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Abstract—This paper presents a non-invasive framework for
monitoring and authenticating embedded systems using electro-
magnetic (EM) side-channel signals. Targeting automotive ECUs,
the method compares EM emissions from test devices against
golden references using STFT-based statistical features and KL
divergence. The framework is validated on multiple commercial
microcontrollers. It remains effective under interference and
across different measurement setups. Results demonstrate im-
proved detection accuracy over prior methods, highlighting the
practicality and robustness of EM-based monitoring for real-
world embedded system integrity verification, particularly in the
context of automotive ECUs, where reliability and security are
paramount.

Index Terms—EM side-channels, malicious activity, hardware
& software modifications, counterfeit, anomaly detection, ADAS.

I. INTRODUCTION

Recent years have witnessed a dramatic shift in the de-
sign and operation of automobiles, evolving from isolated
mechanical systems to sophisticated, connected, and increas-
ingly autonomous cyber-physical systems. These advance-
ments promise substantial benefits in terms of efficiency,
safety, and user experience. However, this transformation
has concurrently introduced significant security challenges.
Modern vehicles are embedded with numerous communica-
tion interfaces, such as Bluetooth, Wi-Fi, and cellular, which
expand their attack surface and make them vulnerable to a
broad spectrum of cyber threats [1].

With the advancement of Advanced Driver Assistance
Systems (ADAS), the attack surface for remotely compro-
mising and controlling vehicles has further expanded [2].
Multiple high-profile incidents have demonstrated the real-
world implications of vehicular cybersecurity weaknesses.
Miller and Valasek successfully exploited vulnerabilities in the
Chrysler Uconnect infotainment system to gain remote control
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over a Jeep Cherokee, impacting critical functions such as
braking and steering [1], [3]. Similarly, security researchers
demonstrated the exploitation of Tesla’s browser to gain in-
vehicle access [4]. Furthermore, government advisories have
underscored the urgency for effective intrusion detection and
response mechanisms in vehicular systems [5].

To address these security challenges, Intrusion Detection
Systems (IDSs) have emerged as a vital defensive measure.
IDSs can monitor both intra-vehicle networks (e.g., CAN,
FlexRay, Ethernet) and inter-vehicle networks (e.g., VANET,
IoV) for signs of malicious activity without disrupting nor-
mal operation. A wide range of IDS approaches have been
proposed, including rule-based systems, traditional machine
learning, deep learning, and hybrid methods, each with trade-
offs in terms of accuracy, efficiency, and generalizability [1].

Despite significant progress, existing IDS methodologies
often struggle to generalize across platforms or provide early
detection in resource-constrained environments. In this study,
we present a lightweight and non-invasive monitoring and
authentication framework tailored for embedded automotive
contexts, leveraging electromagnetic (EM) side-channel sig-
nals emitted from electronic control units (ECUs). The pro-
posed framework is versatile and can be employed both at
the acceptance stage, where ECUs are tested for counterfeit
components or hardware modifications, and during runtime
for continuous anomaly detection.

The organization of the paper is as follows: Section II
provides background on EM side channels and details our sig-
nal processing methodology. Section III presents experimental
results and discussion. Finally, Section IV concludes the paper
with key findings.

II. SIGNAL PROCESSING & COMPARISON

As a step toward the broader goal of securing embedded
systems in safety- and mission-critical domains, this work fo-
cuses on developing a non-invasive, zero-overhead framework
for monitoring and authenticating ECUs based on their EM
side-channel emissions. The core idea is to assess whether a



device under test (DuT) operates correctly by comparing its
EM behavior to that of a trusted golden reference known to
function as intended.

EM side channels are unintended byproducts of computa-
tional activity, arising from fluctuations in current flow within
a device’s circuitry, particularly due to transistor switching
activity [6]. When a program is executed on a processor,
the surrounding electric field changes systematically, and
these variations directly correlate with the executed code. By
monitoring such changes, one can gain valuable insights into
the device’s operational state and behavior. EM side-channel
monitoring offers several advantages: it enables non-contact
observation of internal processes, provides access to high-
frequency bandwidths (including clock harmonics), and can
therefore capture richer information. These properties make
EM monitoring a dual use capability, serving either as a
tool for adversaries seeking to exploit vulnerabilities or as a
defensive technique to verify system integrity. Previous studies
have used EM side channels to extract cryptographic keys
[7], [8], profile memory access [9], detect malicious activity
through neural networks [10], and identify hardware Trojans
and counterfeits [11], [12]. In this work, we explore a non-
adversarial application of EM side-channel analysis to ensure
that ECUs behave as intended, detecting deviations that could
otherwise lead to failures or even safety-critical consequences.
Our approach is systematic and controlled: we execute known
programs on test devices and monitor their EM emissions to
extract and analyze behavioral patterns.

