FirmEM: Firmware Flashing Detection via
Unintentional Electromagnetic Emissions

Elvan M. Ugurlu

Aether Argus Inc.

Atlanta, GA, US
elvan @aetherargus.com

Abstract—Ensuring the integrity of firmware running on
embedded systems—such as automotive Electronic Control Units
(ECUs)—is critical to system reliability and security. This pa-
per presents a lightweight, non-intrusive method for detect-
ing firmware flashing events using electromagnetic (EM) side-
channel emissions collected via low-cost software-defined radios
(SDRs). By focusing on short, deterministic update phases (e.g.,
bootloader-based flashing), we avoid the overhead of continuous
monitoring. We propose a kernel-based pattern matching frame-
work that identifies flashing operations by comparing short-time
spectral signatures to a reference. We validate this approach
on SAMV71 development boards and show that appropriate
frequency band selection is key to signal clarity. Cross-board
experiments reveal challenges related to hardware variability,
including missing components. These results highlight the feasi-
bility of EM-based firmware inspection in real-world, resource-
constrained environments.

Index Terms—EM side-channels, firmware verification, flash
detection, boot-load monitoring.

I. INTRODUCTION

Modern embedded systems, including those found in ve-
hicles, industrial machinery, and medical devices, rely on
firmware—Ilow-level software that interfaces directly with
hardware—to execute mission-critical functions. The integrity
of this firmware is therefore critical to ensuring reliable
and secure system behavior. In the automotive domain, for
example, electronic control units (ECUs) manage essential
operations such as braking, steering, and powertrain control.
Unfortunately, attackers have demonstrated the ability to mod-
ify embedded systems with malicious or outdated firmware,
bypassing traditional runtime protections and compromising
system functionality [1], [2].

While electromagnetic (EM) side-channel analysis has been
shown to reveal meaningful information about device behavior,
much of the prior work either relies on lab-grade equipment
or is restricted to FPGA platforms and simulation models
[3]. Other approaches for detecting firmware modifications
either require intrusive instrumentation, proprietary vendor
support, or high-cost side-channel measurement equipment.
There remains a gap in the literature for solutions that work
non-invasively, require no architectural support, and are viable
for low-cost field deployment.

In this paper, we present a practical and resource-
constrained EM monitoring framework for detecting firmware

Baki B. Yilmaz

Aether Argus Inc.

Atlanta, GA, US
baki@aetherargus.com

Angelos D. Keromytis
Aether Argus Inc.
Atlanta, GA, US

angelos @aetherargus.com

reflashing events and firmware variation on a real ARM-
based microcontroller equipped on SAMV71 boards [4]. Our
system focuses specifically on the bootloading phase, where
we demonstrate the feasibility of pattern-based recognition in
the time domain. This approach allows for fast detection and
reduced processing latency that could also be used in run-time
for continuous monitoring to detect certain events based on a
reference model trained on the EM signatures of these events.

Using a simple software-defined radio (SDR) receiver and
fixed-probe setups, we show that even constrained tools can
provide high-confidence detection of firmware flashing. We
then explore the extent of what more we can infer—including
cross-device generalization and robustness against manufac-
turing variance. This work raises important questions about
real-world deployment and also surfaces potential limitations
such as hardware variation or sensitivity to minor changes in
configuration. In summary, this paper makes the following key
contributions:

o Demonstrate firmware flashing detection using near-field
probes and low-cost SDRs (e.g., RTL-SDR, HackRF)
with minimal processing and narrow-band capture.

e Propose a kernel-based pattern matching framework for
fast, low-latency spectral signature detection.

o Identify deployment challenges due to hardware incon-
sistencies (e.g., missing components across boards).

« Provide evidence for broader applicability of the proposed
framework using advanced SDRs (e.g., USRPs) for finer-
grained runtime firmware differentiation.

