 2-5) through which the size of the ware-
house(c2) and the number of applications that process it(c4)
grow, while the processing time to complete these applications
(c3) shrinks. The table makes the following assumptions:
• The NPU offers 8 pipelines of 4 stages, operating at

250 Mhz, for a total cycle budget of 8 Ghz, contrasted
with 1 Ghz CPUs of the server-cluster. Both the server-
cluster and the flowputer are operated at 50% utilization
to minimize queuing.

• The server-cluster CPUs requires 4,000 cycles to process
a warehouse record (500 to classify, 500 for handling
and 3k overheads) while the flowputer takes 1,000 cy-
cles, by reducing the overheads and using fast classi-
fiers/forwarders.

• The warehouse storage systems can be accessed over
the network links at 1 Gb/sec per TB stored; when the
applications demand storage access bandwidth exceeding
the capacity of storage systems, the warehouse is repli-
cated; replication and competition over storage access
add overheads that increase the cycle budget required
by 2% for each additional application. The server-cluster
applications access storage randomly, retrieving 1 MB
chunks per access; the flowputer uses sequential access
to retrieve very large (>50 MB) blocks, increasing the
effective bandwidth by minimizing the impact of seek
time.

Under these assumptions, it is simple to compare the
scalability features of these architectures:

1) Columnsc5 and c6 contrast the required number of
server-cluster CPUsvs. flowputer NPUs, illustrating
their relative efficiency in scaling the cycle budget. Un-
der scenario B, for example, the server-cluster requires
53 CPUs while a flowputer requires 2 NPUs. Even sce-
nario D would require just 1-2 flowputers with 66 NPUs,
contrasted with a server-cluster requiring hundreds of
blades. The ratio #CPU/#NPU, measuring the cycle-
budget scaling efficiency of the flowputer, grows from 3
to 51.

2) Columnsc7 and c8 contrast the storage access band-
width (BW) required by the two architectures. For
example, under scenario C the flowputer requires access
at 4 Gb/sec, entirely resulting from the need to move
4TB in 2 hours. In contrast, the server-cluster requires
196 Gb/sec, primarily resulting from the need to support
the aggregate storage access needs of 20 applications.

3) Columnsc9 and c10 contrast the number of replicated
copies of the warehouse needed to support the access
bandwidth of concurrent applications. A server-cluster
would need to replicate the warehouse creating as many
as 147 copies to handle scenario D. The flowputer does
not require replication of the data.

IV. U SING FLOWPUTER IN DATA WAREHOUSING

We focus now on two novel uses of the switch infrastructure
to process queries in ways not possible either with a conven-



4

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
Scenario Warehouse Processing # Apps #CPU #NPU BW Farm BW Flwptr #Rplca #Rplca

Size (TB) Time (hr) farm Flwptr (Gb/sec) (Gb/sec) Farm Flwptr
A 1 4 1 3 1 1.2 0.6 2 1
B 2 4 10 53 2 24 1 12 1
C 4 2 20 487 11 196 4 49 1
D 8 1 30 3334 66 1173 18 147 1

TABLE I

Scaling Effects For A Warehouse Processing Example.

tional database cluster, or with the basic Datacyle architecture.
We then conclude this section by highlighting some additional
research questions we plan to address.

A. Aggregation in the Switch

Assume a dataflow of records represented in a format that
can be interpreted by the switch hardware. The switch can
extract a database field and perform a filtering operation, so
that records matching a condition are sent along an appropriate
processing path. Cascades of filters can be programmed into
a switch.

In addition to filters, some query processing can also be
performed in the switch itself. For example, consider the
following query:

SELECT US_State, Sum(sales)
FROM transaction-table
WHERE date > 01-01-2002
GROUP BY US_State

One way to perform this query is to filter the records on
“date” and then send the matching records to a CPU for
aggregation. An alternative way to execute this query is to
compute the aggregatesin the switch. Since there are 50
States in the US, the switch needs to allocate memory for
50 accumulators, which are initialized to zero. 50 filters are
created, one per State. Records that match the date criterion
are then run against these 50 filters. Since the filters are in
associative memory, the filters on State take only one unit of
time. When a State filter matches, the local accumulator is
incremented by the value of “sales” in the current record.

