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Abstract—Advanced Persistent Threats (APTs) are sophisti-
cated and long-lived attacks that are often backed by nation-
states. Despite the security community’s efforts to design and
deploy specialized systems to combat them, APTs have remained
prevalent while persisting undetected for significantly more time
than commodity cyber threats. In this paper, we measure this
difference by conducting the first longitudinal analysis of APT
infrastructure by shedding light on the lifecycle of their domain
names. To enable this study, we build Atropos, a novel measure-
ment methodology that automatically and accurately labels DNS
records of APT domain names, enabling us to understand their
lifecycle and gain a more comprehensive and contextualized in-
frastructure picture than the one that is shared in public reports.
Using the comprehensive infrastructure view that Atropos pro-
vides, we study 405 APT actors over a period spanning a decade
and unveil several novel findings regarding their utilization of
network infrastructure that have practical implications.

We find that APT actors provision their IPs to their domain
names 317 days on average before an attack is publicly reported.
Furthermore, 73.6% of the APT IPs that are part of the attack
infrastructure no longer point to their domains at the time of
first public disclosure, highlighting that researchers and security
practitioners need to consider historic DNS data in order to get a
more comprehensive and accurate picture when training network
detection, investigation, or attribution systems. Organizations
that are more sensitive to APT attacks will need to retain
network logs for at least 19 to 25 months in order to have higher
probabilities of discovering whether they have been a target of
an APT attack. Finally, we provide evidence that APT actors
re-use hosting providers, deploy APT network infrastructure
close to their intended attack targets, and increasingly utilize
more cloud-fronting. These findings are important because they
can guide future threat detection and attribution works.

Index Terms—Cybersecurity, APT, DNS, machine learning

I. INTRODUCTION

Advanced Persistent Threats (APTs) are attacks conducted
by well-organized, well-funded, and technically sophisticated
actors [2]. The term APT, likely coined in 2006 by analysts
of the United States Air Force [14], is used to differentiate
commodity and low-sophistication operations (e.g., script
kiddies) from those that are more complex and often
backed by nation-states and sophisticated crime syndicates.
The sophisticated and unique modus operandi of these
actors—as captured by MITRE’s cyber kill chain [74]—
has led to specialized mechanisms for APT detection and
investigation [53], [32], [6], [39], [67]. Despite active APT
research, recent attacks have continued to cause widespread

damage, such as the SolarWinds supply chain attack that
forced more than 18,000 customers (including the US
government) to install malicious code [27] or the 2025 Bybit
hack [68] that stole $1.5 billion worth of digital tokens.

Prior work on APTs has been mainly focused on detection
and investigation systems [53], [32], [6], [39], [67], [35], [47],
either aiming to identify APT attacks in real-time, or to support
forensic investigations. Measurement studies have focused on
understanding the attack surfaces of organizations targeted
by APT actors [80], the vulnerabilities they exploit [22], the
tactics, techniques, and procedures (TTPs) they employ [65],
or sophisticated attacks against specific targets [44] and
regions [51]. Despite the prior work to understand and
combat APT attacks, APT investigations still remain a
highly manual effort done by experts [70]. Among the top
challenges expert APT analysts currently face is that the
“lack of automation and validation in data ingestion impacts
the use of historical threat data [70].” While these challenges
are evident across different signals of APT investigations,
such as TTPs and malware, they also pose a major problem
in the utilization of Indicators of Compromise (IoCs), such
as domain names and IPs, which remain the primary signals
for APT attribution [70]. Aside from aiding expert APT
analysts in investigation and attribution efforts, characterizing
and contextualizing the network infrastructure (i.e., domains
and IPs) of APTs, which is lacking from public reports
and threat intelligence [79], [29], can help us answer and
quantify research questions that are still largely unanswered.
For instance, the network infrastructure comprehensiveness
of public threat reports, the longevity of APT infrastructure
before disclosure, and the infrastructure utilization trends
and similarities of APT groups over the years are still open
research questions. Answering these questions can help the
community devise more comprehensive defensive strategies,
develop more effective attribution systems by utilizing
network attributes, and understand how long organizations
need to keep network logs in order to detect whether they
have been a victim of an APT attack, considering that APTs
are particularly persistent compared to commodity threats,
thus requiring higher log retention windows.

One of the main challenges in trying to answer the afore-
mentioned research questions is the fact that the relationship
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Fig. 1: Lifecycle of an actor-controlled domain name. Multiple
owners and infrastructure types complicate forensics.

between the network infrastructure used to orchestrate an
attack and the APT actors is transitory, as is evident in their
domain names [45], [1] and as shown in Figure 1. For instance,
an APT actor can register a previously expired domain name,
park it at parking infrastructure, point it to their attack
infrastructure for a few days, and then let it expire or be taken
down. Another challenge is that APT attacks can persist for
years, and the actors can dynamically change the IP addresses
utilized by their domain names. Thus, to comprehensively
and accurately identify the network infrastructure associated
with an APT domain and its lifetime, a forensic analyst needs
access to a dataset that is capable of witnessing the historical
IP changes, has to filter out unrelated and noisy infrastructure
(e.g., parking and sinkhole, etc.), and finally pinpoint the
infrastructure and period of time in which each domain name
was ”active”. These challenges diminish the usefulness of
”as-is” network IoCs extracted from threat reports, requiring
analysts to invest manual effort in enriching, contextualizing,
and validating them, which is time-consuming [3], and is
typically conducted on a per-incident basis [24].

In this work, we reduce the knowledge gap in the network
infrastructure of APT attacks by performing the first longitudi-
nal study of APT infrastructure used by 405 APT actors over a
period spanning a decade. We focus on measuring and expand-
ing the comprehensiveness of the publicly known IP infras-
tructure of APT attacks by enriching known, high-confidence
APT domain names appearing across 2,188 APT reports with
historical DNS data. To this end, and considering the measure-
ment challenges we discussed, we utilize two historical DNS
datasets [78], [42] that witness changes to over 1,100 generic
top-level domains (gTLDs) daily, and a novel measurement
methodology that automatically and accurately characterizes
historic APT infrastructure. Our novel measurement methodol-
ogy, called Atropos, filters and labels domain-to-IP mappings –
Resource Records – related to known domains of APT actors,
while discarding IP addresses that are unrelated to APT attacks
(i.e. parking, sinkholes, etc.), providing needed automation
that expands, validates and contextualizes historical threat
data, which has been recently characterized as a major chal-
lenge by APT experts [70]. Our contributions are as follows:

• A novel measurement methodology that expands and
contextualizes the network infrastructure of known APT
domain names and offers three times the IP visibility
and domain contextualization than that of public threat
reports. The source code of Atropos can be found at:
https://github.com/Astrolavos/Atropos/.

• The largest and most comprehensive APT infrastructure
analysis to date, spanning over a decade and 405 APT

actors.
• We quantify the time window during which organizations

need to keep network logs to identify the vast majority
of the infrastructure of an APT attack. Our results show
that the network logs should be preserved for at least 19
to 25 months.

• We find that while APT actors utilize a plethora of
different hosting providers, they only re-use a small
portion of them, while, over the years, the use of
cloud-fronting has increased significantly. These findings
verify expert knowledge [70] and highlight the difficulty
of network forensics and attribution.

II. CHALLENGES IN DOMAIN LIFECYCLE ANALYSIS

APT network forensic investigations are often conducted as
more of an art than a science. Among the many challenges that
network forensic analysts must address, identifying the period
of time in which an APT attack was active has traditionally
been a highly manual process. In this section, we outline the
main challenges investigators face in temporally bounding
the active period of the APT attack (Section II-A), then put
these challenges into perspective using the SolarWinds attack
as a case study (Section II-B), and finally outline the scope
and requirements we need to measure the lifecycle of APT
domains (Section II-C).

A. Forensic Challenges

Identifying the attack-related (i.e., actor-utilized) IP infras-
tructure that an APT domain pointed to during a cyberattack
and its likely active time window is challenging. The first
major challenge comes from the fact that an APT domain
name can historically have multiple previous or future owners
other than the APT actors [45], [5]. Before an APT actor
registers or gains control of a domain name, the domain name
can be associated with previous owners whose IP infrastructure
is unrelated to the attack. After detection or disclosure, an
APT domain can be taken down, sinkholed, or left to expire
until it is re-registered by some other legitimate or malicious
entity [5]. Such infrastructure and time windows have to be
identified by the forensic analysts as unrelated to the attack.

The second major challenge comes from the fact that even
during the time window that the domain name is managed by
the actors, not all of the IP infrastructure that it points to is
related to the attack. For example, after its registration by the
APT actors, the domain name could point to its registrar’s
default parking infrastructure for a period of hours, days,
or months [82]. The APT actors also may choose to park
the domain at a benign IP outside their control (e.g., an
IP with a positive Internet reputation) for “aging” reasons
and to establish network reputation, since newly registered
domains with no network history are often more suspicious
than long-lived ones [28]. Other actors may choose to point
and periodically move the domain to arbitrary infrastructure
in order to inject deliberate noise into passive and active DNS
repositories. However, when a domain name is effectively
used in an attack (i.e., to deliver exploits, as a social
engineering domain, command and control, or exfiltration
point), it must point to the actor-utilized infrastructure.
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Fig. 2: Domain and IP lifecycle of deftsecurity[.]com and incomeupdate[.]com sunburst domain names initially reported
in [49]. In this work, we seek to automatically identify the actor-utilized IPs (colored in green). The numbers inside the
parentheses reflect the number of unique IPs of each category.