The rest of this paper is organized as follows. Section
IT provides background on firmware security, existing EM-
based monitoring approaches, and motivates the need for
a lightweight and reliable firmware monitoring. Section III
presents our methodology for detecting firmware events using
EM emissions, including our kernel-based pattern matching
approach. In Section IV we describe our experimental setup.
Section V presents our experimental results, highlighting
detection performance and cross-device generalization under
hardware variability. Finally, Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION
A. Firmware Updates and Security

Embedded systems are pervasive in modern life, performing
critical tasks across a wide range of applications, such as

ECUs in automobiles. ECUs serve as the intelligence backbone
of vehicles, coordinating interactions among sensors, actua-
tors, and communication interfaces. They rely on embedded
firmware to execute real-time control functions and respond
to safety-critical events. This firmware is typically stored in
non-volatile memory (e.g., flash) and can be updated through
diagnostic interfaces, either via on-board diagnostic (OBD)
ports or remotely using over-the-air (OTA) mechanisms [5].

Firmware updates on such systems are typically deployed
as compiled images and written over serial or debugging
interfaces. Secure firmware updates often involve multiple
layers: authentication of the update source, integrity checks
on the firmware binary, secure boot mechanisms to verify
firmware at runtime, and rollback protections.

In practice, however, many legacy systems or less critical
ECUs lack full support for these measures. Moreover, even
when secure boot is implemented, it is often not designed to
detect physical-layer reflashing attempts or low-level firmware
changes made through unauthorized access.

Most ECUs are updated regularly for feature enhancements,
while others are tightly controlled. Despite these efforts, the
diversity of update pathways and legacy support introduces
a broad attack surface [6], [7]. There have been numerous
demonstrations of firmware-level attacks on automotive sys-
tems including reverse-engineer firmware and inject malicious
code via exposed diagnostic interfaces, bypassing OEM pro-
tections [8]. These attacks typically go unnoticed until runtime
behavior changes or failures occur, which can be catastrophic
in safety-critical systems. The issue is compounded by the
lack of visibility into the bootloading phase, where reflashing
often occurs and a malicious reprogramming event may leave
no trace in runtime logs or digital attestation systems.

B. Defensive Use of Unintentional EM Emissions

The phenomenon of unintentional EM emissions from
electronic devices has long been studied in the context of
hardware security and side-channel analysis [9]. These emis-
sions—byproducts of rapid switching activity within integrated
circuits—can unintentionally leak sensitive information or
reveal execution behavior.

In adversarial settings, researchers have demonstrated the
feasibility of extracting cryptographic keys from FPGAs and
embedded systems using EM side-channels, performing re-
mote code execution inference on mobile devices, and even
launching EM fault injection attacks to bypass security checks
[10]-[13]. These studies exploit fundamental principles of
electromagnetics and circuit theory, making the existence
of such channels unsurprising—if not inevitable—given the
physical structure of modern electronics.

However, beyond adversarial use cases, researchers have
also explored EM emissions as a nonmalicious tool for passive
software monitoring and system introspection. Nonmalicious
EM-based software monitoring frameworks such as Spectral
Profiling [14] and EDDIE [15] have demonstrated the viability
of EM spectral analysis for software behavior detection, they
typically operate at coarse-grained levels (e.g., loops, function

calls, states). Further studies have shown instruction-level
tracking techniques using high-fidelity spectrum analysis and
signal processing pipelines [16], [17].

Multimodal analog side-channel analysis is a promising
non-intrusive path forward for detecting state divergences and
physical-layer anomalies in cyber-physical systems. Recent
work by Kacmarcik et al. [18] further demonstrates that
acoustic emissions, in addition to EM emissions, can also be
used to identify abnormal activity in embedded systems, rein-
forcing the idea that a multi-channel monitoring approach can
improve anomaly detection. This opens the door for firmware-
level integrity checks using antennas or sensors placed near
different components, particularly during sensitive phases like
bootloading or reflashing.

Modern vehicles contain over a hundred modular ECUs with
limited software complexity, making them well-suited for side-
channel-based monitoring. Their periodic behavior—driven by
clocks, buses, and control loops—produces distinct frequency-
domain patterns. This structure enables lightweight, spectral
techniques like ours to detect anomalies or unauthorized
firmware changes with minimal overhead.