The advantage of this alternative plan is that both network
traffic and computational work is removed from the CPUs.
The extra bandwidth and processing capacity can be used for
other queries. Such a plan requires certain resources, namely
memory for filters and accumulators. Modern switches have
the capacity for millions of filters and accumulators. These
resources must be allocated in a fashion that maximizes their
benefits for overall query processing.

B. Dynamic Load Balancing

In a conventional clustered database system there is an
extensive reliance on parallel processing among the nodes. In
order to maximally utilize resources, query processing plans
must have access to data distribution statistics. Even with such

access, it is often very difficult to accurately estimate the size
of intermediate results. As a result, the allocation of work
among the nodes may be suboptimal, giving too much work
to some, and too little to others, increasing the response time
of the query. Even worse, the derivation of a query processing
plan usually does not take into account what other queries
may be running on each node. A single overburdened node
can thus slow down the entire query. Shipping sub-queries
from one node to another is often impractical due to the large
data sizes.

A flowputer, on the other hand, sees a single unified input
data stream, and can divide up the work dynamically based
on current workload statistics. For example, suppose that we
have four CPUs C1 through C4 processing an aggregate query.
The switch divides the input into four disjoint streams, one per
CPU, using a hash function H on the input data stream. Each
CPU computes aggregates over its input. In a final step, the
values from each of the four CPUs are combined to answer
the query. Using four CPUs gives us a degree of parallelism,
as well as four times the net bandwidth of a single CPU.

In a flowputer, we can adjust the hash function H dynam-
ically. If C1 is getting more than its share of records due
to some bias in the data distribution, we can modify H so
that a smaller range of hash values gets mapped to C1, and a
larger range gets mapped to other processors. Similarly, if C2
happens to be running slowly because of other queries in the
system, the switch may dynamically increase the proportion
of records mapped to C1, C3 and C4 by adjusting H. Note
that adjustments due to data skew or machine overloads are
handled in the same way, at query-processing time.

V. FLOWPUTER SECURITY

The flowputer architecture is, by nature, exposed to certain
risks not present in a traditional warehouse. In particular, since
the warehouse records are transmitted over a network and
queries are evaluated in a distributed manner across a number
of NPUs, we are concerned both about data confidentiality
and integrity (i.e., preventing an outsider from obtaining the
data by placing a tap one of the network links), as well as
access control (ensuring that legitimate users can access only
data for which they are authorized). Currently, data warehouses
are typically protected from outsiders by firewalls and physical
measures; access control is performed by the database server,
by restricting the database tables to which a query has access.



5

A. Data Security

To the extent that the entire flowputer can be kept physically
and virtually isolated from the public network, similar mea-
sures against outside attackers will be equally (in)effective.
However, when we consider a distributed enterprise, where
each branch needs access to specific tables and records, we
must treat the interconnecting links as part of the public net-
work. The only currently-known practical security mechanism
for protecting data confidentiality and integrity over such links
is cryptography1.

Although the current generation of cryptographic accelera-
tors cannot sustain the flowputer’s data rates, future versions
that can accommodate data rates of 10 Gbps have been
announced by different vendors. However, as is shown in [13],
the limiting factor often is not the hardware itself. Rather, the
combination of the PCI (shared bus) architecture and tradi-
tional operating-system design (which abstract device drivers,
network protocols,etc.,by using general-purpose APIs) place
a ceiling on the maximum achievable throughput long before
the hardware limits are reached (for example, the maximum
achievable data-encryption rate on a 4.22 Gbps 64-bit/66Mhz
PCI bus is only 840 Mbps [13]). As was discussed in [17],
one way to improve performance is to farm-out encryption
to a dedicated node (akin to a firewall). Even in that case,
however, storage capacity and network bandwidth are likely to
increase faster than cryptographic processing capacity (which,
in general, is limited by the same constrains as general-purpose
CPUs).

E

F

G

External link 1

Branch 1

Branch 2

Data Warehouse

FlowPuter component

Edge FlowPuter component

Data Flow A

External link 2

Data Flow B

A

B

C

D

Fig. 2. FlowPuter infrastructure distributed across 3 branches
of a company.