While some, or all of these events may occur, there is
no definitive lifecycle of an APT domain. As a forensic
investigator tries to piece together the timeline of the APT
attack, we can assume that they will uncover a combination
of the actor-utilized hosting infrastructure used in the attack,
infrastructure belonging to previous owners of the domain,
parking infrastructure, sinkholes, and even deliberate noise
added by the actors.

Considering the aforementioned challenges, it is clear that
extracting the actor-utilized hosting infrastructure of a domain
name is no easy task. To make matters worse, it is also
particularly hard to collect a clean and complete picture of
the infrastructure to conduct further analyses, as APT domain
names are usually utilized by nation-states and high-profile
adversaries that do not — obviously — share any information
about their operations.

Next, we summarize four main challenges that network
forensic investigators face as they characterize the lifecycle
and infrastructure of APT domain names. Across all these
challenges, we use the term “domain lifetime” to reflect all
observable time periods in which a domain name existed.

Non-Actor Ownership. This is the period in the domain
lifetime in which an actor does not own a domain due to
it belonging to a different owner. As illustrated in Figure 1,
this can occur either before the actor registers the domain, or
after the domain expires or is taken down.

Sinkholing. This is the period in which the domain
points to sinkhole infrastructure. Sinkholing occurs after
domain detection and results in a malicious domain pointing
to infrastructure controlled by security companies and
professionals, registrars, and law enforcement agencies [5].

Various Forms of Parking. This is the period in which the
domain points to various forms of parking infrastructure. This
infrastructure may be placeholder registrar-controlled parking
infrastructure shortly after the domain name is registered, or

parking infrastructure where the actors can point their domain
names to age them until they use them for their operation.
Deliberate Noise Injection. Actors can point their domain
to infrastructure that is not under their control to gain a
positive (benign) reputation before they use the domain in an
attack. Such an action could easily inject noise into passive
and active DNS repositories, effectively making the network
forensic investigation of the APT attack significantly harder.

B. Placing The Challenges In Context: The SolarWinds Attack

Next, we put the four major classes of challenges into
perspective by using the attack against SolarWinds as an
example. Figure 2 showcases the historical lifecycles of two
domains used in the SolarWinds attack, deftsecurity[.]com
and incomeupdate[.]com. It also depicts the corresponding IP
infrastructure that can be discovered from publicly available
DNS datasets [42]. For this example, these IP addresses
were labeled taking into account the public reporting of the
attack [49], [23] and manual threat analysis from multiple
analysts. Although the two domains were used in the same
attack, their lifecycles differ in registrar, IP infrastructure,
and pre-registration activity. These differences alone make
the analysis of the two APT domains used in the same attack
and controlled by the same actor non-trivial.

Starting with the domain registration patterns, APT actors
re-registered domains from two different registrars that had
completely different hosting histories (possibly because of
their previous domain owners). By just utilizing WHOIS data
and manually trying to pinpoint the most likely window of
actor registration, a forensic analyst would not be able to
identify which IPs were the ones utilized by the adversaries
and used in the attack. That is because there are multiple
parking and other unknown IPs in the historical DNS data —
even in the period where the actors likely re-registered these
two domains. Thus, to identify the actor-utilized IPs, an analyst
would need more than just a temporal window of interest.
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One solution to filter out the non-actor-utilized IPs would
be to use publicly available lists of parking IPs and DNS
nameserver infrastructure [48]. By doing so, utilizing the IP
and DNS nameserver data from [82], manually inspecting
the DNS nameservers, and identifying various parking
infrastructure, we could only additionally remove a subset of
the publicly known parking infrastructure (colored in orange).

While this methodology has reduced the amount of
infrastructure to inspect, it is still not sufficient, as the domain
names have been pointing to cloud infrastructure (Amazon
and Unified Layer, colored in blue after their latest registration
in Figure 2) which has not been attributed to the SolarWinds
attack due to its large temporal distance (many months before
the attack took place). An analyst, knowing the timeline of the
attack and manually inspecting the properties of this unknown
cloud infrastructure, would filter out these IPs as likely parking
and inactive infrastructure and yield only the actor-utilized IPs
as they have been publicly reported [25], [49]. The practice
of registering domain names years before their utilization and
strategically aging them on infrastructure other than the attack
infrastructure has been documented in prior reports [36], [56].
Evidently, filtering out all of these non-attack-related IPs is
a non-trivial and labor-heavy process, often left to expert
analysts. In this work, we seek to automatically identify
the actor-utilized IPs of historical APT domain names in a
transparent way and with a low false positive rate.

C. Observations and Takeaways

By taking into consideration the challenges and the lessons
learned from the SolarWinds campaign, we arrive at the fol-
lowing three observations: first, APT domains feature unique
lifecycles that can differ even within the same campaign,
second, these lifecycles can last multiple years, and domain
registrations, and third, APT domains can be associated with
a diverse set of infrastructure (e.g., parking, sinkhole, etc.)
that is often not associated with the actor-utilized IPs. Thus,
measuring the lifecycle of APT domains requires:

• A historical dataset that observes and logs the
infrastructure changes in APT domains across the years.

• A methodology that filters and labels the IP infrastructure
associated with the APT domains and considers the
diverse infrastructure types we discussed.

• A methodology that is applicable on a per-domain basis.
To satisfy the aforementioned requirements we take the
following steps: first, we utilize two historical DNS datasets
that span over a decade and capture the changes in DNS
resolutions of 405 APT actors and second, we develop a
novel system that filters and labels these historical DNS
resolutions taking into account the diverse infrastructure we
encountered on our case study and operates on a per domain
basis with high accuracy. Next, we discuss the datasets and
measurement methodology in more detail.

III. DATASETS AND METHODOLOGY

This section introduces the OSINT datasets (Section III-A)
we use to study 405 APT groups as outlined by our visibility
in Table III. Then we proceed by diving deep into Atropos
(Section III-C), its modules, and how these modules enable

Atropos to reliably and accurately identify actor-utilized
infrastructure.

A. OSINT Datasets

Threat Actor Information. We utilize the threat actor
information from the MISP Galaxy project [54]. This dataset
consists of a set of known APT actors, their attributed
country code, and a list of all their known aliases. The MISP
Galaxy threat actors dataset is also used by the popular threat
encyclopedia Malpedia [63] and is more comprehensive than
that of MITRE [55]. In our study, we only consider IoCs that
have been attributed to these known threat actors.
Threat Report IoCs. To build a set of known APT domain
names and IPs, we utilize publicly available threat reports.
Threat reports have been highly utilized in prior works to
gather IoC datasets related to APT threats [66] and are
considered a quality data source as the IoCs shared in them
are published by reputable security vendors. We extract threat
report IoCs from two well-known data sources. The first
data source is AlienVault Open Threat Exchange (OTX) [4].
AlienVault OTX is a large, open threat intelligence community
that has released more than 19 million IoCs to date. In our
study, we only consider IoCs that map to 1,859 threat reports
published on the Alienvault’s user account between 2014 and
2025. The second threat report dataset to extract APT IoCs is
CyberMonitor [20]. CyberMonitor is an aggregation of popular
APT threat reports and datasets such as APTnotes and others,
that have been heavily used in former works [50], [9], [66]. We
manually parse a subset of 329 threat reports from this data
source that were published between April 2013 and June 2019,
with the intent of extracting four attributes: APT domains,
APT IPs, publication date of the report, and name of the APT
actor that is associated with the domain names and IPs.

By combining the two datasets and looking at only threat
reports attributed to known threat actors, according to the
Threat Actor Information, and filtering out reports that
mention multiple actors, the final threat report dataset consists
of 2,188 APT reports, which is larger than previous APT
studies [3], [80]. Table I shows the top 10 publishers in terms
of the IoCs we utilize in this study. It is important to note
that most of our indicators come from reputable security
vendors, and we do not consider IoCs that come without
a published report in order to minimize potential noise in
our APT datasets from unreliable sources such as random
users in the AlienVault community [15]. Table II shows the
distribution of APT IoCs for each of the two datasets that
together sum up to 31,398 domains and 7,533 IPs.
DNS Resource Records. To populate the Historic DNS
Database of Atropos in Figure 3, we use two historical DNS
resource records datasets. The first dataset is the Historical
Active DNS dataset, from the ActiveDNS [42] project, which
scans daily millions of domain names from over 1,100 gTLDs
and has been utilized in many prior measurement works [7],
[76], [52]. The historical DNS records span from January
2016 to January 2025 and include A, AAAA, NS, NX, MX,
and SOA query responses. To complement the coverage of
ActiveDNS, we use a premium VirusTotal API access to gather
historical DNS resource records for all of the 31,398 domain
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TABLE I: Coverage of IOCs for the top 10 publishers in terms
of reports. Overall, we utilize a total of 2,188 APT reports.