C. Motivation and Proposed Use

While many existing efforts leveraging the EM emis-
sions target continuous monitoring of software execution,
such approaches often require high-resolution signal acqui-
sition, detailed system knowledge, or persistent observabil-
ity—conditions that are difficult to meet in many real-world
deployments. In contrast, this work focuses on a more practical
and bounded target: the firmware flashing phase. Firmware
flashing is a short-lived but security-critical operation, typ-
ically occurring during system reboots or intentional re-
programming (e.g., during updates or maintenance). These
events present a unique opportunity for low-overhead integrity

-0

Flash “regular”

Time (s)

Flash “modified”

-90

4.700 4.725 4.750 4.775 4.800 4.825 4.850 4.875
Frequency (Hz)

Fig. 1: Time—frequency spectrogram of EM emissions during
two firmware flashing events. The first event (top red box)
highlights regular firmware flashing, while the second event
(bottom red box) corresponds to the flashing of a modified
firmware.

checks, as they are deterministic, repeatable, and temporally
isolated from normal operation.

Fig. 1 presents a spectrogram (time—frequency represen-
tation) of EM emissions collected from the SAMV71 [4]
development board using an RTL-SDR [19] device over a 60-
second interval.

The highlighted red box region corresponds to firmware
flashing operations, which occur over just a few seconds,
clearly exhibiting a distinct chirp-like spectral pattern. In this
experiment, we flash two different images onto the microcon-
troller, one representing a regular/original firmware akin to
what might be deployed on a production ECU, and another that
is slightly modified to simulate a different firmware version.
In our experiments, we utilized these two firmware versions to
illustrate the applicability of this approach in scenarios such
as the temporal identification of “authorized updates™ or the
detection of an “unauthorized modification.”

Both events produce spectrally rich and visually distinct
chirp-like patterns, suggesting that firmware flashing can be
characterized using compact spectral signatures. This observa-
tion motivates our proposed detection framework, which per-
forms lightweight, out-of-band verification of flashing events
by identifying these spectral and temporal features—even in
the presence of hardware diversity or resource constraints.

III. METHODOLOGY

Our methodology aims to detect firmware flashing events
from EM emissions using a low-latency pattern matching
approach. We divide the process into two main phases: training
and testing.

A. Training Phase

In the training phase, we extract one or more spectral ref-
erence signatures that characterize the EM behavior of known
flashing events. While a single averaged signature can suffice
for simple detection tasks, our setup allows for capturing
variations across firmware versions, boards, or experimental
conditions. To enable automated detection, we translate the
visually identifiable flashing patterns observed in the spec-
trogram into structured spectral representations through the
following preprocessing and feature extraction steps.

1) We first identify and crop time segments from spectro-
grams where flashing occurs. These segments exhibit
consistent spectral patterns that make them visually
distinguishable.

2) The average duration of the cropped segments is used
to define a fixed-length analysis window, or frame size,
applied in both training and testing.

3) For each segment, we compute the average FFT magni-
tude across time to obtain a corresponding one dimen-
sional spectral profile, as illustrated in Fig. 2.

4) These profiles can either be averaged into a single
reference signature, or stored individually for more
fine-grained, instance-based matching. This flexibility
supports multiple detection strategies, such as using
firmware-specific kernels or board-dependent references.

Average Spectrum of "Flash* Signatures

-75.0
— regular

— modified
-775

-80.0

Amplitude (dB)
|

-875

-90.0

-925

47.00 47.25 47.50 47.75 48.00 48.25 48.50 48.75 49.00
Frequency (MHz)

Fig. 2: Spectral profiles of four individual flashing events
across two firmware versions (“regular” in red, “modified” in
black).

This process yields one or more compact EM signatures
for flashing events, serving as pattern-matching kernels for
subsequent detection.

B. Testing Phase

During testing, the objective is to identify whether the in-
coming EM emissions match any known reference signature(s)
generated during training.