Consider the network shown in Figure 2. Within the perime-
ter of each branch, data can remain unprotected; when travers-
ing the external links, data must be appropriately protected. To
minimize the amount of records that must be encrypted, we
can push part of the data-filtering predicate for Data Flow

1For the remainder of this discussion, we only use the term encryption;
integrity-protection transforms are implied.

A inside the warehouse perimeter. The query optimizers of
traditional databases performs a very similar task in selecting
the order in which a query’s sub-expressions are evaluated.
So, in this example, nodes A, B, and C would be configured
such that they would maximally prune Data Flow A.

A complementary approach is to encrypt each table sep-
arately, as part of a separate data flow. Assuming all the
flowputer components have some encryption functionality (as
the IXP425 network processor does), it may be possible to
configure nodes A, B, and C to encrypt 3 independent data
flows that are all destined for Branch 1; similarly, decryption
can be staggered among nodes D, E, F, and G: node D can
decrypt the data stream (corresponding to a particular table)
that node E will need, node E will do likewise for the data
stream node F will need,etc.The same encryption/decryption
staggering can be performed for one flow: if Data Flow
A is composed of only one table’s data, nodes A, B, and
C can interleave their encryption processing to achieve the
best performance. Thus, a longer path inside the Warehouse
network will allow more data to be encrypted at the cost of
link bandwidth and processing capacity. Other such tradeoffs
exist, and they must be taken into consideration when flow
scheduling is done. Such optimization strategies have not
been considered in the realm of traditional database query
processing, and thus pose an interesting and open problem.

B. Access Control

Mechanisms for determining access rights to tables and
records in the database (access control) have been the fo-
cus of considerable research [21], [10], [16], [7], [2], [4].
Beyond the simplistic and inadequate binary access control
model (i.e., properly authenticated users have access to all
the records), modern databases offer considerable flexibility
in defining security (access control) policies: administrators
may specify user- and group-specific access control lists
(ACLs) that control which tables users have access to, and
of what type (e.g., read-only, read-update,etc.) [3]. One
common implementation of this is by definingviews, and then
specifying GRANT and REVOKE privileges on these views
for each user or group [20]. A view is formed by joining
and selecting specific columns from different tables, based on
some predicate, usually defined via an SQL predicate. For
example, the following SQL code snippet defines a new view,
small transactionsanonymized,that contains data from two
other tables:

CREATE VIEW \
transactions_anonymized(city,amount) AS

SELECT branch.city, transaction.amount
FROM branch, transaction
WHERE branch.city == transaction.city AND

transaction.amount < 1000;

If the administrator allows a user to access only this view,
then that user can execute queries using the columns present
in the view (city and amount), but cannot access any other
columns in tablesbranch and transaction. If the table is
actually computed and the results stored in the database, it
is called amaterialized view.Alternatively, virtual viewscan
be formed at the time a user query on that view is evaluated.



6

Virtual views can be considered a form offilter, defining
which database records the user’s queries are allowed to
operate on, in a manner similar to “predicate routing” [19]. It is
this observation that makes this approach particularly attractive
for use in our flowputer: rather than try to determine each
user’s access rights at the time the query is submitted, we can
simply rewrite the query to operate in a virtual view defined by
the user’s privileges. The virtual view definition and the user’s
query can be combined by the (trusted) flowputer controller
into a larger,interweavedquery, which is then passed on to
the query optimizer and translator. The interweaved query is
then broken up into sub-queries and filters that are distributed
among the appropriate flowputer processing units.

VI. PROGRAMMING LANGUAGES AND

COMPILERS FORFLOWPUTERS

The architecture and application space of flowputers pro-
vides a rich research area for exploring new algorithms,
programming languages, and compilation techniques to facil-
itate software development for flow-computing applications.
Processing in the flowputer is done in the data-plane and
involves classifying and manipulating nested tags at multi-
gigabit per second rates across several layers of the protocol
stack.

This type of classify-act-forward processing is ideal for
the development and refinement of pattern-action oriented
scripting languages such as Netscript or Awk for the rapid and
robust development of flowputer applications. A critical aspect
in the development of flowputer software and languages is the
development of compilers that can translate the tag-processing
functions into ultra-efficient code for the computational ele-
ments on the flowputer blades.