No. of No. of No. of IOCs
Publisher Reports APTs Domain e2LD IP

Palo Alto Networks 133 81 3024 2738 706
Kaspersky Lab 126 81 2574 1803 392
Trend Micro 90 63 1386 960 441
ESET 80 51 679 607 459
FireEye 65 50 1373 1228 151
Symantec 63 50 972 903 241
Proofpoint 57 45 1091 622 105
Talos 52 38 1906 1680 211
SentinelOne 40 32 940 835 159
Tencent 37 25 308 262 41

names from our Threat Report IoC dataset. This dataset, also
referred to as the Historical VirusTotal DNS, amounts to
480,093 DNS resource records and spans back to April 2013.
VirusTotal API (VT). To generate needed features for
Atropos’ feature extraction module, which we detail in
Section III-C, we query the VirusTotal API. Features f4 − f7
for the VirusTotal DNS records and features f12 − f22 for
both Active DNS and VirusTotal DNS records are being
gathered by querying this data source.
Parking and Sinkholes. We utilize parking IPs and
DNS nameservers from both an academic publication and
Maltrail [82], [73], as well as manually labeling the DNS
nameservers of APT records to identify parking ones.
Additionally, we utilize sinkhole IPs and DNS nameservers
from an academic publication and a public list [5], [73],
as well as manually labeling the DNS nameservers of APT
records to identify sinkholes.
Compromised Domains. To filter out compromised domain
names, we remove the APT domains that were mentioned to
be compromised in the reports they were published in from
the CyberMonitor [20] source. Additionally, we also filter
out compromised domain names based on an aggregation
of compromised domain list [83], which includes various
reputable sources such as abuse.ch and SANS.

B. DNS Datasets and Threat Reports IP Visibility

Since we are mainly interested in identifying actor-utilized
IPs to study the infrastructure they utilize, we can just gather
the high-confidence domain names and IPs that appear in our
2,188 APT reports and utilize our DNS datasets to match
them. This way, we will only utilize known domains and
IPs that threat analysts in reputable reports have identified.
Table III presents the visibility of our DNS data sources on
the report Fully Qualified Domain Names (FQDNs), effective
Second Level Domains (E2lds) [26] — i.e., the registrable
portion of a domain name —, APT actors, and resource
records (RRs) after removing NX records and bogon IPs [21]
(e.g., unroutable, private, loopback networks). As we can see,
both these DNS sources together can provide at least one
IP for 90.84% of the APT FQDNs and 98.06% of the APT
actors, showcasing that our DNS datasets have significant IP
coverage for the APT domain names.

With this DNS visibility, we can now match the APT
domains and IPs that get shared on APT reports and see what

percentage of domain names threat reports can characterize
with an IP. When we do so, we can see that only 23.52% of
the FQDNs and 67.31% of the APT actors can be characterized
as demonstrated in Table III. Clearly, if we just utilize the APT
report domain and IPs, we would only characterize less than
a quarter of the historical APT domains, even with DNS data
sources that have over 90% APT domain coverage. Evidently,
there are legitimate reasons why APT report authors may not
have IP-level visibility of the domain names they have identi-
fied or may choose not to share all the IPs they have identified.
For example, the IPs that APT actors use can belong to virtual
hosting or cloudfronting providers and serve both benign and
malicious domains at the same time. Thus, the report authors
may omit such IPs from the reports to avoid readers blocklist-
ing them and causing harm to benign services. Additionally,
report authors may lack the historical DNS datasets to identify
the actor-utilized IPs. We find that the percentage of APT
reports that share both domains and IPs is only 44.22% of all
reports that share at least one domain. The size imbalance has
also been demonstrated in prior work [17]. Thus, conducting
a comprehensive APT network infrastructure study cannot be
done just by utilizing threat report information.

Takeaways: Simply matching known APT domains to
known APT IPs from APT reports using popular DNS
data can only characterize 23.52% of the APT domains.
We find that only 44.22% of the APT reports sharing
domains also share IPs, which further substantiates the
coverage concerns of threat intelligence that prior works
have raised [16], [79].

C. Measurement Methodology

Considering the lack of comprehensive OSINT visibility
in domain-to-IP mappings and infrastructure coverage, we
need to develop a measurement methodology to expand the
APT infrastructure coverage and conduct a representative
measurement study. However, as we have described in
Section II, identifying the actor-utilized IPs of an APT
domain is challenging. Previous works have tried to address
similar problems [1], [48], [45], but they are largely not
applicable to address all the challenges and satisfy all the
requirements we have set. To address these shortcomings
and characterize more domains than those that APT reports
alone can, we develop a simple supervised model that
we call Atropos, which automatically filters and identifies
actor-utilized IP addresses of known APT domains. More
specifically, Atropos ingests domain-to-IP mappings (i.e.,
DNS Resource Records — RRs) from DNS data, only for
domains that appear in APT reports, and identifies which RRs
correspond to infrastructure likely used by the APT actors.
Atropos uses a combination of different OSINT datasets and
three inline analytical modules which are described below.

1) Enrichment and Filtering Module: (Enrichment) At-
ropos first ingests the set of APT domain names from the
Threat Report IoCs (i.e, 31,398 domains in Step 1a) in its
Enrichment and Filtering Module. To get historical infrastruc-
ture visibility for these APT domains, it utilizes (Step 1b) the
Historical DNS Database and gets all the DNS records that
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TABLE II: Major datasets utilized in the study.

Type Source Dataset Time Span Number of Records

Threat Actor Information MISP Galaxy [54] Threat Actor Information 2025-03-04 to 2025-03-04 750
Threat Report IoCs AlienVault OTX[4] APT Domains 2014-12-02 to 2025-03-01 27,709
Threat Report IoCs AlienVault OTX[4] APT IPs 2014-12-02 to 2025-03-01 5,171
Threat Report IoCs Cybermonitor[20] APT Domains 2013-04-13 to 2019-06-26 6,621
Threat Report IoCs Cybermonitor[20] APT IPs 2013-04-13 to 2019-06-26 2,616
DNS Resource Records Active DNS Project [42] Historical Active DNS 2016-01-01 to 2025-01-31 119,959,784
DNS Resource Records VirusTotal Resolutions [77] Historical VirusTotal DNS 2013-04-01 to 2025-03-06 480,093
Compromised Domains Zonefiles.io [83] Compromised Domains 2013-03-20 to 2025-04-08 132,210
Parking and Sinkholes Prior Work & Maltrail [82], [5], [73] Parking and Sinkholes 2007-07-18 to 2024-03-13 85,509

TABLE III: A and AAAA resource record visibility after
enriching the known APT domain names with our DNS
data sources. APT IPs appearing on threat reports can only
characterize 23.52% of APT FQDNs in popular DNS datasets.

Visibility Threat Active DNS Report IPs Matched
Metrics Reports and VT on Active DNS and VT

Timespan 2013-04 2013-04 2013-04
2025-03 2025-03 2025-03

FQDNs 31,398 28,524 (90.84%) 7,386 (23.52%)
E2lds 22,691 20,975 (92.43%) 5,392 (23.76%)
APT Actors 413 405 (98.06%) 278 (67.31%)
RRs N/A 1,004,614 51,891

Fig. 3: An overview of Atropos. Atropos utilizes OSINT
datasets and historical DNS data to label and filter APT
infrastructure in a 3-step process.

were ever associated with the APT domains provided in Step
1a. The Historical DNS Database consists of all the historical
DNS Resource Records (RRs) from Active DNS and Virus-
Total and which are described in Table II. The output of the
enrichment is a set of all the resource records that exist in the
Historic DNS Database for the APT domains fed in Step 1a.

(Filtering) Atropos will then filter out all known compro-
mised domains from the Compromised Domains dataset II, as
well as bogon IPs that exist in the Cymru bogon list [21], non-
existing domains (NXDOMAIN), and empty responses. Non-
existent domains and empty responses are filtered by removing
resource records with an RCODE number equal to 3 and re-
source records with the RDATA field equal to null. This filter-
ing is necessary as such resource records will not be related to
infrastructure provisioned by the APT actors for an attack cam-
paign. Additionally, Atropos filters all domain names related to
DNS fast-fluxing. Fast-fluxing is the process that involves the
frequent change of the RRs of a domain name to many differ-

ent IPs that can span hundreds or even thousands [34]. We con-
sider such domain names out-of-scope of Atropos, as during
development we found that the tactics and techniques of some
fast-fluxing actors make them feature different lifecycles than
those of typical APT domains, discussed in Section II, and thus
require dedicated models. For example, the gamaredon group
has been demonstrated to keep utilizing the same detected and
reported domain names, long after the reporting of its attacks,
thus having malicious activity after its detection [58], [57]. We
leave the development of dedicated systems for such lifecycles
to future work. To remove such domains from our dataset,
inspired by Holz et. al. [34], we count the number of distinct
IPs per domain and filter out the top 5% of the domain names
in our dataset. This methodology filters out 1,497 domains
with 544 IPs on average per domain, with 82.69% of these
domain names belonging to gamaredon group, which, as we
have described, is known for fast fluxing activities [58], [57].
Since only 5% of the domains have been filtered, we do not
consider the impact of this filtering significant for the gen-
eralization of our methodology. Table III illustrates Atropos’
visibility in the FQDNs, E2LDs, number of APT actors, and
RRs after enrichment and before filtering. After all filtering,
our DNS visibility spans over a decade, with at least one
resource record for 26,615 (84.76%) of the FQDNs in all the
reports published between April 2013 and March 2025. The
total amount of resource records after the filtering is 195,051.

2) Feature Extraction Module: The next step of our
methodology is to extract the features needed in order to
train our models. Table IV illustrates the features of Atropos.
Atropos generates features for each of the resource records
that come out of the Enrichment and Filtering Module of Step
2. The features are generated by utilizing data extracted from
VirusTotal API calls, the Parking and Sinkholes dataset, as
well as the DNS Resource Records. We utilize a total of 22
features from four classes, namely temporal, infrastructure,
OSINT, and domain name features. We pick our features
based on historical forensic experience and argue about their
utility. The features are extracted by a set of Python functions
shared as part of our artifact. Next, we discuss the main
classes of our features. An even more detailed description of
the features can be found in the Appendix A.

Temporal Class (3 features): These features are meant
to capture the proximity of an IP to the detection of an
APT domain name and also their lifetime. Inspired by
the SolarWinds case 2, the actor-utilized IPs were used
close to, and shortly before the detection event, and had a
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TABLE IV: The features of Atropos. Atropos utilizes 22
features from four distinct classes.

#f Feature Class #f Feature Class

f1 Detection and IP Fseen Delta Temporal f12 IP Reputation OSINT
f2 Detection and IP Lseen Delta Temporal f13 Number of Malicious Votes OSINT
f3 IP Lifetime Temporal f14 Number of Harmless Votes OSINT
f4 Number of Historic Domains on IP Infra. f15 Number of Malicious Analyses OSINT
f5 Mean Concurrent Domains on IP Infra. f16 Number of Suspicious Analyses OSINT
f6 Median Concurrent Domains on IP Infra. f17 Number of Undetected Analyses OSINT
f7 Number of IP Communicating Files Infra. f18 Number of Harmless Analyses OSINT
f8 IP is Known Parking OSINT f19 Num. of Domain Communicating Files Domain
f9 Nameserver is Known Parking OSINT f20 Num. of Files Downloaded From Domain Domain
f10 IP is Known Sinkhole OSINT f21 Number of Domain Subdomains Domain
f11 Nameserver is Known Sinkhole OSINT f22 Number of Domain Certificates Domain

lifetime of multiple months. On the contrary, the sinkhole
IPs appeared after detection, and the domains first pointed to
unrelated or previous owners’ IPs long before their detection.
We build the temporal features around these observations.
We calculate (f1) and (f2) by computing the date difference
between the domain’s detection and the first and last seen of
an IP on a domain name respectively, while (f3) is the total
number of days the IP was seen pointing to that domain.
Infrastructure Class (4 features): These features aim to
characterize the IP infrastructure that a domain points to, by
looking at other domains that point to the same IP. In our
example (Section 2), the actor-utilized IPs had historically
only one domain name pointing to them, while the parking
IPs had a median of 9,014,949 domains pointing to them,
and the sinkhole IPs a median of 664. We calculate (f4) by
counting the total number of domains ever pointed to this
IP according to our DNS data sources and (f5) and (f6) by
computing the mean and median number of domains pointed
at that IP at the same time as the APT domain name.
OSINT Class (11 features): This class of features integrates
OSINT knowledge around the IPs. Features (f8) and (f9) are
binary features that report whether the IP or the nameserver
of the domain is in known OSINT parking lists. Similarly
we compute features (f10) and (f11) with known OSINT
sinkhole lists. Features (f12-f18) are computed by querying
the VirusTotal API regarding reputation, OSINT community
votes, and OSINT analysis scans of each IP.
Domain Name Class (4 features): Domain name features
capture differences in the utilization of a domain name by
an APT actor on the domain name level that can aid the
classification. We extract these features by querying the
VirusTotal API and calculating the number of communicating
and downloaded files (f19 and f20) and number of subdomains
and certificates (f21 and f22) that each APT domain has.

3) Classification Module: The final step in our methodol-
ogy is to feed the feature vectors generated at the Feature Ex-
traction module to the classification Module. The classification
module consists of a binary classifier that ingests the 22 fea-
tures we have described and classifies each resource record as
actor-utilized (True) or non-actor-utilized (False). During the
development of Atropos, we experimented with various ma-
chine learning methods, including heuristics, Decision Trees,
Support Vector Machines, Random Forests, XGBOOST [18],
and Multi-Layer Perceptrons. In our experimental analysis,
while other models had great performance, we found the Ran-
dom Forest classifier to offer the best ROC AUC performance
across datasets, while offering decision interpretability; thus,
we picked this model over the rest. During its development,

we trained and fine-tuned the hyperparameters only using our
training dataset – to prevent data snooping [11] – and optimiz-
ing for ROC AUC with grid search. The optimal hyperparam-
eters feature a depth of 10, 100 estimators, and the optimal
number of features to consider at each split equal to their
squared number. To showcase generalization, we tested Atro-
pos on two out-of-distribution datasets. Finally, to demonstrate
transferability across different DNS datasets, we train and test
Atropos utilizing different models on each DNS dataset (Ac-
tiveDNS and VirusTotal) and show that accuracy is similar.

IV. EVALUATION

In this section, we discuss the training and performance
evaluation of Atropos. Atropos is trained and fine-tuned on a
training dataset based on the public knowledge of public threat
reports, which we call the Public Reports Dataset (PR). After
Atropos is trained and fine-tuned, it is tested on two different
test datasets that were not considered during development,
with the aim of evaluating our methodology against potential
sampling bias and overfitting. Atropos achieves 10-fold
cross-validation accuracy scores of 98.16% and 98.90%
on Active DNS and VirusTotal DNS datasets, respectively,
demonstrating transferability, and accuracy scores of 91.39%
and 95.38% when evaluated on the test datasets (EA) and
(FR), respectively, demonstrating generalization.

A. Training and Evaluation Datasets
Collecting ground truth regarding the infrastructure of

APT actors is very challenging. Two of the main reasons
that contribute to this are that APT actors will not share
their attack playbooks with the public and the fact that APT
attacks are, by definition, sophisticated. Thus, to create our
training and evaluation datasets, we take two steps. First, we
utilize the public knowledge of domains and IPs existing in
public threat reports, and second, we utilize three analysts for
manual labeling. These analysts consist of two PhD students
with seven and four years of experience in APT network
forensics (JA1 and JA2 respectively) and one senior APT
network analyst with over 20 years of experience (SA). The
instructions given to the analysts were the following:

• You are given DNS resource records (RRs) of historical
APT domains.

• Your task is to label these RRs as actor-utilized (True)
or non-actor-utilized (False).

• A RR is actor-utilized when the IP corresponding to the
domain is the infrastructure utilized in the APT operation.

• You can utilize any tool at your disposal to do so.
• Deliver a file with every RR you can confidently label.
Aside from the RRs, the analysts are also provided with

open Internet access along with all the features generated,
and they are allowed to perform any tasks to validate
the correctness of their decision (e.g., reverse IP lookups,
searching IPs in IP intelligence and other reports, etc.). The
analysts were able to distinguish likely actor-utilized from
non-actor-utilized IPs by considering a plethora of factors
such as: a) the first and last observation of an IP to their
APT domain name relative to the first public disclosure (e.g.,
actor-utilized IPs are more likely to be first observed before
detection), b) the existence of an IP or a nameserver of the
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domain to known parking and sinkhole lists, c) the number and
profile of other domains pointed to the same IP at the same
time or historically (e.g., an IP that has hundreds of thousands
other domains pointed to it concurrently and a random sample
of them are displaying a parking page is a parking IP), and d)
the time window of previous WHOIS registrations (e.g., IPs
pointed to by the APT domain multiple registrations before
the disclosure are likely previous owners of the domain).
Next, we provide more details regarding each labeled dataset.

1) (Training) Public Reports Dataset (PR): This set
incorporates the public knowledge from APT reports. As
APT actors will not share their infrastructure with the public,
the next most accurate set that can be utilized is that of report
authors who have manually labeled the infrastructure and
openly shared it in threat reports. For this dataset, we utilize
all the APT domain-to-IP mappings (RRs) that have been
publicly mentioned in the APT reports (i.e. Threat Report
IoCs dataset) and have been matched together by using the
Active DNS dataset, same as in Section III-B. However, these
records only represent the positive class (i.e., actor-utilized)
of the ground truth. To generate the negative class (i.e., not
actor-utilized), and avoid class imbalance [11], we pick an
equal amount of other random resource records from Active
DNS, for the same domains that have a positive class record,
and give all these records for manual labeling to analyst
JA1. Analyst JA1 confidently labels 1,915 out of 2,027 RRs
and marks 1,065 RRs as actor-utilized and 851 RRs as
non-actor-utilized. While the class distribution is not equal,
the final dataset does not suffer from class imbalance [11],
with 55.61% actor-utilized RRs and 44.43% non-actor-utilized
RRs. Overall, this dataset consists of 1,915 resource records
from 938 domains associated with 94 APT actors, from threat
reports spanning from 2014-02-11 to 2023-04-13. To further
evaluate JA1 records for label inaccuracies [11], after JA1
has completed the manual labeling, we give the same set of
records and instructions to another junior analyst JA2 from the
same organization as JA1 for labeling. After their inspection,
we quantify the level of agreement between the two analysts
by computing the Cohen’s kappa [75] for the records they both
successfully labeled. We find a Cohen’s kappa score of 0.9820,
suggesting almost perfect agreement, thus giving us confidence
that the PR dataset has a very high level of agreement among
analysts. Only 17 records had different labels. This labeling
disagreement was resolved by keeping the labels of the most
senior analyst among the two (i.e. JA1). Thus, the maximum
potential error rate in this dataset, assuming that JA1 is wrong
in all of the 17 assessments, is 0.8%.

2) (Evaluation) Senior Expert Analyst Dataset (EA):
Despite the PR dataset incorporating the public reports’
APT infrastructure labels and the high confidence agreement
between the two analysts in manually labeling, sampling bias
could still be apparent [11]. To better understand the potential
sampling bias of the PR dataset that will be used for training,
we ask an expert analyst with over 20 years of experience,
from a separate organization of JA1 and JA2, to manually
label a second completely disjoint ground truth from that of
PR. This set consists of all the RRs found in Active DNS
for one random domain name per APT actor, totaling 2,293
RRs. SA was able to confidently label 831 from the 2,293

RRs and marked 155 RRs as actor-utilized and 683 RRs as
non-actor-utilized. The dataset SA labeled is not as balanced
as PR, since SA was given all the historical RRs for each
domain name and not a balanced set of RRs, in contrast to
JA1. We do utilize this dataset — since the PR dataset is
balanced — to evaluate Atropos in a scenario without base
rate fallacy [11]. Overall, this dataset consists of 831 RRs
from 191 domain names of 191 different APT actors.

3) (Evaluation) Future Records Dataset (FR): The second
test set is created after the system is completed with the intent
to evaluate its performance against future distributions of RRs
that were not seen during training. To do that, we pick a ran-
dom sample of 100 RRs from reports spanning from 2023-05-
03 to 2025-01-29, which were published after all of the reports
from our training dataset. These 100 RRs correspond to 65 do-
mains, 98 IPs, and 33 APT actors. Given the same instructions
and data that were outlined in Section IV-A, analysts JA1 and
JA2 label these 100 RRs and resolve their disagreements to
arrive at a single dataset. The two analysts achieved a very high
Cohen’s Kappa agreement level of 0.86, suggesting an almost
perfect agreement, with only six records in disagreement. Post-
labeling, the two analysts discussed their labels and resolved
all six disagreements. The class distribution of this set is 73
non-actor-utilized and 27 actor-utilized RRs.

TABLE V: Average 10-fold cross-validation performance of
Atropos on the PR dataset. Atropos achieves at best a 99.86
ROC AUC score when utilizing VirusTotal DNS data and
training on the PR dataset utilizing a Random Forest Model.

DNS ML Average 10-fold X Validation Scores
Dataset Model ROC AUC F1-Macro Accuracy Precision Recall

Active DNS Random Forest 99.82% 98.14% 98.16% 98.03% 98.60%
Active DNS Decision Tree 97.67% 97.71% 97.72% 97.74% 98.11%
Active DNS XGBOOST 99.52% 98.36% 98.37% 98.07% 99.00%
Active DNS SVM 97.86% 88.20% 88.70% 82.88% 100.0%
Active DNS MLP 96.83% 94.33% 94.37% 96.50% 93.05%
VirusTotal Random Forest 99.86% 98.86% 98.90% 98.37% 99.77%
VirusTotal Decision Tree 98.14% 98.39% 98.44% 97.62% 99.77%
VirusTotal XGBOOST 99.86% 98.66% 98.70% 98.35% 99.44%
VirusTotal SVM 97.40% 81.37% 83.44% 78.38% 99.33%
VirusTotal MLP 97.00% 95.54% 95.56% 96.30% 96.31%

B. Experimental Results
1) Classification Results: Table V shows the average

10-fold cross-validation performance of Atropos on the
PR training dataset. Atropos achieves significant ROC AUC
scores across all utilized machine learning models and the two
DNS datasets. The best-performing model in terms of ROC
AUC score is the Random Forest with a score of 99.82% and
99.86% on Active DNS and VirusTotal datasets, respectively.
This showcases that Atropos has high performance across
models and can have high levels of transferability across
different DNS datasets. Since Random Forest has the highest
performing scores, we pick this model as best for our next
test, out-of-distribution experiments.

Our second experiment evaluates Atropos against two
test sets (EA and FR) that consist of records that were not
considered during training with the intent to test Atropos
performance against out-of-distribution(OOD) datasets and
observe its generalization and robustness against sampling
bias that has been identified as a major problem in the security
field [11]. Table VII demonstrates Atropos’ performance
against these two test sets and across the two DNS datasets.
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TABLE VI: Number of network IoCs for the top 10 actors that are reported in threat reports and identified by Atropos. Atropos
provides three times the IP visibility of threat reports and contextualizes three times more domain names than threat reports.

Actor IP addresses BGP prefixes ASN Domain Coverage (%)
Reports Atropos Reports Atropos Reports Atropos Reports Atropos

Lazarus Group 1,047 776 569 504 371 241 20.25% 76.12%
Gamaredon 361 1,873 130 623 25 253 20.90% 45.19%
Fin7 218 341 132 222 56 126 23.48% 60.75%
Unc1878 208 379 73 134 48 47 63.45% 96.49%
APT28 204 723 155 381 97 202 29.63% 71.89%
Muddywater 173 301 92 206 36 98 06.38% 43.20%
Winnti Group 158 206 85 126 47 74 23.64% 21.28%
APT29 157 144 123 130 93 91 28.35% 65.67%
Sandworm 132 53 93 20 70 13 21.42% 71.42%
CharmingKitten 128 554 62 188 62 81 46.84% 63.19%

Total 7,553 25,049 3,530 6,115 1,291 1,762 20.20% 61.07%

We observe that in all of the tests, Atropos remains highly
accurate with accuracy equal to and higher than 91.00%. We
also notice that the precision of Atropos drops especially in
the EA dataset. We investigate these records and find out
that the largest class of false positives comes from Cloudflare
and Namecheap web-hosting IPs (35.71%), while the rest are
distributed among different ASes. After debriefing the SA
analyst, they mentioned that they do not consider any cloud-
fronting and shared-hosting IP addresses (e.g., Cloudflare,
Namecheap shared-hosting) as likely actor-utilized, as they
do not provide any basis for pivoting to other infrastructure
or evidence that the actors owned the IPs since they can
belong to multiple users. Despite that EA analyst is correct
and these IPs are not useful for pivoting and should not
be considered for blacklisting, this comes in contrast with
our instructions in which we outlined we wanted to identify
the IP corresponding to the domain is the infrastructure
utilized in the APT operation, regardless of whether they
are cloud-fronting or virtual hosting. Despite that, the overall
performance of Atropos across all tests remains very high, and
this experiment showcased that its results are generalizable
in (OOD) datasets. In the appendix, we demonstrate how
Atropos can be adjusted to generalize in similar scenarios of
labeling as those considered by the EA analyst.

TABLE VII: Out-of-distribution test set evaluation of Atropos.
Atropos achieves an over 91.00% accuracy across the two
evaluation datasets, demonstrating generalization.

DNS Test
Dataset Set ROC AUC F1-Macro Accuracy Precision Recall

Active DNS FR 95.47% 95.08% 95.38% 92.00% 95.38%
VirusTotal FR 95.47% 95.08% 95.38% 92.00% 95.38%

Active DNS EA 87.13% 85.56% 91.00% 73.23% 91.00%
VirusTotal EA 88.47% 87.20% 91.39% 76.53% 91.39%

2) Feature Importance: By calculating the Mean Decrease
of Impurity (MDI) score on an 80-20% split utilizing the PR
dataset and Active DNS data, we rank the features that Atropos
has used to find out their importance, thus offering model
interpretability. We observe that the top five features by MDI
include the number of Historic Domains on IP (0.187), the IP
first seen Delta (0.177), the number of Communicating Files
on IP (0.158), and the Mean and Median Concurrent Domains
on IP (0.125 and 0.149), thus highlighting importance across

all feature types but specifically in infrastructure and temporal
features. This fact aligns with our observations from the
SolarWinds case study in Section II-B, where both the
temporal (i.e., when an IP was pointed to the domain name
compared to detection) and infrastructural (i.e., what kind of
infrastructure that IP is) features are necessary to distinguish
the actor-utilized from the non-actor-utilized infrastructure.
Considering this, we are confident that Atropos makes
decisions that follow the principles that a human analyst
would also have used. We further list full details around the
individual feature importance in Appendix B.

C. Infrastructure Expansion and Lifetime Characterization
Table VI presents the number of IPs, BGP Prefixes,

Autonomous System Numbers (ASNs), and domain coverage
comparison between what is provided in threat reports and
what is identified by Atropos. The table presents the coverage
of the top 10 APT actors along with the total number of
all the actors. Overall, Atropos provides 3.062 times more
high-confidence IPs than OSINT APT reports. The added
benefit for BGP prefixes and autonomous systems (ASes)
is smaller as they represent bigger groupings of Internet
infrastructure, but is still significant. Furthermore, Atropos
provides actor-utilized IP mappings for 61.07% of domains
provided in APT reports, which is significantly larger than that
of just matching the IPs that exist or reports with their domain
names. To characterize the lifetime of IP infrastructure, we
utilize the historical information provided by the Active
DNS dataset [42], enabling us to build lifetimes with a daily
granularity for all of the high-confidence IPs Atropos has
identified as associated with the APT domains in our dataset.

Takeaways: Our measurement methodology accurately
identifies 3.06 times more historically utilized IP infras-
tructure, compared to that published in threat reports, and
characterizes 61.07% of the APT domains appearing in
them, thus enabling a more comprehensive measurement
study than just utilizing OSINT threat report data.

V. INFRASTRUCTURE ANALYSIS

In this section, we conduct the largest APT and most com-
prehensive APT infrastructure analysis to date. To do so, we
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Fig. 4: Kernel density estimate distribution of the daily active APT actors for the top 15 most utilized provider ASes in the
last decade. Cloudflare utilization for domain name hosting has increased significantly over the years, making forensic analysis
and attribution of IP infrastructure harder due to the overlap of benign and malicious infrastructure on the same IP addresses.

utilize all of the APT IoCs from our OSINT data sources de-
scribed in Section III-A, as well as the new infrastructure Atro-
pos has identified, utilizing both the ActiveDNS and VirusTotal
DNS datasets. For more conservative estimations, we remove
RRs on which ActiveDNS and VirusTotal models disagree.
The number of these records is only 1.34% of the overall
records, and thus it does not bias our measurement results. We
structure our analysis around the following research questions:

• Where do APT actors provision their infrastructure,
and do they re-use the same hosting providers over the
years? (Section V-A)

• What is the lifecycle of the different infrastructure types
associated with APT domains, and how does that affect
forensic analysis? (Section V-B1)

• How long before the public reporting of an attack are
actor-utilized IPs provisioned to the domains, and what
is the time window of their observability? (Section V-B2)

A. Infrastructure Utilization

1) Hosting Provider Utilization: Figure 4 demonstrates
the density of the daily active APT actors that utilize any of
the top 15 hosting providers in our dataset. We observe that
these hosting provider ASes that APT actors utilize consist
of a mix of cloud-fronting, CDN, and proxying providers
(e.g., Cloudflare, Akamai, AWS, Google Cloud), virtual and
shared hosting providers (e.g., Vultr, DigitalOcean, OVH,
Namecheap, UnifiedLayer), dedicated hosting (i.e., Hetzner,
OVH, Hostkey), and providers that are more tolerant to
abuse (i.e., Colocrossing, Stark Industries, M247). Thus,
APT actors utilize a plethora of different types of hosting
providers for their domain name hosting and do not primarily
choose a specific category of providers. Temporally, we
observe that after 2023, CloudFlare has drastically increased
in popularity among actors, with 74 different actors hosting at
least one domain in their network. This increased popularity
of Cloudflare over the years is justified as this provider offers
very lucrative technologies that enhance the stealthiness of
APT infrastructure, such as origin IP masking and blending
with benign domain traffic behind the same virtual hosting IPs.
This trend complicates network threat hunting and forensics
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Fig. 5: AS re-utilization among APT actors. The average
re-use rate of ASes among actors equals 26.20%.

as it diminishes the value of IP addresses for such domains,
a fact that has been anecdotally verified by APT experts [70].
Another recent rising trend is the increased utilization of the
bulletproof hosting provider ”Stark Industries Solution” after
2023. Stark Industries Solution is a new bulletproof hosting
provider that was launched in February of 2022 [60] (although
its IP space was used in previous attacks under different
management). While we observe 23 different groups to have
utilized this hosting provider since 2023, the two groups with
the highest number of domains are Fin7 and MuddyWater [64],
[37]. Lastly, despite the aforementioned rising trends, several
hosting providers (e.g., Hetzner, VULTR, M247) have
featured a steady utilization by APT groups across the years.

2) Infrastructure Reuse: In order to measure the re-use
of ASes among different APTs, we identify for each domain
name and actor the first time that domain was provisioned
to each AS. Then we measure the proportion of ASes that
get re-used for more than one year per APT actor, and for
statistical relevance, we remove actors with less than 20
domain names, thus focusing this experiment on 135 actors.
Figure 5 demonstrates the proportion of ASes that these actors
re-use across the years. We notice that most APT actors re-
use a small portion of all the ASes they have provisioned their
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Fig. 6: The unique lifecycle of the infrastructure associated
with APT domains compared to the first public report date.

domain names historically, with the average re-use rate for all
these actors being 26.20%. This means that most actors do
not choose to host their domain names on the exact same set
of ASes over the years; however, they do re-use a smaller
portion of the same hosting ASes. When we look at the
percentage of the APT groups that do re-use at least one
AS for over one year, we see that it is 97.03%. Thus, APT
actors do re-use network infrastructure in the same hosting
providers; however, this re-use only accounts for a small
portion of all the infrastructure they have used historically.
Threat hunters and attribution experts need to be careful when
identifying and attributing new campaigns to existing actors,
mainly by network infrastructure signals, and focus only on the
infrastructure that is consistently being re-used when doing so.

Takeaways: APT actors provision their infrastructure
to a plethora of different types of hosting providers,
ranging from cloud-fronting, virtual hosting, dedicated
hosting, and bulletproof hosting providers, with cloud-
fronting rising significantly in popularity. While the
majority of APT actors re-use infrastructure, this only
occurs for a small portion of their overall infrastructure,
with the average AS re-use rate equaling 26.20%.

B. Infrastructure Lifecycle
Utilizing the labeled RRs that Atropos provides alongside

their first and last seen days in the daily DNS records of
the Active DNS dataset, we measure the lifecycle of all
the different categories of infrastructure related to APT
domains and derive key takeaways for forensic analysts
and defenders. Subsection V-B1 characterizes and compares
the unique lifecycles of all the categories of infrastructure,
while subsection V-B2 focuses specifically on actor-utilized
infrastructure and its period of observability.

1) Infrastructure Type Analysis: As we demonstrated
in Figure 2, four categories of infrastructure are frequently
associated with APT domain names, namely, actor-utilized,
parking, sinhkole, and unrelated to the attack. Figure 6 shows
the lifecycle of all these types of infrastructure relative to the
first public reporting of each of the domains they point at.
Actor-utilized infrastructure features a narrower lifecycle than

the rest of the categories, with the median IP first and last
observed in DNS data 251 and 103 days before detection, re-
spectively. More interestingly, 73.6% of the actor-utilized IPs
no longer point to their domains at the first public disclosure
date. This finding has practical applications for analysts and
systems detecting and investigating APT infrastructure during
and after the disclosure of an attack, considering the lack of
comprehensive coverage that threat reports provide. Analysts
and systems that do not utilize historical DNS datasets and do
not consider the lifetime of their IP infrastructure risk, at best,
to incomprehensively discover attacker-utilized infrastructure
or, at worst, to misclassify parking, sinkhole, or other unrelated
infrastructure that appears after detection as attacker-utilized.

Sinkhole infrastructure features a more long-lived lifecycle
than that of actor-utilized IPs, starting very close to the
disclosure date and spanning long after detection. However,
17.5% of the sinkhole IPs are pointed to their domain before
the day of their public disclosure, and thus, analysts and
detection systems utilizing DNS records even at the time
before disclosure have to be very careful not to associate
sinkholes with actor-utilized IPs.

Parking infrastructure is more uniformly distributed across
the lifecycle of APT domains, and the median IP is first
pointed 297 days after public disclosure. However, similarly
to the sinkhole infrastructure, 35.9% of known parking IPs ap-
pear to be first pointed to the domains before public disclosure
of their domain, and as we showcased in the SolarWinds case
study, such IPs have to be identified and filtered out by forensic
analysts looking to uncover actor-utilized infrastructure. Sur-
prisingly, 31% and 42% of the parking and sinkhole IPs, re-
spectively, have one or more malicious detections on VirusTo-
tal, and 18% of the sinkhole IPs have five or more. This can be
explained due to the large amount of APT and other malicious
domains that end up being pointed at them, which makes some
vendors flag them as malicious by association. Nevertheless,
this fact highlights that researchers have to be careful and not
blindly trust vendors’ detections but consider the type of in-
frastructure when doing forensic analysis or building intrusion
detection or investigation systems, especially considering that
five or fewer VirusTotal malicious detections are common in
malicious IP labeling [10], [30], [31], [81], [69].

The rest of the IP infrastructure that neither Atropos labels
as actor-utilized nor is in known parking and sinkhole lists is
grouped in the ”Unrelated” category. Such infrastructure is pri-
marily first pointed to by their domains after public disclosure
for 75.9% of the IPs, and is mainly associated with infrastruc-
ture unrelated to the actors, such as future owners, parking, and
sinkhole IPs unknown to the public. The top two IPs of this
class are: ”35[.]205[.]61[.]67”, an unknown to our sinkhole
list sinkhole [72], and ”54[.]65[.]172[.]3”, an Amazon shared
hosting IP that had 995,067 domains historically pointed at
it. Almost a quarter of this infrastructure (i.e., 24.1%) is first
pointed before public disclosure of their domains, and thus
forensic analysts have to be careful of not mis-associating such
infrastructure with likely actor-utilized IPs.
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Fig. 7: Number of days that actor-utilized IPs were first and
last observed before their domain name public disclosure.

Takeaways: The IP infrastructure of APT domains
features unique lifecycles. Actor-utilized IPs are mostly
visible before public disclosure, with 73.6% of the IPs
no longer pointing to their domains after their disclosure,
highlighting the importance of historical data for com-
prehensive infrastructure tracking. Parking IPs are more
uniformly distributed across time, while sinkholes and
other infrastructure unrelated to the actors primarily first
appear after disclosure. A significant portion of known
parking and sinkhole IPs are mistakenly being flagged
by security vendors as malicious, and thus forensic
analysts have to be very careful not to mistake them with
infrastructure that was likely utilized by the APT actors.

2) Actor-Utilized IP Activity: Figure 7 demonstrates the
first and last seen of the APT utilized resource records among
all actors as observed in ActiveDNS compared to their first
public disclosure. We observe that there is a wide variation
among initial provisioning delta compared to the first public
threat reporting. The mean and median first IP provisioning
are 317 and 187 days before the first public disclosure,
respectively, which indicates that many actor-utilized IPs
remain well under the radar for months. This fact reinforces the
common knowledge that APT attacks are stealthy, and it takes
a significant amount of time to detect them in contrast to other
cyber attacks like phishing or password stealers, which feature
significantly shorter detection lifecycles of 21 hours and 11
days, respectively [59], [12]. It is important to note that this is
a higher bound estimate as it includes the time for a report to
be written and published; however, the difference is still signif-
icant relative to commodity threats, and the reliance of expert
APT analysts on public reports has been recently verified [70].
The long delta between first infrastructure provisioning and
public reporting of the attacks can also be explained by the
fact that advanced actors have been reported to strategically
age their domain names [36], [56]. Looking at the last time
the actor-utilized IPs were resolved by their domain names
relative to public disclosure, we observe a mean and median
time of 173 and 75 days before disclosure, respectively. More
importantly, to observe 90% of the actor-utilized resource
records, an analyst would need to go back to at least 19 months
in time before the first public disclosure of their domains. This

fact reiterates the need for historical data to comprehensively
track APT infrastructure, and calls for great caution among
forensic analysts in order not to mistake parking, sinkhole,
and previous owners’ infrastructure, which has a significant
presence before the public disclosure, as actor-utilized.

These observations can aid network detection systems that
are heavily dependent on features related to the short lifespan
of malicious domain names, which have been proven not to
be adversarially robust [28]. Furthermore, they have practical
implications for organizations and government entities that
need to forensically investigate APT attacks against them.
Our results demonstrate that 90% of the actor-utilized
resource records would be observable by keeping logs in a
time window between 19 and 25 months before their public
reporting. Thus, organizations that are sensitive to APT threats
and forensic analysts will need to keep at least 19 months’
worth of historical network records to comprehensively
evaluate whether they have been a target of a prior APT
threat and to thoroughly investigate the network infrastructure
of APT actors, respectively.

Takeaways: APT actors first provision infrastructure
on their domain names 317 days on average before the
APT attack is publicly reported. This number alone pro-
vides ample time for actors to successfully conduct their
operations while negatively impacting detection systems
that assign a positive reputation to longer-lived domains.
Organizations need to keep their network logs for a time
window of at least 19 to 25 months to be able to identify
90% of the APT infrastructure from a DNS perspective.

VI. DISCUSSION AND LIMITATIONS

A. Operationally Relevant Takeaways

Our study revealed that 73.6% of the actor utilized
IPs no longer pointed to their domains at the time of
their first disclosure. This has important implications for
properly training APT detection systems that utilize network
infrastructure features, as researchers would need to identify
the actor-utilized IPs of APT domains by looking back in
time so that they do not mistakenly associate them with other
types of infrastructure, such as parking, sinkholes, and future
owners that frequently appears close or after public disclosure
as illustrated in Figure 6. Future works can utilize tools and
methodologies like Atropos to do so.

The recent increase in the utilization of cloud-fronting ser-
vices, such as CloudFlare, among APT actors makes network
forensics and attribution harder since such infrastructure is
frequently associated with multiple other domain names and
owners at the same time. DNS-based detection and attribution
systems should be adjusted to work well beyond the
infrastructure-level features of prominent works [8], [13] and
emphasize lexical, registration, and temporal characteristics
of domain names to extract signal that could characterize the
APT actors since their infrastructure blends in with normal,
benign traffic. Furthermore, researchers can use historical
DNS records and methodologies like Atropos and look for
the period before the actors enabled cloud-fronting services
to find out whether the actors had pointed their domains to
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other likely utilized infrastructure. As we demonstrate in the
Appendix C, in such scenarios, Atropos can be tuned to ignore
cloud-fronting and shared hosting infrastructure and focus on
dedicated infrastructure that the actors are more likely to own.

Our findings in Section V-B2 revealed that APT actors first
provision their IP infrastructure to their domains 317 days on
average before disclosure, reaching 25 months for the 90th
percentile. Defenders will need to extend their data retention
policy for DNS queries, firewall logs, network flows, and
endpoint telemetry to at least 25 months. With such policies,
retrospective scans of their network data, the moment new
IoCs appear in public reports and threat feeds, will yield
more comprehensive coverage in terms of identifying likely
infected victims in their networks.

B. Limitations
Despite the increased infrastructure visibility that our

measurement methodology provides compared to APT threat
reports, it cannot identify all actor-utilized IPs for all domains,
as illustrated in Table VI. Some of the APT domain names
belong to ccTLDs and other TLDs that do not share their
zone files, so it is difficult for DNS scanners to pick them up
before their detection. APT actors may also set their name
servers to respond with a valid command and control IP only
to specific target networks (i.e., victims) and with invalid IPs
to others, including projects like Active DNS. Additionally,
some APT actors may utilize a subdomain that hasn’t been
observed by a DNS scanner (e.g., 3LD or 4LD) for their
command and control server and park their e2LD to known
parking locations, which Atropos will filter out. Despite all
this, the infrastructure expansion compared to public reports
for our measurement study is still significant.

As illustrated in Section IV-B, Atropos performs very well
in both evaluation datasets; however, its performance can
vary by actor depending on how differently actors utilize
the network infrastructure. APT actors can perform mimicry
attacks or utilize fast flux [58] to induce false positives and
perform label shift [11], [46]. Future work can build dedicated
models for individual groups and their strategies to address
such issues. We did not explore this avenue as the existing
high-confidence ground truth for these threats is insufficient
to effectively represent each APT actor in a machine-learning
model without big class imbalances [11].

VII. RELATED WORK

The lifecycle of domain names has been the subject of prior
works in the security and measurement communities. Lever et
al.[45] offered an alternative to WHOIS and tried to identify
domain ownership changes using Alembic, a lightweight
algorithm that utilized passive DNS data. However, their
methodology was aimed at identifying changes of ownership
and not actor-utilized infrastructure of malicious domains.
Affinito et al. [1] studied the lifecycle of domains and
malicious domains in blocklists utilizing zone file data, and
similarly to Lever, developed a methodology to bound the life-
cycles of domain names, but not to label their infrastructure.
Lloyd et. al. [48] developed a methodology to classify domain
names as ”active”, ”no-IP”, or ”inactive”, with an aim to find
domain names serving content under the registrant’s control.

However, this methodology is not applicable to historic
domain names and mainly relies on parking infrastructure
lists that we have demonstrated are not sufficient for our
scope. Sebastian et al. developed an automated approach to
attribute domain names to their most likely ownership [71].
However, our work is different as our goal is to identify the
lifecycle of the infrastructure of domain names.

In network-based detection systems, network traffic data
and domain lifecycle analysis have also been used as the
means of APT detection. Alageel et. al., [3] proposed
Hawk-Eye, an APT command and control domain detection
system that utilizes PCAP data. Oprea et al [61] propose a
framework for early-stage APT detection, by modeling the
network communications of the internal hosts of an enterprise
with outside hosts and utilizing belief propagation. Lamprakis
et al. [43] suggest a system capable of detecting APT
commands and controlling traffic in an unsupervised fashion
utilizing host weblogs. Chiba et al., proposed a detection
system that is based on domain name lifecycle analysis [19].
Other studies suggested techniques for the detection of lateral
movement that are applicable to APTs [16], [33], [41], [40],
while a large amount of work has focused on provenance
detection and investigation systems [53], [32], [6], [39], [67],
[35], [47]. Such studies are orthogonal to our scope as they
are aimed at the detection of APT domains rather than the
investigation of their network infrastructure over the years.

Several measurement studies have analysed APT actors and
sophisticated attacks over the years. Marczak et al. [51] were
among the first to empirically measure and characterize the
modus operandi of nation-state actors. Le Blond et al. [44]
characterized targeted APT attacks against NGO members
finding the actors to utilize recently disclosed vulnerabilities
in their malware. Urban et. al [80] analyzed 93 APT reports
and found that 80% of the APT actors start their attacks
by sending phishing emails. Saha et al. conducted a user
study utilizing 15 APT expert practitioners and identified that
current tools and practices in APT analysis feature significant
challenges for threat hunting and attribution [70]. In our study,
we reinforce the findings of these prior works regarding the
difficulty of the analysis and the sophistication of APT threats.

VIII. CONCLUSION

In this work, we analyzed the network infrastructure of
405 APT actors spanning over a decade. Using our novel
measurement methodology, we were able to identify 3.06
times more historically utilized IP infrastructure compared
to that published in threat reports. Our lifecycle analysis
suggests that organizations will need to retain network logs
for at least 25 months in order to maintain comprehensive
historical visibility for forensic purposes in the case of an
APT attack. Furthermore, we observed that while APT actors
utilize a plethora of different hosting providers, they only
re-use a small portion of them, and that over the years, the
use of cloud-fronting has increased significantly, making
network forensics and attribution harder. Our findings verify
prior insights from experts, and we hope to be the basis for
increased attention from the community.
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Van Goethem, Carlos H Gañán, Giovane CM Moura, Samaneh
Tajalizadehkhoob, Wouter Joosen, and Michel Van Eeten. Helping
hands: Measuring the impact of a large threat intelligence sharing
community. In 31st USENIX Security Symposium (USENIX Security
22), pages 1149–1165, 2022.

[16] Benjamin Bowman, Craig Laprade, Yuede Ji, and H Howie Huang.
Detecting lateral movement in enterprise computer networks with unsu-
pervised graph {AI}. In 23rd International Symposium on Research in
Attacks, Intrusions and Defenses ({RAID} 2020), pages 257–268, 2020.

[17] Juan Caballero, Gibran Gomez, Srdjan Matic, Gustavo Sánchez,
Silvia Sebastián, and Arturo Villacañas. Goodfatr: A platform for
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APPENDIX

A. Detailed Atropos Features

Temporal Class (3 features):
• (f1) Domain Detection and IP First Seen Date Delta:

The time delta (in days) between the first day the domain
name was reported in a threat report and the first day that
domain first pointed to the IP. This feature aims to identify
the IPs close to the detection of the domain that are more
likely to be associated with the actor and remove older or
newer IPs that are likely associated with previous or future
owners of the domain name.

• (f2) Domain Detection and IP Last Seen Date Delta:
The time delta (in days) between the first day the domain
name was reported in a threat report and the last day the
domain first pointed to the IP. Since the disclosure of the
APT domains to the public does not always happen right
after their detection or sinkholing, this feature is meant
to identify sinkhole and parking infrastructure that an
APT domain has been pointed to before its detection and
persisted months or even years after its public disclosure.

• (f3) IP Lifetime: The number of days that the domain
pointed to the IP address. This feature can help differentiate
between short-lived placeholder and testing IPs and
longer-lived APT-controlled IPs and parking. For example,
in Figure 2, the domains pointed to placeholder parking
IPs [82] for a median of 41 days compared to 314 and 366
days for the actor-controlled IPs.

Infrastructure Class (4 features):
• (f4) Number of Historical Domains Pointed to the IP:

The total number of historical domains ever pointed to the
given IP according to the DNS data source. Similar to our
example, this feature is meant to find parking and sinkhole
IPs.

• (f5, f6) Mean/Median of Concurrent Domains Pointed
to the IP: The mean and median number of other domains
pointed to the IP during the period that the given domain
is pointed to the IP. Since IP addresses are volatile over
time, these features are meant to capture the infrastructure
behavior of a given IP only at the time when the domain
was pointed to it.

• (f7) Number of Historical Files communicating with
the IP: The total number of historical files that have been
communicating with the given IP according to VirusTotal.
In our example (Section 2), sinkhole IPs have a median
number of 83,128 communicating files on VirusTotal
compared to a median of zero for the APT-controlled IP
and parking infrastructure. This usually happens because

malware dynamic execution will occur after a domain has
been sinkholed and VirusTotal will only see the sinkhole IP.

OSINT Class (11 features):
• Parking Features. (f8) Known Parking IP: Whether the

IP appears on known parking lists. (f9) Known Parking
Nameserver IP Overlap: Whether the domain is served by a
known parking nameserver at the same time as the domain
points to the IP for at least 70% of the time (a percentage
we manually pick after multiple tests).

• Sinkhole Features. (f10) Known Sinkhole IP: Whether the
IP appears on known sinkhole lists. In our example, this
time period is illustrated by the red-colored infrastructure
(Figure 2). (f11) Known Sinkhole Nameserver IP Overlap:
Whether a known sinkhole nameserver is serving a domain
at the same time as the domain points to the IP for at least
70% of the time.

• IP Reputation: These features (f12: IP Reputation, f13:
IP Votes Malicious and f14: IP Votes Harmless) take into
account the publicly known reputation of an IP based on the
votes from the VirusTotal community [78]. Despite these
scores not being perfect, they do help in some instances
to identify benign IPs that malware actors can point their
domain names to gain residual trust.

• IP Analyses: These features (f15: IP Analyses Malicious,
f16: IP Analyses Suspicious, f17: IP Analyses Undetected,
and f18: IP Analyses Harmless), compute the number of
URL scanners in VirusTotal that have flagged an IP with
the given label.

Domain Name Class (4 features).
• (f19) Number of Communicating Files: The number of

files that VirusTotal has found to have communicated with
the domain.

• (f20) Number of Downloaded Files: The number of files
that were available to be downloaded by the given domain
name according to Virus Total.

• (f21) Number of Subdomains: The number of subdomains
that were seen according to VirusTotal under the given
domain name.

• (f22) Number of Certificates: The number of SSL
certificates that have been associated with the domain name
at some point in time according to VirusTotal.

B. Detailed Featured Importance

Aside from its strong performance, we chose to utilize a
Random Forests model when testing Atropos for its good
interpretability compared to other models. Table VIII ranks
features used by calculating the Mean Decrease of Impurity
(MDI) score on an 80-20% split utilizing the PR dataset
and Active DNS data. As we can see, the top five features
include the Median Concurrent Domains on IP, the number
of Historic Domains on IP, the Mean Concurrent Domains
on IP, Detection, the IP first seen Delta, and the Detection
IP last seen Delta, thus highlighting that infrastructure and
temporal features are significantly more important.

The strong performance of the top three features can be
attributed to their capability to identify parking and sinkhole
infrastructure. This reflects on the motivating example of
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TABLE VIII: Atropos MDI Feature Importance when trained
on PR dataset and utilizing Active DNS data with an 80-20%
split.

#f Feature MDI #f Feature MDI

f1 Detection and IP Fseen Delta 0.177 f12 IP Reputation 0.012
f2 Detection and IP Lseen Delta 0.050 f13 # of Malicious Votes 0.038
f3 IP Lifetime 0.007 f14 # of Harmless Votes 0.009
f4 # of Historic Domains on IP 0.187 f15 # of Malicious Analyses 0.004
f5 Mean Concurrent Domains on IP 0.125 f16 # of Suspicious Analyses 0.005
f6 Median Concurrent Domains on IP 0.149 f17 # of Undetected Analyses 0.011
f7 # of IP Communicating Files 0.158 f18 # of Harmless Analyses 0.013
f8 IP is Known Parking 0.018 f19 # of Domain Communicating Files 0.001
f9 Nameserver is Known Parking 0.019 f20 # of Files Downloaded From Domain 0.003
f10 IP is Known Sinkhole 0.009 f21 # of Domain Subdomains 0.003
f11 Nameserver is Known Sinkhole 0.000 f22 # of Domain Certificates 0.002

SolarWinds we showcased in Section II-B where the actor-
controlled IPs had only the SolarWinds domain names pointed
to them while parking and sinkhole IPs had more than nine
million and 600 other domains pointed to them respectively.
The other benefit of these features is that Atropos does not
only rely on parking and sinkhole IP and DNS name server
lists, which are usually static and can take months or even
years to be updated.

The second strongest set of features is the temporal
features. This is not a surprise, because as we saw in
SolarWinds the APT-controlled IPs pointed to the domains
a few months before the detection and continued to be the
primary destination of the domains until very close to their
detection. Atropos can pick up on this temporal aspect and
penalize IPs of previous owners that were first seen on the
domains very early and IPs of sinkholes that were first seen
after the domain detection similarly to Fig. 2.

C. Generalization for Threat Hunting
To see whether Atropos can generalize and adapt to

different analyst requirements, such as threat hunting for IPs
that are non-cloud-fronting and virtual hosting – similar to
the labeling methodology of EA described in Section IV-B1
–, we modify the PR dataset by flipping all the labels of
IP addresses with more than 200 concurrent domain names
pointed to them as non-APT controlled to imitate EA labeling
process, changing 63 resource records from APT-controlled
to non-APT controlled. We name this dataset PR-NVH. We
train our model again utilizing PR-NVH and report our results
in Table IX. We observe that the accuracy and precision
of the new model improve compared to those presented in
Table VII, meaning that Atropos can be trained on datasets
with different requirements and provide accurate results for
different use cases that are outside of the scope of our study.

TABLE IX: Evaluation of Atropos trained with and altered
PR dataset.

DNS Test
Dataset Set ROC AUC F1-Macro Accuracy Precision Recall

Active DNS EA 87.86% 89.03% 93.58% 85.45% 93.58%
Virus Total EA 87.29% 88.06% 92.39% 83.22% 92.39%

D. Infrastructure Geolocation
Another important insight that can help us characterize

and compare the APT actors is the geolocation of their
infrastructure. To that end, we map each actor-utilized IP
address to the country where it is most likely located according
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Fig. 8: Number of actor-utilized IPs per country for the top
affiliated countries of the APT actors.
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Fig. 9: Number of IPs per category of infrastructure for the
top affiliated countries of the APT actors.

to IPInfo [38] and then analyze the correlation of the location
of the infrastructure with the country affiliation of the actors.

Figure 8, shows a heatmap of the country an actor is
affiliated with and the country where the actor-utilized
infrastructure is provisioned. In the interest of space, the
countries have been limited to the ones with the most publicity
and references across our threat reports. We can observe that
most of the actor-utilized IPs are provisioned in the USA,
with other big hosting provider countries like Germany and
the Netherlands to follow. Additionally, we can see that actors
from different countries choose to utilize infrastructure with
different patterns that in some cases overlap, like the Russian
and Iranian APT actors. Their utilization of infrastructure
among the US, the Netherlands, Germany, France, and the
United Kingdom is more evident and different from that of
Chinese actors which, aside from their disproportionate use
of US-based infrastructure, also utilize more infrastructure in
Hong Kong, Japan, and South Korea.

These findings raise two interesting questions. First,
whether the location of the actor-utilized infrastructure
correlates with the location of the attack target. Second,
whether the location of said infrastructure relates to countries
with large hosting providers. To answer these questions, we
utilize targeting data from the APT reports and match each
domain name and IP with the countries that were identified as
targets in the same APT reports. We only use infrastructure
for which targeting information is available in this part of our
analysis. We also group together countries that are the top
10 largest hosting providers [62] to see if the infrastructure
provisioning of the actors is correlated with those aspects.

In Figure 9, we see that APT actors from the top countries
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mostly provision their infrastructure either in countries that
have large hosting providers or in the target countries. Chinese
and North Korean actors deploy most of their infrastructure
in their target countries while Iranian and Indian groups
mostly utilize countries that have large hosting providers. The
Chinese actors look to provision infrastructure to countries
labeled as ”Other” which is mostly located in Hong Kong
and Singapore. Finally, as expected, country-affiliated APT
actors rarely provision infrastructure in their own country.
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