1) The incoming EM signal is continuously transformed

into its time-frequency representation using STFT.

2) A sliding window (with the frame size defined during
training) is applied across the STFT output. For each
window, we compute the corresponding 1D spectral
profile, i.e., the average FFT magnitude across time.

3) For each window, we compute the Euclidean distance
between its spectral profile and the reference signa-
ture(s) obtained during training. The inverse of this
distance serves as a similarity score.

4) A flashing event is detected when the similarity score
exceeds a predefined threshold. Optionally, the time
corresponding to the peak similarity score can be used
to estimate the onset of the flashing event.

This technique enables low-latency detection even on con-
strained hardware. The threshold can be calibrated empirically
to balance detection sensitivity against false positives. By
supporting both single-template and multi-template detection,
the approach adapts to different operational scenarios — such
as varying firmware versions, boards, or sampling conditions.

IV. EXPERIMENTAL SETUP
A. Hardware Platform and Firmware Variants

Fig. 3 illustrates the experimental setup used to investigate
firmware-level activities on a SAMV71 development board.
These boards are commonly used in embedded systems pro-
totyping and serve as a practical proxy for automotive ECUs.

At the core of each SAMV71 board is the ATSAMV71, an
ARM Cortex-M7-based microcontroller, which we designate
as the primary device under test (DuT) throughout our experi-
ments. A near-field probe is positioned directly above this chip
to monitor EM emissions during firmware operations.

AAronia nearfield H-probe ATSAMV71 (ARM Cortex-M7 based MCU)

Fig. 3: Experimental setup for monitoring the embedded
ARM-based microcontroller on SAMV71 Microchip Devel-
opment Board.

Interestingly, we discovered notable differences between
boards sourced from different vendors—some missing com-
ponents like external PLL and SDRAM (as demonstrated in
Fig. 4). These differences affect signal characteristics and
reflect realistic inconsistencies one might encounter in field-
deployed embedded systems and raise important questions:

o Would such component-level differences (missing or al-
tered components) on the board affect EM-based detec-
tion performance?

o How robust are EM-based detection systems for these
differences?

o Are there other risks such as tampering, poor manu-
facturing, counterfeits, hardware trojans, etc. that can
intentionally or unintentionally change the board’s EM
emissions characteristics?

To investigate the generalizability of our detection approach
and address these questions, we experimented on multiple
SAMV71 boards with hardware variations, acquired from
different vendors at different times.

In this study, we evaluate two firmware versions compiled
for the same SAMV71 target: 1) “regular” firmware image
and 2) “modified” firmware image. Both are valid .hex files
that can be successfully flashed onto the microcontroller and
execute without triggering any observable faults or errors. The
modification introduced in the altered version is intentionally
minimal. As a result, the run-time behavior and execution pat-
terns of the two programs are virtually indistinguishable when
observed through EM emissions during normal operation.

B. EM Probing and Signal Acquisition Setup

To observe and analyze the electromagnetic emissions dur-
ing firmware flashing, we use a near-field magnetic (H-field)
probe [20] positioned directly above the ATSAMV71 micro-
controller. A visual depiction of the probe positioning relative
to key components is shown in Fig. 3. Probe positioning is
known to be a critical factor in EM signal locality [21].

FERRERTEE,
TR TR TR TR YR TR i1
ECU2

Fig. 4: Comparison of two SAMV71-based ECU boards used
in this study. ECU 1 includes an external PLL and onboard
SDRAM, while ECU 2 lacks both components. These discrep-
ancies, highlighted in green, illustrate the hardware variability
observed across boards acquired from different vendors.

High-fidelity signal acquisition platforms such as spectrum
analyzers or advanced software-defined radios (e.g., Ettus
USRP series) are well-suited for fine-grained EM analysis,
such as instruction-level tracking and run-time program mon-
itoring. Existing literature for instruction-level EM modeling
such as ZOP [16] and PITEM [17] relies on such platforms
to achieve high spatial and temporal resolution at the cost of
increased complexity, size, and price.