There are several challenges to the development of these
kinds of high-performance compilers. One is the creation of
efficient pattern-matching algorithms to locate the relevant
fields of the nested tags. We anticipate that the classification,
processing and routing of the flows needs to be accomplished
in one or two processor cycles. The second and perhaps
most difficult challenge is the development of code generation
and optimization techniques for the network processors used
in our system architecture. The use of network processors
has the potential advantage of very high-performance stream
processing, but network processors are notoriously difficult to
program.

For example, current code generation and register allocation
techniques cannot handle the idiosyncratic register banks on
the IXP1200 (two general-purpose banks, two SRAM-memory
interface banks, and two SDRAM-memory interfaces banks)
with the quirky data-path arrangements between the banks.
Transactions to memory must be performed in sets of adjacent
registers - a problem that is well-known to increase the
difficulty of optimal code generation even in simple machine
architectures.

VII. PERFORMANCEANALYSIS

The performance analysis of the flowputer unveils several
intriguing challenges. Traditional analysis of computer sys-
tems has employed queuing theory. While queuing theory [15]

has worked admirably for resource contention systems, the
flowputer has certain traits that necessitate new paradigms for
performance analysis. On the one hand, the constant stream of
network data to process suggests that the non-linearity at 0, the
bane of traditional queuing analysis, can be ignored, making
life simpler. On the other hand, the typical assumption of
Markovian (memoryless) arrivals used in queuing theory, devi-
ates from the arrival pattern we expect to see in the flowputer
blades. As the example in Section II suggests, different blades
of the flowputer would perform different subtasks based on
the installed filters. As the stream progresses between blades,
the computational tasks become more and more specific and
“easier” in some sense.

Here, the tools of Information Theory and Signal Processing
seem appropriate for performance analysis. Each blade can
be modeled as having a certain cycle budget, denoting its
bandwidth. The data-flow stream has a cycle budget for each
arriving packet. Carrying the analogy further, we can associate
a “power spectral density” of the data stream in terms of the
CPU cycles required per classify/act/forward operation — note
that this also depends on the nature of the filter installed at a
particular blade. The blade is then modeled as a bandpass filter.
As the filter/classify/forward actions become more specific,
the “bandwidth” of the flow becomes increasingly narrower.
In that sense, we should be able to identify the computational
capacity of a flowputer system, much like the Shannon capac-
ity of a communication channel. The problem of scheduling
data in a flowputer environment is then mapped to the problem
of designing efficient codes to achieve the Shannon capacity
of a communication channel2.

This new approach to performance analysis will also lead
to a better understanding of the connection between compu-
tational complexity, networking, and information theory [9],
a question that has been the pursuit of researchers for quite
some time. This is elucidated by a phenomenon observed last
year. The spread of Code Red and Nimda viruses led to a
major disruption of the Internet routing infrastructure [18].
One of the conjectured causes was that the infected machines
were scanning random IP addresses on the Internet for attacks,
and the edge routers next to the infected machines could
not keep up with classify/act/forward demands of the wildly
fluctuating destination IPs of the scan probes. A router linecard
is the simplest example of a flowputer. In the Information
theory/Signal processing model we have for performance
analysis of the flowputer, the random IP probe data stream
corresponds to a high bandwidth flow, beyond the cycle budget
or the bandwidth of a linecard (blade). Simple signal theoretic
analysis can then reveal the vulnerability of the linecard to
data streams having a spectrum beyond its capabilities. On the
other hand, flows with correlated destination networks,e.g.,
TCP window bursts, are much easier to handle, carry a much
lower cycle budget and would correspond to a low bandwidth
flow.

In summary, we believe that the performance analysis of
the emerging architecture of the flowputer yields both re-

2Note that the emphasis on throughput rather than latency makes this
paradigm particularly appropriate.



7

search challenges as well as promising avenues for a deeper
understanding of the connection between computational and
communication complexity.

VIII. C ONCLUSION

We have described a new cluster architecture that unifies
switch, server and storage processing. Our architecture has
significant scalability advantages over existing approaches.
It offers the potential to provide wire-speed processing to
applications, to give rapid access to huge increases in data
capacity and to incorporate new advances in security.