Among various side-channel modalities like power [13]—
[15], we focus on EM signals due to several practical ad-
vantages. EM side channels offer high-bandwidth monitoring
without requiring physical contact or consuming onboard
resources such as memory or computation. Their fast response
enables fine-grained temporal resolution, significantly outper-
forming slower side channels like temperature [16]. Unlike
acoustic side channels [17], which suffer from low bandwidth
and are easily masked by engine noise or vehicle vibrations,
EM signals are more robust in noisy environments and better
suited for concurrent multi-antenna monitoring, which can
improve spatial resolution and support more advanced lo-
calization or source separation tasks. These properties make
EM side-channel monitoring a uniquely viable choice for in-
vehicle integrity verification.

The first step in side-channel analysis is to establish an
appropriate experimental setup that maximizes the sensitivity
of the monitoring system. While attackers may struggle to
configure the system optimally due to access constraints,
this limitation does not apply to defenders implementing a
monitoring framework. Therefore, the placement of the probe
can be optimized to enhance sensitivity, thereby extending
the detection capabilities of the monitoring system. To this
end, we execute a simple microbenchmark consisting of basic
arithmetic operations within a for-loop, as described in [18].
This benchmark is known to generate peaks around the clock
frequency and its harmonics, providing a predictable signal
pattern for calibration.

Our investigation focuses on identifying the optimal probe
location and center frequency that maximize the SNR of these
peaks. We experiment with different sizes of Tekbox [19] and
Aaronia [20] near-field probes to assess their performance. To
measure signal power levels, we employ a Siglent spectrum
analyzer (SA) [21]. Once the optimal center frequency and
probe location are determined after a thorough investigation,
we transition to using an Ettus B210 USRP SDR [22] to collect
and sample the EM signals.
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Fig. 1: Overall experimental setup for EM side-channel signal
gathering.

An example of the experimental setup is shown in Fig. 1. In
this configuration, one laptop is dedicated to programming the
DuT, while another laptop runs our monitoring framework. It is
important to note that the DuT and the monitoring laptop have
no direct connection, and the DuT remains unaware of being
monitored. Furthermore, there is no communication between
the two laptops, ensuring that no information is transferred
between them.

Once the EM signals are captured, the next step is to
process them effectively. One of the primary challenges with
EM signals emitted from devices is the phenomenon of
signal smearing. This occurs due to imperfections in the
clock frequency, aging effects, temperature fluctuations, and
other factors, which cause deviations from the designated
frequency [23]. As a result, the signal patterns may shrink,
spread, or shift over frequency, complicating accurate analysis.
Additionally, the high sampling rate required for capturing
these signals generates large volumes of data, potentially
introducing latency in processing and anomaly detection. In
the context of vehicles and critical ECUs, such delays could
lead to significant risks if detection does not occur promptly.
To mitigate these challenges, we must reduce the data volume
while preserving critical information within the signal. In this
regard, we adopt the approach introduced in [24]. Specifically,
we first generate a Short-Time Fourier Transform (STFT)
matrix, where rows represent time intervals and columns
correspond to frequency bins. Once the matrix is generated, we
apply a max-pooling operation, with kernel sizes determined
by parameters Kr and K, as illustrated in Fig. 2. This



step effectively condenses the data by retaining the most
prominent features in both time and frequency dimensions,
thereby reducing processing latency while preserving key
information for anomaly detection. This method also mitigates
the smearing effect by condensing multiple frequency bins into
a single bin, though at the expense of some resolution in both
the frequency and time domains.

| After max-pooling

Fig. 2: Max-pooling to prevent signal smearing and data size
reduction.
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Once we obtain the reduced STFT matrix, the next step
is to compare two signal snippets. An intuitive approach is
to directly compare the STFT matrices, for example using
the Frobenius norm. However, this method presents several
challenges. One major issue is the substantial memory require-
ment needed to store large training datasets. These datasets are
necessary because, in practice, the monitoring system may not
start capturing data at exactly the same time as the reference
(training) dataset with respect to program execution. This tem-
poral misalignment introduces inconsistencies when compar-
ing signal snippets, as the start and end points of the program’s
execution may not be synchronized between the training and
test signals. Moreover, in real-world ECU operations, various
functions are activated dynamically based on random events,
making it practically impossible to collect sufficient training
data that would ensure at least one sample perfectly aligns
with every possible test signal. These challenges highlight
the need for more sophisticated comparison methods that
can accommodate temporal variability and dynamic system
behavior.

To address this problem, the method introduced in [25]
computes the mean of the STFT outputs (specifically, the mean
of the rows of the STFT matrix) and compares these mean
values instead of the entire matrix. This approach effectively
reduces the data size for comparison (from millions of samples
to a manageable STFT window size), thereby alleviating
memory and computational demands. Additionally, it mitigates
synchronization issues since ECUs often exhibit repetitive
behavior, similar to an RTOS environment. By averaging the
magnitudes of the STFT outputs, the approach accommodates
temporal misalignments between training and test signals.
However, this method has a significant limitation. It does not
account for variations occurring at individual frequency bins
across different STFT windows. For instance, if a frequency
becomes activated during a particular STFT window, poten-
tially signaling a malicious event, it may be obscured by the

averaging operation. In this respect, we propose a methodology
that considers both the mean and standard deviation of the
frequency bins, as illustrated in Fig. 3.
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Fig. 3: KL-Divergence based signal processing and compari-
son.

In Fig. 3a, we illustrate the computation of statistical
features from a given STFT matrix, which is used to generate
the spectrogram. Please note that this matrix is generated by
using a single signal snippet. In this spectrogram, the vertical
axis represents time, while the horizontal axis corresponds
to frequency. Our methodology calculates statistics for each
frequency bin. Specifically, the mean and standard deviation
are computed for each bin, and these values populate corre-
sponding vectors with sizes matching the horizontal dimension
of the STFT matrix. When the max-pooling kernel size in the
frequency domain is set to one, the sizes of these vectors are
equal to the STFT window size. Finally, the training model
is generated by collecting statistics from numerous signal
snippets obtained while the device is engaged in legitimate
activities.

Once the training signals have been collected and processed
to gather these statistical profiles, the next challenge is de-
termining how to compare the training signals with the test



(a) PIC32MZ2064DAR176.

(b) PIC32MZ2048EFM144.

(c) ATSAMV71Q21.

Fig. 4: Spectrograms obtained from different devices while running a similar program.

signals. In this work, we propose using the Kullback-Leibler
(KL) divergence, under the assumption that the distributions
of signal magnitudes in each frequency bin are approxi-
mately normal. This normality assumption greatly simplifies
the calculation of KL divergence, as it can then be computed
analytically between two normal distributions as follows [26]:
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where P = N(u1,0%) and Q@ = N(ua,03). This closed-
form expression allows for efficient computation of divergence
between the statistical profiles of training and test signals,
facilitating real-time anomaly detection in monitoring systems.

By employing the KL divergence equation, we generate a
vector of divergence values between the training signals and
the test signal. An illustration of this process between the i
training signal and the ;" test signal is provided in Fig. 3b.
The resulting output is a multi-dimensional vector with a size
equal to the number of frequency bins in the training or test
signals.

Finally, as shown in Fig. 3c, we apply the p-norm to this
divergence vector, where p can take different values. This
parameter can be considered a hyperparameter of the proposed
method, alongside others such as the STFT window size, max-
pooling kernel dimensions, snippet time, sampling rate, and
overlap rate. The use of p-norm enables flexible aggregation
of frequency-wise divergences, allowing for tunable sensitivity
to localized deviations in the signal.

1
KL(P [ Q) = 5

III. EXPERIMENTAL SETUP & RESULTS

In this section, we present a series of experiments to demon-
strate the effectiveness of the proposed model in identifying
hardware modifications, including hardware Trojan injection,
counterfeit detection, and general anomaly detection.

A. Hardware Modification & Counterfeit Detection

A common approach in the literature for evaluating the
performance of hardware security frameworks is to use FP-
GAs, due to their flexibility in designing and programming
different circuit configurations. However, in this study, we
aim to validate our proposed framework on commercially
available tape-out microcontrollers that are actually used in the

automotive industry. One of the challenges we encountered is
that vehicle manufacturers typically do not publicly disclose
the exact microcontrollers used in their ECUs, nor do they
provide accessible versions of them for research purposes,
largely due to proprietary and confidentiality constraints.

To address this, we selected three microcontrollers that are
publicly claimed to be widely used in automotive applications,
according to vendor websites [27]. We refer to these devices as
SAM [28], MZEF [29], and MZDA [30]. MZEF and MZDA
belong to the same product family, and we therefore model
MZDA as a hardware-modified variant of MZEF to simulate
a modified hardware scenario, such as the presence of a
hardware Trojan or unauthorized design change. SAM, on the
other hand, is from a different microcontroller family, and we
treat it as a counterfeit version of MZEF in our experiments. It
is important to note that the selection of these microcontrollers
is arbitrary and serves to illustrate the use-case scenarios of
hardware modification and counterfeit detection.

For the experiments, we used the setup illustrated in Fig. 1
across all boards under evaluation. Each device was pro-
grammed to execute the same code sequence, designed to
stimulate the compute unit as described in [31], enabling a
fair comparison of their EM signal patterns. The corresponding
spectrograms, collected using the SA at a center frequency of
50 MHz, are shown in Fig. 4. As anticipated, the EM patterns
differ across devices, with MZEF and MZDA exhibiting higher
similarity compared to SAM.

To further verify these differences, we applied the projection
neural network method introduced in [24]. The underlying
concept is that, if test signals are projected into the same
feature space as their corresponding training signals, it implies
the presence of consistent, device-specific signal characteris-
tics. Conversely, overlapping projections across devices would
suggest signal similarity. The input to the neural network is the
mean vector of the processed signals, as described in Fig.3a.
For this experiment, the STFT window size is set to 4096, the
overlap rate between consecutive STFT operations is 0.1, and
each signal snippet spans 50ms. The results are depicted in
Fig. 5 showing that the training and testing signals from each
device form clearly separable clusters. This confirms that the
model is not overfitting and that the DuTs produce distinct EM
signatures. Given that all devices were executing identical soft-
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Fig. 5: Signal projections with a neural network [24].

ware, the observed differences in EM signals can be attributed
to hardware-level variations. These findings demonstrate that
the proposed framework is capable of identifying unauthorized
hardware modifications and detecting counterfeit components.

B. Signal Interference Resilience

One common question regarding the proposed framework
is its resilience to signal interference. In real-world scenarios,
multiple components or devices often operate in close prox-
imity, and a robust framework must account for the resulting
interference to maintain high detection accuracy. To evaluate
this, we designed the experimental setup shown in Fig. 6,
where multiple boards are positioned as closely as possible
to simulate a high-interference environment. We run the same
program on each device and compare the EM signals captured
in two scenarios: (1) when only the target device is powered
on, and (2) when all devices are active simultaneously. The
resulting spectrograms for the SAM board in both cases are
shown in Fig.7.

A visual comparison of the two spectrograms reveals no
significant differences, such as additional frequency activations
or elevated background noise levels. This suggests that, due to
the use of a near-field probe, the selection of an appropriate
center frequency, and the inherently low-power nature of EM
side-channel emissions, the proposed framework is largely ro-
bust to signal interference. However, to rigorously evaluate this
observation, we conduct a one-class classification experiment.

Specifically, we train a model using the SAM board signals
collected under the condition where only the SAM board is
active, using the parameters described in the previous section.
After the model is trained, we compute the distances between

Near-field |
Probe

(a) When only the middle device is active.

(b) When all devices are active.

Fig. 7: Spectrograms for interference investigation.

the test samples and the learned model for two conditions:
(1) when only the SAM board is active, and (2) when all
boards are active simultaneously utilizing the algorithm given
in Fig. 3. If the distance distributions in both scenarios are
similar, this suggests that the received signal patterns remain
consistent despite the presence of nearby active components,
indicating that the framework is robust to electromagnetic in-
terference. Conversely, if the distributions differ significantly,
it would imply that interference alters the EM signatures and
potentially degrades detection accuracy.

The distance distributions of the test signals for the different
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Fig. 8: Distances to training signals captured only when the
middle device is active.

scenarios are shown in Fig. 8. In the figure, the binary labels
(e.g., 010 and 111) indicate which boards are active, listed
from bottom to top. For example, the distribution labeled 010
corresponds to the scenario where only the SAM board (the
middle board) is active, identical to the condition under which
the training signals were collected. In contrast, the distribution
labeled 111 represents the scenario in which all three boards
are active simultaneously, each running the same program.
As shown in the figure, the distance distributions for both
scenarios are closely aligned, supporting the conclusion that
our framework is resilient to interference from neighboring
devices.

C. Performance Comparison
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Fig. 9: Comparing algorithm performances.

To demonstrate that the proposed algorithm is also effective
for malicious activity detection, we replicate the experiments
presented in [24]. Specifically, we use the same experimental
setup in which the system is compromised via a code injection
attack. To evaluate the sensitivity of the detection framework,
the injected payload consists of a simple for-loop, with the
number of iterations varied to simulate different levels of
attack intensity. By controlling the iteration count, we can
assess the minimum detectable perturbation. We repeat the
experiment exactly as described in the original work, and the
results of our framework are shown in Fig. 9.

The results shown on the left side of Fig. 9 depict the
distance distributions for different versions of the program
using the method presented in [24]. In this figure, “benign”
refers to the original, unmodified program, while the other

labels correspond to code-injected versions, with the numerical
values indicating the loop iteration count used in the injection.
The corresponding results for our proposed framework are
shown on the right. In both plots, the red line denotes the
detection threshold. We observe that, even at the highest loop
iteration count, the method from [24] struggles to distinguish
the compromised versions from the benign one, resulting in
a high false negative rate. In contrast, our proposed frame-
work detects the injected code more reliably (even at smaller
loop sizes) and exhibits an increasing separation between the
threshold and distance values as the loop size grows. This
widening gap is advantageous for reducing both false positive
and false negative rates. These results demonstrate that the
proposed framework is more sensitive and reliable in detecting
malicious code injection activities.
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Fig. 10: Spectrograms obtained with different SDRs.

D. SDR Comparison

As the final experiment, we investigate the impact of
measurement equipment on the performance of the proposed
algorithm. To this end, we repeat the experiments described
in Section III-C, this time using the HackRF SDR [32].
Unfortunately, the classification accuracy drops significantly,
approaching 50%, which is comparable to random guessing.
Further investigation revealed that the HackRF is limited in its
ability to capture low-power EM emissions at the frequency
range used in our setup.

The spectrograms obtained using both the HackRF and the
Ettus B210 SDR are presented in Fig. 10. A key observation is
that several active frequency components (typically appearing



as vertical lines in the spectrogram) are not visible in the
HackRF-captured signals. For clarity, we highlight some of
these missing frequency components with boxes in the figure.

These results indicate that the choice of measurement
equipment is a critical factor in ensuring reliable detection
of malicious activity and unauthorized hardware modifica-
tions, regardless of the sophistication of the signal processing
framework. Therefore, the entire pipeline—from equipment
selection to signal processing—must be considered holistically
to achieve accurate and dependable results.

IV. CONCLUSION

In this work, we introduced a side-channel-based hardware
authentication and monitoring framework that utilizes EM
side-channel signals to detect hardware modifications, coun-
terfeit devices, and malicious code injections in embedded
systems. By modeling spectral behavior through STFT-derived
statistical features and applying KL divergence for signal
comparison, the proposed approach achieves high accuracy in
distinguishing between legitimate and compromised devices.
We demonstrated its effectiveness on multiple commercially
available microcontrollers using consistent program execu-
tion and validated its resilience against signal interference
from neighboring devices. Moreover, our investigation into
the impact of measurement hardware revealed that equip-
ment sensitivity plays a critical role in maintaining detection
performance, underscoring the need for a holistic design
that includes both signal processing and hardware selection.
Compared to prior work, our framework exhibits superior
sensitivity and robustness. These results support the feasibility
of deploying EM-based monitoring in automotive and other
mission-critical embedded environments for proactive and
passive security assurance.
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