In contrast, this work aims to explore how far low-cost and
accessible tools can go, especially for practical applications
like detecting firmware flashing events during the bootloading
stage. We focus our experiments on the RTL-SDR v3 [19], a
low-cost (~ $30 USD) receiver with limited bandwidth (~ 2.4
MHz usable) and no onboard amplification. We also evaluated
the HackRF One [22] as a mid-range alternative and found that
it provides similar results as well.

Choosing the appropriate center frequency is a critical step
when using narrow-band SDRs like the RTL-SDR. While
wideband systems such as USRPs can capture broad spec-
tral regions and extract relevant features post-hoc, low-cost
receivers are constrained to a limited view of the spec-
trum—typically just 2-3 MHz wide. This constraint reduces
background noise and data volume, which is advantageous
for real-time or embedded deployment, but introduces a key
trade-off: one must carefully select a frequency band that
consistently captures the event of interest while avoiding
regions dominated by unrelated or high-power interference.

Fig. 5 illustrates this trade-off using spectrograms collected
during three consecutive firmware flashing events. When cen-
tered at 48 MHz (left), the flashing signatures appear as
distinct chirp-like structures, separated by quiet idle peri-
ods—making detection straightforward, even using basic time-
domain methods. In contrast, the spectrogram centered at
50 MHz (right)—aligned with the microcontroller’s system
clock—is cluttered with persistent vertical lines. These clock-
related artifacts and background modulations are present re-

Al Lifl.i)QH \ L

PR
| s |

Fig. 5: Comparison of EM spectrograms captured during three
consecutive firmware flashing events using RTL-SDR, with
different center frequencies.

gardless of system state and obscure the true flashing signature,
increasing the likelihood of false detections. This comparison
highlights that in narrow-band monitoring, selecting the right
slice of spectrum is critical: even a small shift in center
frequency can dramatically affect signal clarity and overall
detection robustness.

V. EXPERIMENTAL RESULTS
A. Temporal Detection

To evaluate the temporal resolution and detection capability
of our method, in Fig. 6 we visualize how similarity scores
evolve over time during flashing events. For this purpose, we
reorient the spectrograms to emphasize temporal alignment:
the horizontal axis represents time, while the vertical axis
shows frequency. Directly below the spectrogram, we display
the corresponding similarity curves.

Each colored trace in the bottom plot of Fig. 6 corre-
sponds to one of five reference signatures—four obtained
from individual flashing instances and one computed as their
average. To detect flashing events, we slide a fixed-length
analysis window (equal to the defined frame size) across the
input spectrogram. For each window, we compute its spectral
profile by averaging the FFT magnitudes over time, efficiently
leveraging the STFT output in a moving-window manner.

We then calculate the Euclidean distance between this
spectral profile and each reference signature. The inverse
of this distance is plotted over time, producing a similarity
score curve for each reference. Peaks in these curves indicate
strong correspondence between the observed signal and known
flashing patterns. As seen in the figure, all reference signatures
yield clear peaks during flashing intervals, with the averaged
signature offering smoother but robust detection—illustrating a
tradeoff between event-specific sensitivity and generalizability.

This variation across instances underscores the importance
of accounting for hardware and environmental variability when
designing detection systems. While some differences may arise
from benign sources—such as slight changes in probe posi-
tioning or board layout—others may reflect more significant
hardware discrepancies. Rather than attempting to distinguish
between these causes directly, our goal is to evaluate how
such variability impacts detection performance and whether
the system remains reliable across different devices.

Flash “modified”

Flash “regular” ‘ ‘ Power-off ‘

Time (s)

Fig. 6: Visualization of two flashing events using rotated
(for temporal alignment) time—frequency spectrograms (top)
and corresponding inverse Euclidean distance scores (bottom),
which serves as similarity score to the corresponding reference
signatures

eci2 o)

Time (s)

Time (s)

Fig. 7: Spectrograms of regular firmware flashing events
across four ECU boards (ECU1-ECU4), recorded using RTL-
SDR with a 48 MHz center frequency and 2 MHz sampling
rate. Each spectrogram was collected using the same setup,
although minor differences in probe positioning and board-
level component configurations (e.g., missing passives or man-
ufacturing variation) are possible.