The architecture provides significant advantages to applica-
tion developers as well. It simplifies applications development
by unifying switch, server and storage processing. It also
allows application developers to take advantage of wire-speed
processing, build greater resiliency and security into their
applications, and exploit finer-grain parallelism than with
current architectures.

REFERENCES

[1] TPC-H Benchmark results. http://www.tpc.org/.
[2] E. Bertino, S. Jajodia, and P. Samarati. Supporting Multiple Access

Control Policies in Database Systems. InProceedings of the IEEE
Symposium on Security and Privacy, May 1996.

[3] E. Bertino, S. Jajodia, and P. Samarati. A Flexible Authorization Mech-
anism for Relational Data Management Systems.ACM Transactions on
Information Systems, 17(2):101–140, April 1999.

[4] E. Bertino, P. Samarati, and S. Jajodia. An Extended Authorization
Model for Relational Databases.IEEE Transactions on Knowledge Data
Engineering, 9(1):85–101, January-February 1997.

[5] T. F. Bowen, M. Cochinwala, G. Gopal, G. E. Herman, T. M. Hickey,
K. C. Lee, W. H. Mansfield, and J. Raitz. Achieving throughput and
functionality in a common architecture: The Datacycle experiment. In
PDIS, page 178, 1991.

[6] T. F. Bowen, G. Gopal, G. E. Herman, T. M. Hickey, K. C. Lee, W. H.
Mansfield, J. Raitz, and A. Weinrib. The Datacycle architecture.CACM,
35(12):71–81, 1992.

[7] S. Castano, S. Fugini, M. Martella, and P. Samarati.Database Security.
ACM Press/Addison-Wesley Publ. Co., New York, NY, 1995.

[8] S. Chaudhuri and V. R. Narasayya. An efficient cost-driven index
selection tool for Microsoft SQL Server. InProceedings of the 23rd
VLDB Conference, pages 146–155, 1997.

[9] A. Ephremides and B. Hajek. Information theory and communication
networks: An unconsummated union.IEEETIT: IEEE Transactions on
Information Theory, 44, 1998.

[10] R. Fagin. On an Authorization Mechanism.ACM Transactions on
Database Systems, 3(3):310–319, 1978.

[11] J. Gray. What next?: A dozen information-technology research goals.
JACM, 50(1):41–57, 2003.

[12] G. E. Herman, G. Gopal, K. C. Lee, and A. Weinrib. The Datacycle
architecture for very high throughput database systems. InSIGMOD
Conference, pages 97–103, 1987.

[13] A. D. Keromytis, J. L. Wright, and T. de Raadt. The Design of the
OpenBSD Cryptographic Framework. InProceedings of the USENIX
Annual Technical Conference, June 2003.

[14] M. Kitsuregawa and H. Tanaka.Database Machines and Knowledge
Base Machines, volume 43 ofBook Series: The Kluwer International
Series in Engineering and Computer Science. Kluwer Academic
Publisher, Boston, MA, USA, January 1988.

[15] L. Kleinrock. Queueing Systems, Volume I: Theory. Wiley-Interscience,
1975.

[16] T. Lunt. Access Control Policies for Database Systems. InDatabase Se-
curity II: Status and Prospects, pages 41–52. North-Holland Publishing
Co., Amsterdam, The Netherlands, 1989.

[17] S. Miltchev, S. Ioannidis, and A. D. Keromytis. A Study of the Relative
Costs of Network Security Protocols. InProceedings of the USENIX
Annual Technical Conference, Freenix Track, pages 41–48, June 2002.

[18] D. Moore, C. Shanning, and K. Claffy. Code-Red: a case study on
the spread and victims of an Internet worm. InProceedings of the
2nd Internet Measurement Workshop (IMW), pages 273–284, November
2002.

[19] T. Roscoe, S. Hand, R. Isaacs, R. Mortier, and P. Jardetzky. Predicate
Routing: Enabling Controlled Networking. InProceedings of the First
Workshop on Hot Topics in Networks (HotNets-I), October 2002.

[20] P. Selinger. Authorizations and Views. InDistributed Data Bases.
Cambridge University Press, New York, NY, 1990.

[21] B. Wade and P. Griffiths. An Authorization Mechanism for a Relational
Database System.ACM Transactions on Database Systems, pages 243–
255, September 1976.