B. Cross-board Testing

To assess cross-board generalization of the proposed ap-
proach, we evaluate the system on four separate SAMV71
ECU boards—i.e., different physical instances of the same
microcontroller model, sourced from various vendors and
batches. In this context, we use the term “board” to refer
to variations in hardware configuration, manufacturing tol-
erances, or passive component presence, while keeping the
underlying microcontroller (i.e., the device) the same.

While spectrograms recorded using RTL-SDR (visualized in
Fig. 7) showed consistent flashing behavior across all boards,
particularly in timing and overall structure, we observed slight
variations in power levels (such as the one highlighted by the
red arrow in Fig. 7), likely caused by hardware differences
such as missing components or manufacturing tolerances.

Scatter Plot of Maximum Peak Similarity Values

Scatter Plot of Maximum Peak Simik

o oss board, mod

Sinilary Val

Peak Similarity Value

E o0 o e
Lt O

ash noFiash
Flash Label

Fig. 8: Scatter plots of maximum
flashing and non-flashing intervals
cross-board scenarios.

similarity scores during
across same-board and

Specifically, we evaluate how well the system distinguishes
between flashing and non-flashing intervals under both same-
board and cross-board scenarios. Here, same-board refers to
cases where both the reference signature and the test data
originate from the same physical board. In contrast, cross-
board refers to cases where the test data is acquired from a
different physical board—i.e., a separate instance of the same
microcontroller model—than the one used to construct the
reference. For cross-board evaluations, the reference signature
is computed by averaging the flashing signatures from the
other three boards (excluding the test board). These are marked
with square (same-board) and star (cross-board) symbols in
Fig. 8. As expected, same-board scenarios yield higher peak
similarity scores during flashing intervals, reflecting stronger
alignment with their corresponding reference signatures. In
contrast, cross-board scenarios show attenuated peak values,
particularly for boards with different passive components or
minor manufacturing variations.

The scatter plot includes labels for the two firmware types
(regular and modified) in the legend, but these labels don’t re-
flect meaningful similarity scores. Our experiments don’t show
a consistent trend where one firmware type yields higher or
lower similarity. This supports our focus on detecting flashing
behavior, regardless of firmware content. The zoomed-in view
shows a promising trend: despite reduced peak magnitudes, a
green decision boundary can effectively separate flash from
no-flash intervals even under cross-board conditions. This
suggests that cross-board detection is feasible, especially with
improved training strategies like using representative subsets
or augmented reference kernels. These findings highlight the
potential for robust flashing detection across multiple hardware
instances, despite structural or environmental differences.

C. Firmware Classification

To investigate whether different firmware versions yield
distinguishable EM signatures during the flashing process, we
conducted a comparative analysis using both RTL-SDR and
HackRF receivers. Fig. 9 illustrates spectrograms for regular
and modified firmware flashing captured by each receiver.

Despite the visual similarities in coarse-grained spectral
structure observed in Fig. 1, this figure shows that there
are clear temporal differences between the firmware versions.
These timing differences, which are consistent across both
RTL-SDR and HackRF, indicate that even firmware variants

Modified Firmware
(Flashing)

Regular Firmware
(Flashing)

RTL-SDR

Receiver

HackRF One

Fig. 9: Timing comparison of flash durations between firmware
versions (collected with RTL-SDR and HackRF).

with similar signal shapes may differ in duration, suggesting
minor but measurable behavioral variations in the flashing
process.

Importantly, observing such subtle distinctions required
targeted experimental design and precise alignment to isolate
and zoom into the relevant timeframe within the broader
flashing sequence. This level of granularity cannot be easily
achieved through full-spectrum visual inspection alone, further
justifying our use of time-domain pattern matching in the
proposed methodology.

Additionally, the HackRF receiver appears to capture richer
and more detailed features, potentially due to its higher sam-
pling rate and wider instantaneous bandwidth. Nonetheless,
our methodology remains agnostic to receiver type: while
signal quality may vary, the core detection and classification
techniques are portable across devices.

D. Runtime Monitoring

Beyond flashing-phase detection, we explore whether EM
emissions collected during normal runtime operation can re-
flect differences between firmware versions. Fig. 10 presents
spectrograms acquired using three different signal acquisition
tools—a Siglent spectrum analyzer, a USRP B210, and a
HackRF One—while the ECU was running either regular or
modified firmware; the left column shows emissions from
the regular firmware, and the right column shows those from
the modified version. All recordings were taken at a center
frequency of 50 MHz (clock frequency of DuT during runtime)
with an 8 MHz sampling rate.

The ability to distinguish between firmware versions during
runtime strongly depends on signal quality. With high-end
equipment such as the Siglent SA [23], we observe clear
differences: the regular firmware exhibits periodic wideband
activity, while the modified firmware produces more burst-like,
irregular emissions. The USRP B210 [24] captures similar
trends but with reduced clarity. In contrast, the HackRF One

Regular Firmware Modified Firmware
(Runtime) (Runtime)

| “ “

Siglent SA

Receiver
A
USRP B210

HackRF One

Frequency (Hz)

\

Frequency (H2)

Fig. 10: Spectrograms captured during runtime operation of
the same ECU using different receivers: Siglent Spectrum
Analyzer [23], USRP B210 [24], and HackRF One [22].

[22] struggles to resolve these differences due to its limited
resolution and dynamic range.

VI. CONCLUSION

This work presents a practical and cost-effective approach
for detecting firmware flashing events in embedded systems
using electromagnetic side-channel emissions. By targeting the
bootloader phase and employing a kernel-based pattern match-
ing technique, we demonstrate that low-cost SDRs can reliably
detect reflashing operations without the need for intrusive
instrumentation or vendor-specific support. Our experimental
results on SAMV71 development boards show that careful
frequency band selection and simple signal processing can
yield high detection accuracy, even in the face of hardware
variability across different manufacturers. While our method
proves robust in controlled settings, it also highlights important
considerations for deployment—such as sensitivity to miss-
ing components and potential configuration drift. Ultimately,
this study underscores the feasibility of retrofitting security
assurance into embedded systems through low-overhead EM-
based monitoring. Such an approach would be particularly
useful for enhancing the security of critical systems, such as
ECUs, where maintaining firmware integrity is essential for
operational safety and reliability.

REFERENCES

[1] J. Van den Herrewegen, “Automotive firmware extraction and analysis
techniques,” Ph.D. dissertation, University of Birmingham, 2021.

[2] H. Mansor, K. Markantonakis, R. N. Akram, and K. Mayes, “Don’t brick
your car: firmware confidentiality and rollback for vehicles,” in 2015
10th International Conference on Availability, Reliability and Security.
IEEE, 2015, pp. 139-148.

[3]

[4

=

[5]

[6]

[7

—

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]
[20]

[21]

[22]
(23]

[24]

A. Zajic and M. Prvulovic, Eds., Understanding Ana-
log Side Channels Using Cryptography Algorithms. ~ Cham:
Springer International Publishing, 2023. [Online]. Available:

https://doi.org/10.1007/978-3-031-38579-7

Microchip, “Atsamv71q21,” https://www.microchip.com/en-us/product/
atsamv71q21.

B. Li, W. Hu, L. Da, Y. Wu, X. Wang, Y. Li, and C. Yuan, “Over-the-
air upgrading for enhancing security of intelligent connected vehicles:
a survey,” Artificial Intelligence Review, vol. 57, no. 11, p. 314, 2024.
D. K. Nilsson, P. H. Phung, and U. E. Larson, “Vehicle ecu classifi-
cation based on safety-security characteristics,” in IET Road Transport
Information and Control-RTIC 2008 and ITS United Kingdom Members’
Conference. 1ET, 2008, pp. 1-7.

F. Kohnhiuser, D. Piillen, and S. Katzenbeisser, “Ensuring the safe and
secure operation of electronic control units in road vehicles,” in 2019
IEEE Security and Privacy Workshops. 1EEE, 2019, pp. 126-131.

S. Cérdoba Pellicer, “Security assessment for automotive controllers us-
ing side channel and fault injection attacks,” Master’s thesis, Universitat
Politecnica de Catalunya, 2018.

A. Zaji¢ and M. Prvulovic,
for Hardware Event Profiling.
Publishing, 2023, pp. 279-321.
//doi.org/10.1007/978-3-031-38579-7_10

D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The em
side—channel (s),” in International workshop on cryptographic hard-
ware and embedded systems. Springer, 2002, pp. 29-45.

M. Alam, H. A. Khan, M. Dey, N. Sinha, R. Callan, A. Zajic, and
M. Prvulovic, “One&done: A single-decryption em-based attack on
openssl’s constant-time blinded rsa,” in Proceedings of the 27th USENIX
Conference on Security Symposium. USENIX Association, 2018, pp.
585-602.

A. Sayakkara, N.-A. Le-Khac, and M. Scanlon, “A survey of electro-
magnetic side-channel attacks and discussion on their case-progressing
potential for digital forensics,” Digital Investigation, vol. 29, pp. 43-54,
2019.

M. A. Elmohr, H. Liao, and C. H. Gebotys, “Em fault injection on arm
and risc-v,” in 2020 21st International Symposium on Quality Electronic
Design (ISQED). IEEE, 2020, pp. 206-212.

N. Sehatbakhsh, A. Nazari, A. Zajic, and M. Prvulovic, “Spectral
profiling: Observer-effect-free profiling by monitoring em emanations,”
in 2016 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). IEEE, 2016, pp. 1-11.

A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic,
“Eddie: Em-based detection of deviations in program execution,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, 2017, pp. 333-346.

R. Callan, F. Behrang, A. Zajic, M. Prvulovic, and A. Orso, ‘“Zero-
overhead profiling via em emanations,” in Proceedings of the 25th int
symposium on software testing and analysis, 2016, pp. 401-412.

E. M. Ugurlu, B. B. Yilmaz, A. Zaji¢, and M. Prvulovic, ‘“Pitem:
Permutations-based instruction tracking via electromagnetic side-
channel signal analysis,” IEEE Transactions on Computers, vol. T1,
no. 5, pp. 1156-1169, 2021.

A. Kacmarcik and M. Prvulovic, “Securing cps through simultaneous
analog side-channel monitoring of cyber and physical domains,” IEEE
Access, vol. 12, pp. 126 717-126 728, 2024.

“RTL-SDR: Software Defined Radio,” 2024, accessed: 2024-06-26.
[Online]. Available: https://www.rtl-sdr.com/about-rtl-sdr/

AARONIA PBS, https://www.tequipment.net/Aaronia/PBS1-5/
Standard/Passive-Oscilloscope-Probes/?rrec=true.

F. T. Werner, J. Dinki¢, D. Ol¢an, A. Djordjevi¢, M. Prvulovié, and
A. Zaji¢, “An efficient method for localization of magnetic field sources
that produce high-frequency side-channel emanations,” IEEE Transac-
tions on Electromagnetic Compatibility, vol. 63, no. 6, pp. 1799-1811,
2021.

HackRF One: Software Defined Radio, https://greatscottgadgets.com/
hackrf/.

Siglent SSA3000X-R Real-Time Spectrum Analyzer, https:/siglentna.
com/spectrum-analyzers/ssa3000x-r/.

Ettus Research, “USRP B210: SDR Platform,” https://www.ettus.com/
all-products/ub210-kit/, 2024, accessed: 2024-06-26.

Using Analog Side Channels
Cham: Springer International
[Online]. Available: https:

