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Abstract—DNS reputation systems are a critical layer of
network defense that use ML to identify potentially malicious
domains based on DNS-related behaviors. Despite their
importance in protecting against spam, malware, and social
engineering, little is known about the adversarial robustness
of real-world DNS reputation systems. This work takes a first
look at general attacks against DNS reputation systems. To
overcome the black-box setting of deployed DNS reputation
systems, we begin by creating an open-source reference
DNS reputation system that 1) overcomes common pitfalls
in data collection, preprocessing, training, and evaluation
found in prior work, 2) approximates DNS reputation systems
from prior research, and 3) enables future reproducible
research. We find that general adversarial ML techniques are
impractical due to a highly constrained input space, complex
feature interdependencies, and difficult inversion from feature
vectors to raw input samples. We then implement two classes of
practical attacks, mimicry and popularity manipulation, that
achieve high success rates against both our reference model
and a popular commercial DNS reputation system, highlighting
the transferability of the attacks to the real world. Finally, we
develop constraint models that assess the time and financial
cost required to execute our attacks. Using these models, we
demonstrate that an adversary with US$10 can evade a leading
security vendor with a 100% success rate in two weeks.

1. Introduction

The Domain Name System (DNS) is the ubiquitous
network protocol for mapping semantic domain names to
resource records (RRs) containing important information
such as a domain’s IP address. Internet communication (e.g.,
web, email, etc.) often begins with a DNS request, making
DNS a useful layer for monitoring network traffic. Benign
and malicious actors often differ in their DNS configuration,
leading to the development of DNS reputation systems [3],
[4], [10], [50], [36], [81] that utilize machine learning (ML)
to accurately detect suspicious domains and block network
attackers at the DNS chokepoint. Commercial DNS reputa-
tion systems are widely deployed for combatting malicious
activities such as spam and malware [21], [80], [88], [60].

Like all ML-based security systems, DNS reputation
systems must account for adversarial circumvention, where
an attacker renders the ML model ineffective by introducing
either false negatives or false positives. However, despite
the broad deployment and importance of DNS reputation
systems, prior examination of adversarial robustness is
qualitative and unsystematic. This is due to challenges
surrounding 1) accessibility of data and reference DNS
reputation models, and 2) the relative complexity of ML
pipelines for DNS reputation.

This work presents the first quantitative and systematic
study of adversarial attacks against DNS reputation systems.
To address the challenge of accessibility, we begin by
building a DNS reputation model based on crowd-sourced
threat feeds and open-source threat intelligence datasets.
Our reference model utilizes a wide range of features
that broadly represent reputation systems that operate on
DNS data from recursive resolvers. We then release our
data collection pipeline, features, and model to eliminate
accessibility challenges for future researchers.

The second challenge facing adversarial evaluation of
DNS reputation systems is that conventional adversarial ML
(AML) techniques do not apply. Most AML techniques [16],
[85], [45], [34] manipulate the feature space to generate
adversarial feature vectors. Unfortunately, DNS reputation
systems rely extensively on contextual data to generate
features, so the problem space (i.e., possible real-world
inputs) to feature space mapping is both non-invertible
and non-differentiable. This makes it difficult to convert
perturbed feature vectors back into real-world DNS traffic.
Furthermore, the scale of contextual feature extraction data
precludes existing adversarial techniques that work directly
in the problem space [77].

Finally, although successful adversarial attacks may be
possible in the real world, not all of them are practical,
since they may still face external constraints that make them
unrealistic (e.g., using expensive server hosting providers).
To bridge this gap, we evaluate the primary practical
constraints bounding an attacker: time and financial cost.
We ultimately find that DNS reputation models are highly
susceptible to practical adversarial attacks, and our analysis
suggests directions for fortifying existing models.

To overcome these challenges, we craft a new set of
mimicry attacks that operate directly in the problem space
and account for contextual feature extraction processes.
Mimicry attacks attempt to mirror the domain behavior of
other domains, which can lead to inducing false positives
(evasion) or false negatives in the model (sabotage). To study
these attacks systematically, we perform mimicry across sev-
eral different feature classes (e.g., infrastructure, popularity,
etc.) and find that such attacks can achieve up to 100% eva-
sion rate against our reference DNS reputation system and a
100% evasion rate against the reputation system deployed by
a leading security vendor (SV1). In both cases, these attacks
cost attackers under US$10 for an entire campaign and
require only two weeks of effort. Importantly, we perform all
evasion attacks while preserving the semantics of the mali-
cious domain (i.e., its resolution to malicious infrastructure).
We also achieve targeted, false positive-inducing sabotage



attacks that can result in a denial of service for benign
domains, and find that this is effective against SV1’s system.

Overall, this work answers the following research
questions:

• RQ1: To what extent are DNS reputation systems
vulnerable to adversarial attacks, and how do these
vulnerabilities manifest in operational systems?

• RQ2: Under what conditions can a practical adversary
with limited knowledge of a model’s dataset and
feature extraction process perform these attacks?

• RQ3: How do different feature classes or preprocessing
steps contribute to the susceptibility of DNS reputation
systems to adversarial attacks?

• RQ4: What steps can be taken to mitigate these
attacks?

In answering these questions, we make the following
contributions:

• We perform the first adversarial analysis of DNS
reputation systems that utilize a large contextual
dataset for feature computation during both model
training and testing/inference. To ensure practicality,
we perform attacks directly in the problem space to
work around the non-invertible and non-differentiable
feature mapping of DNS reputation models.

• In collaboration with a popular security vendor, we
assess the resilience of both self-implemented and
commercial DNS reputation systems against evasion
techniques. Our findings reveal that seemingly simple
attacks can achieve success rates as high as 100%.

• We apply novel input constraints that help to
distinguish possible attacks from practical attacks
along two dimensions: time and financial cost.

• We highlight assumptions made in prior academic work
in DNS reputation systems that may leave reproduc-
tions vulnerable to adversarial attacks, then guide future
work by providing recommendations and implementa-
tions of improvements to model training processes1.

2. Background

2.1. Domain Name System

The Domain Name System (DNS) maps a DNS
name to its corresponding resource record(s), which are
frequently type A/AAAA records containing IPv4/IPv6
addresses. To resolve a DNS name, a host queries a
recursive DNS server, which iteratively traverses the
hierarchy of authoritative name servers (NS), starting
from the global DNS root servers, then the domain’s
TLD zone NS, and ultimately ending at the authoritative
NS that contains the requested record. We refer to a
full domain name (e.g., a.b.ieee.org) as the fully
qualified domain name (FQDN). The publicly registrable
portion of a domain (e.g., ieee.org, bbc.co.uk, or
example.s3.amazonaws.com) is called the effective
second-level domain, and the domain suffix is called the
effective top-level domain. In this work, we will use TLD
to refer to the effective TLD, 2LD to refer to the effective

1. https://github.com/Astrolavos/dns-reputation-system-sp2024

second-level domain (also commonly referred to as SLD),
and 3LD to refer to the effective third-level domain. On
occasion, we will depart from this convention to refer to
the simple TLD of a domain name (e.g., .uk is the simple
TLD of bbc.co.uk).

Active DNS Lookups Active DNS lookups (aDNS)
can be performed on domain names extracted from public
datasets, including zone files2 and public blocklists [44],
[87]. Active DNS datasets are limited by the scope of
public data: TLD-level zone files only contain a domain’s
2LD, and CT logs only include websites with valid SSL
certificates, which misses non-HTTPS names and names
hidden by wildcard certificates.

Recursive DNS Traffic Recursive resolvers are a
common source of passively collected DNS records
(pDNS). Data collection occurs either “above” the
recursive resolver (between the recursive resolver and
authoritative DNS servers) or “below” the recursive
(between the recursive resolver and its clients). In either
case, a recursive DNS perspective provides data for a range
of domains, depending on the number and composition
of hosts that utilize the recursive resolver(s). Recursive
resolvers can be deployed for a private network, or they
can be publicly deployed as “open” recursive resolvers.

Authoritative DNS Traffic Authoritative DNS servers
possess deep visibility into all DNS traffic within the
zones that the server controls. For a TLD authoritative NS,
this includes full temporal and client recursive visibility,
but also client subnet visibility in some instances [29].
Obtaining access to this data is challenging as popular NS
are operated by a handful of TLDs and domain registrars.

2.2. DNS Reputation Systems

DNS reputation systems are machine learning (ML) sys-
tems that assign a reputation score to an input domain name,
where higher reputation scores reflect legitimate Internet
services and low reputation maps to domains associated with
malicious activities. Reputation scores ultimately correspond
to either binary (i.e. malicious/benign) or multiclass (e.g.,
C2, phishing, spam, benign, etc.) labels. DNS reputation sys-
tems are regularly retrained and can identify new, emergent
malicious domains before they appear on static blocklists.
DNS reputation systems model domain behavior using a
variety of data sources: aDNS [66], pDNS for recursive re-
solvers [3], [10], [70], [53], [19], [66] or authoritative name-
servers [4], or DNS registrars [36], [81]. Many forms of ma-
chine learning have been applied to DNS reputation systems:
supervised ML [3], [10], neural networks [50], unsupervised
ML [61], [20], [5], [74], and graph algorithms [55], [42].
Several works have developed specialized DNS reputation
systems that identify specific forms of DNS abuse, such
as domain generation algorithms (DGA) [74], [5], [75],
[20], malicious flux service networks [61], [62], [37], or
domains used by particular malware families [66]. This
work considers adversarial attacks against classifiers that

2. Country code TLDs (e.g., .eu, .tv, etc.) are controlled by the
authoritative country and largely unobtainable to the public.
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Figure 1: DNS reputation system overview—A pDNS-based model is shown. Training and inference both rely on shared,
contextual feature extraction and DNS datasets that are updated and used for periodic model retraining.

operate on recursive DNS traffic and active DNS lookups
to detect emerging and existing families of attacker-owned
malware and spam domains. Appendix A1 summarizes and
categorizes existing DNS reputation systems according to
their network visibility and their type of modeling.

2.2.1. Statistical Classifiers. Classification-based
reputation systems generate a set of statistical features for
a domain and directly classify it as malicious or benign.
Although decision trees (random forests, J48) are the most
common classification algorithm [3], [10], [4], [70], [36],
[19], there is also recent work in using deep learning (e.g.,
neural networks, LSTMs) for classification [50].

2.2.2. Semi-Supervised Classifiers. These reputation
systems first use unsupervised learning to cluster similar
domains and then apply statistical ML to classify each
cluster as malicious or benign. Most systems cluster
domains based on similarity in their resolved IPs, but
Pleiades [5] performs two alternative forms of clustering:
the first is based on lexical features, and the second is
spectral clustering based on hosts that query the domains.

2.2.3. Graph-based Models. Graph-based reputation
systems model DNS traffic as a bipartite domain resolution
graph, G = (VD, VI , E) where the vertices in VD are
domains, the vertices in VI are IP addresses, and (d, i) ∈ E
if domain name d has resolved to IP i. Khalil et al. [42]
proposed a domain graph, Ĝ = (D, Ê) where all D are
domain names and (d1, d2) ∈ Ê if domain names d1 and
d2 have been resolved to the same IP. In this construction,
the weight of the edges is proportional to the number of
shared IPs between two domains. Using these graphs, a
domain’s reputation is based on its nearest malicious/benign
neighbors, as well as belief propagation methods [55].

2.2.4. Training Process. DNS reputation systems differ
from conventional ML pipelines (e.g., classification of
executable binaries or images). As depicted in Figure 1,
DNS reputation systems have two distinct modes: a
learning mode and an operation mode. For both phases,
the features are not computed directly from a single input
sample. Rather, feature values incorporate several metadata
sources, including popularity lists, WHOIS/IPWHOIS
records, and characteristics of nearby domains. Features
are highly contextual and interdependent, which makes

adversarial DNS reputation systems poor candidates for
reverse feature-mapping analysis [65]. For example, one
class of features in pDNS-based systems is IP-related
historic domain names (IP-RHDNs, detailed in Section 4).
IP-RHDNs contain the set of all domains that point to a
domain’s historically resolved IPs, including unlabeled,
non-training domains. During model training, a snapshot
of the DNS database is used to compute labeled features
and generate a reputation model. The underlying database
continues to update after the model is trained, so feature
computation for a given domain d potentially changes
every time a new RR is added to the DNS data source.
This functionality is intentional, as DNS reputation systems
must constantly adapt to the rapidly evolving Internet.

2.2.5. Real-world Deployments. Security organizations de-
ploy operational DNS reputation systems to curb malicious
domain usage either through DNS-based blackhole lists
(DNSBLs) ([41], [58]) or at the registry level ([69], [81]).
Automated systems are often paired with expert analysis
for false positive reduction and human-in-the-loop learning
[58]. These services vary in their target subclass of malicious
domains: for example, Nordspam [58] and Invaluement [41]
focus on spam domains, DGArchive [33] exclusively covers
randomly generated domains (DGA) used in malware, and
ThreatLog [86], Premadoma [81] and Radix [69] cover
generic malicious content, including malware, spam, and
phishing domains. These systems also vary in their data
collection processes. For example, registry-level reputation
systems may have unfettered access to authoritative DNS
data and registration information, while malware reputation
systems gather domains by executing malware in a sandbox
[86]. In this paper, we focus on DNSBL-based lists that
gather domains through a malware sandbox.

2.3. Attacks on DNS Reputation Systems

Adversarial ML aims to modify samples either at
training time (poisoning [83]) or at inference/test time
(evasion [9]) to compromise the confidentiality, integrity,
or availability of an ML model. Most adversarial ML
research directly manipulates the feature space ([85],
[45], [34], [27], [16]) to craft samples of a particular
class. However, these techniques are not applicable when
the feature space is non-invertible/non-differentiable [65]
and adversarial feature vectors cannot be converted into



realistic input samples. DNS reputation systems have
complex mappings from problem space (real-world inputs)
to feature space–their features capture aggregate statistics
about network infrastructure, domain popularity, lexical
features, and resolution behavior. Sheatsley et al. proposed
a general system to infer the constraints of the problem
space [77] to generate practical adversarial examples against
gradient-based classifiers. Unfortunately, the computational
intensity of computing contextual DNS reputation features
limits the utility of this technique.

An alternate path for identifying attacks is to manipulate
the problem space directly. Pierazzi et al. [65] outlined
two generic search strategies to create adversarial samples
in the problem space. The first relies on local gradient
approximation to inform input mutations, while the
second approach creates an approximate inverse of feature
mapping. Both of these approaches require white box
access to a model’s training set and parameters. Our paper
focuses on a black-box threat model, where this level of
access is unavailable. Instead, we introduce a domain-
specific technique on DNS reputation systems based on the
framework for problem space attackers [65], which defines
semantic-preserving transformations in the problem space
as functions that preserve semantics, are plausible, and are
robust to pre-processing techniques. Our study identifies
specific real-world transformations and provides a model
to strategically compose them while being constrained by
semantics, time, and financial cost. Our approach is broadly
related to AML attacks against malware classification,
which aim to disguise a malicious sample as a benign
sample while preserving malicious functionality. The
proposed attack strategies fall into three general categories:
(i) camouflage attacks ([26], [72], [40]) where the attack
tries to conceal suspicious characteristics of the malicious
sample through obfuscation and encryption, (ii) noise
addition attacks ([17], [65], [73], [15]), and (iii) changing
the nature of the malicious sample ([17], [40], [64], [84]).

Prior studies of adversarial robustness for DNS
reputation systems are largely qualitative and ad hoc. In
their registration-time malicious domain detector, Hao et
al. [36] mention the financial cost of evasion by noting that
high-reputation registrars cost more than low-reputation
registrars. They further evaluate model robustness by com-
paring model performance after removing certain feature
groups. Desmet et al. [81] discuss three evasion patterns for
registration-based systems (e.g., temporally random actions,
dormant periods, and excess registration) and argue that
these behaviors all increase cost to the attacker. Le Pochat
et al. [66] propose strategies to evade lexical, popularity,
TLS, and time-based features, but qualitatively conclude
that they require high financial and management investment
in an individual domain, which malware operators tend
to avoid due to fast blocklisting. Our work invalidates
many of these assumptions for reputation systems based
on recursive DNS and demonstrates that the financial and
management investment is lower than previously suggested.

3. Threat Model

This section defines the attacker’s goals, capabilities,
and knowledge about the target system; furthermore, we

introduce the financial and time constraints that influence
attack feasibility.

3.1. Attacker Goals

The attacker’s goal is to manipulate a target system’s
computed reputation score for a specific domain name,
denoted as d, through changes to one or more domains under
their control. We focus on domain evasion attacks, detailed
below. Sabotage attacks, which cause misclassification of
a benign domain as malicious, are more difficult to test
ethically in deployed systems and beyond the scope of
this work, although we briefly discuss them in Section 7.3.
Interestingly, due to the online learning property and
periodic retraining of DNS reputation systems, our
inference-time attacks may also poison subsequent model
updates, though we do not explore such effects in depth.

An evasion attack attempts to maximize the reputation
of d such that the model misclassifies d as benign. The
attacker’s motivations rely heavily on the context of their
domain. For example, the goals and constraints facing an
attacker utilizing DNS to facilitate command-and-control
(C2) operations are different than an attacker who seeks to
increase the deliverability of a spam campaign. Due to the
difficulty of sending spam (highlighted in Section 7.2), we
primarily focus on domains used in malware campaigns. In a
real-world setting, candidate domains often come from static
or dynamic analysis of known malicious binaries. Many
malicious binaries reach out to both benign and malicious
domains, so propagating the malicious label of a binary to its
associated domains is a classification problem. If an attacker
can evade this system, they can avoid blocklisting their
domains despite their malicious binaries being detected.

3.2. Attacker Capabilities

The attacker, who owns a domain d, can take the
following actions in any order:

• Add/remove an A/AAAA record with IP address x
• Provision server with IP x on server hosting provider h
• Add an RR containing TTL value y
• Manipulate a popularity list, bringing domain to rank r
• Halt malicious activity for duration d
• Extend the domain registration length by l days

3.3. Attacker Knowledge

Real-world attacks are limited by their visibility into
the data used to train the target’s DNS reputation system.
To address this, we examine two models of the attacker’s
knowledge: a gray-box model, where the attacker knows
the model’s architecture, training data, and testing data,
and a black-box model where the attacker only has access
to publicly available intelligence datasets (Table 1). In
both cases, the attacker knows the model’s features, which
can be accomplished through analysis of prior work and
by probing the model. Because DNS reputation systems
heavily rely on features extracted from related DNS records,
we also consider two settings for the attacker’s DNS data
access: the weakest attacker has access to a well-maintained



Label Visibility DNS Visibility Practical Constraints Model Stats
Model OSINT SV1 aDNS pDNS Data Window Data Cost TPR FPR

OSINT/aDNS ✓ ✓ 2 weeks $0 98.4% 2.5%
SV1/aDNS ✓ ✓ ✓ 2 weeks ∼ $500K 99.1% 1.3%
SV1/pDNS ✓ ✓ ✓ 2 weeks ∼ 1M−10M 94.5% 3.7%

TABLE 1: Reference Classifiers—We constructed three models with increasing levels of data visibility.

aDNS dataset, and the strongest attacker has access to a
large pDNS dataset. Obtaining access to these datasets
varies drastically in terms of level of effort and financial
cost, which we address below. Based on the performance
and cost of each model, we take a middle-ground approach
and perform subsequent reference model analysis using
the SV1/aDNS model, which combines malicious domains
from SV1’s dataset and benign domains collected from
OSINT with publicly accessible aDNS context.

3.4. Practical Constraints

Our attacks (Section 5) directly target the problem space
of raw inputs in order to address the difficult inverse feature
mapping problem of DNS reputation features. This yields
attacks that are possible, but not necessarily practical, since
they may still face external constraints that make them unre-
alistic. For example, a naive attack would be to point a mali-
cious domain (and perform DNS resolution) at every possi-
ble IPv4 address; although this attack may evade malicious
classification, it would be easy to detect and prohibitively
expensive to perform. We evaluate each attack along two
dimensions of practical constraints: time and financial cost.
An attacker running a malicious campaign is also subject to
means of detection beyond the scope of our reference model
and lab evaluation, which we discuss in Section 6.4.

3.4.1. Financial Cost. When creating malicious
infrastructure, an adversary may spend money on domain
registration, servers, and cloud service providers. We
estimate the financial cost of our attacks, which includes
the cost of procuring a shadow model’s ground truth data, to
determine what level of adversary (e.g., low/high resource)
can execute them. Table 5 provides a best-effort estimate of
data costs calculated in coordination with our data partners.
When considering the cost of an attack, we assume the
attacker has already registered a domain for one year.

3.4.2. Time. Some features establish reputation by
measuring the age of a domain or by analyzing resolution
behavior over an extended period of time. An attacker’s
actions can be limited by the amount of time they need to
invest before using a domain maliciously.

4. Methodology
Drawing on previous approaches for general malicious

domain detection [3], [10], DGA detection [5], and botnet
detection [66], we first build a classifier to detect malicious
domains, by incorporating 43 features from 17 previous
published works. Our classifier consists of four stages:
data collection, feature extraction, model training, and
evaluation. To promote reproducibility, we include our
feature extraction code in our open-source repository.

4.1. Data Collection

Machine learning models for DNS reputation are highly
data-dependent: different choices in DNS data and ground
truth class labels lead to different classification results. We
create a generic model for malicious domain classification
with a training set consisting of spam, phishing, and
malware C2 domains. We construct multiple models
emulating different levels of DNS visibility possessed by
operators. In particular, we compare the performance of
freely available active DNS (aDNS) datasets with difficult-
to-obtain passive DNS (pDNS) datasets. In either case, fully
qualified domain names (FQDNs) are annotated with benign
or malicious labels from a combination of popularity lists,
public datasets, and public blocklists, as shown in Table 2.

4.1.1. Class Labels. Assigning malicious and benign
labels to domains is a difficult task, and methodologies
from prior work differ in their approaches. Individual
approaches are difficult to reproduce due to their use of
outdated blocklists (e.g., [3], [10] reference lists that no
longer exist) or proprietary data sources (e.g., [36] collects
malicious domains from a self-operated spam trap). Using
a particular labeling heuristic introduces biases that alter
a model’s performance and attack surface. In this section,
we present a methodology addressing two main challenges
facing class labeling: inaccurate labels and dataset bias.

Benign data When building a set of benign domains,
we must ensure that (1) the domains are truly benign and
(2) the domains are representative of authentic Internet
traffic. To solve (1), we apply aggressive data filtering,
and to solve (2), we combine multiple domain popularity
lists, which are commonly used in prior work, with a large
set of unpopular domains, which are often neglected but
important for a realistic evaluation of the false positives.

We source popular domains from the top 100K of
the Tranco list [47], which ranks domains based on their
average rank in multiple domain popularity lists and is more
stable than using an individual list. To make our ground
truth more robust to manipulation, we only use domains that
appeared in the top 100K every day for 60 days preceding
the training date (91.5K/100K domains). Additionally, we
collect 118K unpopular domains related to websites listed
in The Real Yellow Pages (YP) [89]. To associate a domain
with a business listing, a user must verify their identity
with the listing’s current phone number. While YP does not
mention the source of these phone numbers, they appear to
be those listed in the Better Business Bureau’s index [8].
As a result, these domains are unlikely to be malicious.

We found that some YP listings are stale (e.g., business
closing, change of website). We further found numerous
stale listings where low-reputation ad providers had



Data source Date range Size Description

Tr
ai

ni
ng

L
ab

el
s

Benign Ground Truth (OSINT)
Tranco Popularity List [47] 8/22/2023 - 10/21/2023 100K domains List of popular FQDNs

Consistent 100K 8/22/2023 - 10/21/2023 91.5K domains FQDNs consistently in Tranco 100K
The Real Yellow Pages [89] 9/16/2023 118K domains Source of unpopular domains

Post-filtering 11/26/2023 84K domains Unpopular domains after filtering
Benign FQDNs (aDNS) - 582K domains Benign FQDNs appearing in aDNS
Benign FQDNs (pDNS) - 2B domains FQDNs appearing in pDNS

Malicious Ground Truth (OSINT)
StopForumSpam [82] 10/21/2023 40K domains Known blog/forum spam (sampled)
Prigent Malware List [2] 10/21/2023 40K domains Aggregated malware (sampled)
Phishing Army [63] 10/21/2023 40K domains Aggregated phishing (sampled)
Total Malicious FQDNs (aDNS) - 120K domains

SV1 Ground Truth
Malicious FQDNs 10/21/2023 2.9M domains
Benign FQDNs 10/21/2023 10.5M domains

Fe
at

ur
e

E
xt

ra
ct

io
n BGP routing table [12] 10/1/2023 980K rows Dataset of AS/BGP prefix

AS ownership table [13] 10/1/2023 210K rows Dataset of AS ownership relations
WHOIS data 10/21/2023, 11/20/2023 700K records Registration/expiration date for domains
Firehol Level 1-3 [31] 10/21/2023 1M IPs Public IP blocklist
Tranco list [22] 10/21/2023 1M domains Daily Tranco popularity list
Public Suffix List [57] 10/02/2023 9.5K domains List of known public suffixes

D
N

S
D

at
a

Passive DNS 10/7/2023 - 10/21/2023 546B RRs pDNS data from large recursive resolver
A Records 10/7/2023 - 10/21/2023 195B RRs A records resolving to public IP space

Active DNS [6] 10/7/2023 - 10/21/2023 102B RRs Daily A record scans of public zone files
Public IPs 10/7/2023 - 10/21/2023 2.6B RRs Domains that resolve to public IP space

TABLE 2: Data sources—We combine large DNS datasets, both active (publicly shareable) and passive (proprietary), with
training labels and supplemental data from primarily public/low-cost sources to build and evaluate our DNS reputation
systems.

purchased expired domain names to exploit residual trust
[48]. We address this by removing domains with multiple
historic registrars or gaps between the domain’s expiration
and creation dates. This data is limited to records appearing
after VirusTotal began collecting WHOIS data in 2019. We
then filter only domains that have never appeared on the
Tranco 1M list. We also discard domains that do not resolve
(NXDOMAIN/SERVFAIL DNS responses). To help ensure
that domains are benign, we apply aggressive filtering on
the domains using VirusTotal. We discard domains that
have any malicious classification. The final list contains
84K domains. Code to generate each list is available in our
open-source repository.

In both datasets, we exclude public suffixes that can
be associated with both benign and malicious entities (e.g.,
CDNs, dynamic DNS, and free web hosting services).
We determine these public suffixes using Mozilla’s widely
accepted Public Suffix List [57]. In total, the benign dataset
contains 201K 2LDs. When annotating the DNS data,
we label all the subdomains of a benign 2LD as benign,
resulting in 582K benign FQDNs. We note that even if
this dataset is not perfect, any mislabeled data will lead
to non-optimistic suboptimal performance metrics when
considering the attack’s generalization to real-world models.
Malicious data Our malicious ground truth dataset
consists of public domain name blocklists (PBLs) from
(i) spam domains from StopForumSpam [82], (ii) malware
domains from Prigent DBL [14], and (iii) social engineering
domains from Phishing Army [63]. We remove domains
that also appear in the benign ground truth and domains
that are known to be dynamic DNS or shared hosting

domains. Finally, we remove sinkhole domains from the
malicious ground truth using the SinkDB dataset [1]. As
an additional check, we validate that these domains are
consistently labeled as malicious by more than 10 antivirus
vendors on VirusTotal. After filtering, we downsampled
each of these data sources so that the final malicious dataset
contains balanced numbers of FQDNs in each subclass
(spam, malware, and social engineering). We also evaluate
a second source of malicious data: a commercially available
set of malicious domains maintained by SV1.

4.1.2. DNS records. To understand our model’s reliance
on DNS datasets of varying visibility and financial cost,
we train and evaluate performance separately against active
DNS data and passive DNS data collected between October
7, 2023 and October 21, 2023.

Active DNS We use data from the Active DNS Project
[44], which has continuously resolved domains from zone
files, popular domain lists, and domain blocklists since 2016
[6]. This data is available to researchers at no charge [6]. As
of October 23, 2023, Active DNS contains domains from
5,522 effective TLDs and complete simple 2LD coverage
of 1,137 zone files. We remove A and AAAA records
containing IP addresses designated as not globally reachable
by IANA’s special-purpose address registries ([38], [39]).
Our open-source repository lists the 1,137 zones included
in aDNS collection to assist in replicating our model.

Passive DNS We use 548B A/AAAA records collected
passively from a North American Internet Service Provider
(ISP). We operate on a daily set of non-timestamped



resolution data with client IP addresses dropped. While the
records in pDNS partially overlap with our aDNS dataset,
our pDNS sensor does not collect our aDNS lookups.

Because pDNS is based on noisy internet traffic, the data
requires additional cleaning. When cleaning the dataset, we
must take care not to remove potentially malicious records.
Like our aDNS filtering, we first remove A/AAAA records
with IPs that are not globally reachable. This leaves over 1B
reachable IP addresses, the majority of which are redundant.
A record is considered redundant if many subdomains of a
2LD resolve to the same IP address. This causes a skew in
the frequency of certain 2LDs in the ground truth, which
biases the training and testing datasets. We filter out any
FQDNs that share an IP address with more than 60 (99.5%
quantile) other FQDNs under the same 2LD, and identify
two main classes of redundant records: wildcard A records
and benign DGA domains. A wildcard record for a domain
responds with the same IP address for any subdomain
queried. Automated subdomain brute-forcing results in a
large number of wildcard records appearing. The most pop-
ular benign DGA, related to Microsoft Office user analytics,
accounts for nearly 50% of all DNS records in our dataset.

To establish our pDNS dataset’s coverage, we measure
the intersection of our pDNS dataset with domains available
in the Tranco list [47], which, as of October 31, 2023, aggre-
gates DNS from globally distributed pDNS sources (Cisco
Umbrella [22], Cloudflare Radar [23], and Farsight DB
[28]), and non-DNS sources (Google Chrome User Experi-
ence Report [35] and Majestic [52]). We compare our pDNS
dataset to the four available Tranco lists: the top 1M 2LD
and FQDN lists, and the ‘full’ 2LD and FQDN lists, which
include domains that appear in any of Tranco’s sources.
As Tranco uses simple 2LDs rather than effective 2LDs,
we draw this comparison using simple 2LDs. For each list,
we combine the domain names between October 7, 2023 –
October 21, 2023. We find that over the same 14-day period,
our pDNS dataset contains records for 96.4% of the com-
bined top 1M 2LD list (1.05M domains), 94.1% of the com-
bined full 2LD list (6M domains), 94.4% of the combined
top 1M FQDN list (1.06M domains), and 82% of the com-
bined full FQDN list (9.2M domains). Our pDNS dataset
contains an additional 825M SLDs not in the full Tranco list.

4.2. Features

To build a generic malicious domain detector, we
derive several common feature categories from prior work:
lexical, popularity list, graph (RHDNs/RHIPs), evidence,
registration, TTL, resource record, and temporal features.
The features are listed in Table 3. Individual systems vary
in feature inclusion and even implementations of the exact
same feature. For example, prior work disagrees on whether
to include the TLD in the computation of lexical features
(e.g., [10] vs. [66]). To promote future replicability, we
release Python 3.10 implementations for each feature in
the camera-ready version of the paper. As explained in
limitations Section 7.2, we exclude several popular feature
categories, such as ones requiring active lookups of domains.

For the graph features, we model historic DNS records
as a heterogeneous multipartite graph connecting domain
vertices to vertices representing IPs, zones, or nameservers.

Enrichment sources, such as BGP or IP blocklist datasets,
add additional edges between IPs and these entities.
We primarily derive features from the first and second
neighborhoods of a domain.

Related historic IPs (RHIPs) A domain’ set of RHIPs
contains all IP addresses that a domain’s A/AAAA records
have pointed to since τ ; in graph terms, the RHIP is the
neighborhood for a given domain vertex. Each IP has a
relationship to other network entities, such as ASN, BGP
prefix, or AS name, from which we derive 19 features. We
extract RHIP-based features from each domain’s FQDN
and effective 2LD and 3LD segments, as provided by
the Mozilla Public Suffix List [57]. If a domain does not
have a 3LD, we compute the feature based on its FQDN.
Example features: number of RHIPs, number of AS.

IP-related historic domain names (IP-RHDNs) IP-
RHDNs are the set of domains that have ever resolved to any
IP in a domain’s RHIP set; equivalently, this is the second
(i.e., distance two) neighborhood of a target domain. When
computing RHDN-based features that consider particular
segments of a neighboring domain (e.g., number of distinct
TLDs), we always consider the effective version of the
segment, as provided by the Mozilla Public Suffix List.
When computing the domain length and n-gram frequency
of RHDNs, we do not consider the TLD segment (e.g., the
computed length of ieee.org is 4). Example features:
average length of all domains sharing an IP with d.

Although many count-based features can be modeled
through purely graph-based techniques that consider a
domain’s neighborhood, others rely on node and edge
features (e.g., domain age, time since first query). This
disconnect implies that generic graph-based techniques [18]
are an incomplete exploration of possible misclassifications;
instead, we perform attacks with raw problem space inputs
that realistically alter all features, since our model incorpo-
rates both graph-based and non-graph-based features.

Our popularity list features consider if a domain has
achieved a certain popularity ranking. We implement this
feature class using the stable Tranco list [47], which con-
tains 2LDs aggregated from other popularity lists. When
determining the rank of a FQDN, we use the rank of its 2LD.

We measure domain lifetime through the age and
registration length of a domain. This data comes from
WHOIS records, which are notoriously difficult to parse
at scale due to their lack of schema [51]. By querying the
VirusTotal API, we collected WHOIS registration/expiration
dates for 80% of the 2LDs in the dataset. For the 20% of
WHOIS records not in VT, we set the domain age to 0 and
the registration length to 365 days, the minimum realizable
values for these features.

4.3. Model Training & Evaluation

Our model is trained on feature vectors extracted
from two weeks of DNS data. Our decision to use a
two-week period reflects prior work (e.g., [3], [10], [50])
and balances the need for data richness with computational
limitations. We split the data into training and test sets
with an 80/20 ratio. To prevent data leakage, we ensure
that all FQDNs that share 2LDs are in exactly one of



Grouping Feature Used in

Lexical

Numerical char. ratio [54], [74], [75]
Longest word ratio [20]

Domain length [36], [81], [66]
# of trigrams [36], [75]
Contains “-”? [36], [54]

Level of subdomains [54], [75]
Entropy of domain [54], [75]

Related historic
IP addresses

(RHIPs)

# of IPs (FQDN/3/2LD) [3], [10], [20], [19],
[61], [62], [50]

# ASNs (FQDN/3/2LD) [3], [19], [79]
# BGP prefixes (FQDN/3/2LD) [3], [19], [79]

# AS organizations (FQDN) [3], [19], [50]
# AS countries (FQDN/3/2LD) [3], [19], [50]
# AS reg. dates (FQDN/3/2LD) [3], [19]
# AS registrars (FQDN/3/2LD) [3], [19]

IP-related
historic domain names

(IP-RHDNs)

# of domains [61], [62], [19]
Domain length m/m/S [74], [75], [19]

{1–3}-gram freq. m/m/S [5], [75], [19]
# of TLDs [74], [5], [19]

TLD freq. m/m/S [74], [19]
.com TLD ratio [5], [19]

Historic
evidence

# of IPs in PBL [3]
# of BGP/AS IPs in PBL [3], [70]

Resource
records

Presence of DMARC/SPF record
PTR record ratio for IPs [37], [10]

TTLs
# unique TTLs [10]
m/m/S of TTLs [61], [62], [20], [37]

Min. TTL [79], [50]

Registration Length of reg. period [36], [81], [66]
Days since reg. date [66]

Temporal*

Time btwn first/last query [50], [66]
Time since last query [50]

# days queried [70], [79]
# consec. days queried [70]

Popularity lists 2LD in Tranco Top 1M/500K/100K/10K/1K [19], [66], [50]

MW=malware, NS=nameserver, PBL=public blocklist,
m/m/S=mean/median/STD, *only available in pDNS

TABLE 3: Reputation system features—Features are
computed over the DNS graph and attributes at several
levels of aggregation. Exact or similar features are found
in many related works.

these sets. We downsample FQDNs with overrepresented
2LDs in the training set while ensuring that the proportion
of benign/malicious domains in the test set matches the
proportion in the observed DNS traffic (0.8% malicious).
We evaluated random forest (RF) [11], k-nearest-neighbors
(KNN) [32], and logistic regression (LR) [25], ultimately
choosing random forest for its superior performance to KNN
and LR (Appendix B1). We select a final model based on
each model’s performance in minimizing the false positive
rate (FPR) during a 10-fold cross-validation process and a
grid search over hyperparameters. Training and evaluation
code is available in our open-source repository.

Table 1 indicates that our SV1/aDNS reference model
performs against the test set at a 99.1% true positive rate
(TPR) and 1.7% false positive rate (FPR). This outperforms
our OSINT model (98.4% TPR / 2.5% FPR) but comes at
a significant data cost. More detailed metrics are reported
in Appendix B1. Due to the low performance of the pDNS
model, we primarily focus our evaluation on the aDNS
model. While our attacks do succeed against the pDNS
model, the high false negative rate makes it an easy target.
While we are unable to directly compare our model to prior
work due to differing training/testing data, we note that our
model has a similar TPR and slightly worse FPR than prior
work (curated in Appendix B2). This is likely a result of
the practical assumptions in our data which lead to more
difficult classification. For example, Segugio [70] filters

domains with low numbers of queriers, and Exposure [10]
removes domains that are older than one year. Additionally,
prior work commonly sources benign domains exclusively
from popularity lists, which we find leads to graph features
that correlate with domain popularity and can thus cause
models to overfit to it.

4.4. Attack Planning

We plan and execute attacks by applying actions
performed on the problem space by the attacker, which
subsequently induces changes to features. An attacker can
apply actions directly to their domains (e.g., add a resource
record at d) or external services (e.g., lookup d on resolver
r). An attack is carried out against a malicious domain
classifier, M , which may output a binary classification
(malicious/benign) or a reputation score for the domain.

We model the problem space as a set of states repre-
senting the attacker’s infrastructure. Given states Gt and
Gt+1, an action a(Gt) 7→ Gt+1 transitions between them.
An attack is defined as a series of actions with an objective
function. We consider a simplified model where the actions
of an attack can be performed in any order and where all
actions can be performed in parallel. We also enforce that
actions cannot violate DNS specifications: for example,
adding a CNAME record and an A record to the same node
is prohibited by RFC-1034 [56]. Finally, actions within an
attack cannot contradict each other: for example, an action
that adds a certain RR cannot be paired with an action that
removes the same RR. As a result of our simplifications,
the world state after an attack is Gn =

⋃n
i=1 ai(G0).

An attack can be generated according to an optimization
problem, where a domain’s reputation score is either
maximized or minimized and the attacker is bound by a set
of constraints, C. An attack is defined formally as finding
a1, a2, · · · , an applied to G0 that optimizes:

f(d) = max(RepScore(d,Gn))

subject to a financial budget,
∑n

i=1 Fin(ai) ≤ CF , and a
time budget, max(Time(ai)) ≤ CT .

While the objective function is easy to optimize under
time constraints, maximizing the objective function subject
to the sum of financial constraints is challenging. The
actions do not contribute independently to the computation
of RepScore(d,Gn). Even under a simplifying assumption
that the actions contribute to the reputation independently
and linearly, the optimization is equivalent to the knapsack
problem, making it NP-hard. The actions occur in a discrete
problem space that is highly constrained and discontinuous,
limiting the utility of gradient methods for approximation.
To overcome these challenges, we use a hill-climbing
algorithm [76] to approximate this optimization, as shown
in Algorithm 1.

An attack is successful when the reputation score of a
solution exceeds a model’s classification threshold function,
δ. For evasion, this is f(d) ≥ δ; for poisoning, the threshold
is f(d) < δ.

We evaluate the aggregate effectiveness of our attacks
by running N attacks, each on a different domain, and then
by computing the success rate (S) and the average change
in reputation score (∆R) for each domain.



Algorithm 1 Altering the reputation of domain d by taking
actions from A. The attacker controls a domain in da.
Input: d, n,A

r ← RepScore(d)
A← {}
while n > 0 do

a← RandomAction(A)
if RepScore(a(d)) > r then

r ← RepScore(a(d))
d← a(d)
A← A ∪ {a}

end if
n← n− 1

end while
return A

We define the success rate, S(D), as the ratio of
successful attacks to total attempts in AD. For evasion,

S(AD) =
1

|AD|
∑

d∈AD

1{RepScore(d,Gn) ≥ δ}

In some cases, such as baselining, it is useful to find
the average reputation for a set of domains. The average
reputation of D in world state Gt is:

R(D,Gt) =
1

|D|
∑
d∈D

RepScore(d,Gt)

And the change in reputation due to a change in world
state is:

∆R(Gn, G0) = R(Gn)−R(G0)

5. Attacks

In this section, we present practical attacks against DNS
reputation systems. We begin by proposing attacks that
domain name operators can use to target the most crucial
feature groups used in prior work. While attacks against
some feature groups, such as popularity list manipulation,
are known, our mimicry attacks, which target graph-based
features, are novel.

5.1. Attack Techniques

5.1.1. Popularity List Manipulation. Reputation systems
in both academia and operational settings assign higher rep-
utations to popular domains. This relationship can manifest
as either a hard-coded allowlist for specific domains ([2]), a
feature ([66], [19]), or by an implicit bias introduced when
selecting data for the training set ([3], [10]). Popularity
lists, however, are known to be unstable: Le Pochat et al.
[47] find that an attacker can perform a small number of
DNS lookups from many IP addresses to achieve a high
rank on the Cisco Umbrella list [22]. As a result, many
reputation systems have adopted the more stable Tranco
list, which aggregates the data of other lists [47]. We will
show that $10 in VPN services is sufficient to achieve high
rankings on the Cisco Umbrella List, the Cloudflare Radar
List, and the downstream Tranco List in just two weeks.
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Figure 2: IP mimicry overview—Adversaries create new
RRs for their malicious domain that resolve to IP addresses
from benign RRs.

5.1.2. Mimicry Attacks. In a mimicry attack, adversaries
temporarily copy the resource records (usually, A/AAAA,
CNAME, NS, MX, or SPF) of a domain that they do not
control. We focus on mimicry attacks as the first evasion of
adversarial DNS reputation systems because they are easily
accessible to adversaries and introduce low financial or
operational burdens. They are also beneficial for multiple
adversarial goals: evasion, sabotage, and data poisoning.

We first focus on A/AAAA record mimicry (Figure ??)
as domain-IP relationships are the only ones captured by our
reference model, although we will later see that mimicry of
NS records is effective against commercial models. The key
insight behind these attacks is that an adversary only needs
to control the domain and a single one of the IPs to which
its type A RRs point. An adversary primes the reputation
system with records pointing to any IP, including those
belonging to benign domains, through response overloading
or record stuffing. In response overloading, we create
benign-mimicking type A RRs but always retain at least
one type A record that points to malicious infrastructure.
When a malware sample queries an evasive domain, it will
iterate through the records and ultimately reach the desired
malicious infrastructure. Record stuffing is performed either
by poisoning a model’s historical dataset before launching a
campaign or by alternating between mimicked IPs and ma-
licious IPs during the campaign. In the latter case, stuffing
can be implemented by malware operators programmatically
by rotating between multiple malicious domains.

Mimicry attacks exploit the assumption that a domain
is similar to domains and IPs in its neighborhood. Using
the intuition that many infrastructure-based features are
summary statistics of entities related to the domain by its
historical IPs (e.g., RHIPs, IP-RHDNs), we notice that
IPs related to popular benign domains tend to introduce
large numbers of these entities that dominate the summary
statistics. Few malicious domains share these large values,
which causes the model to associate large neighborhoods
and second neighborhoods with benignness.

6. Evaluation

We begin our evaluation by attacking individual
feature groups, then combine the attacks and evaluate
the performance of the reputation-boosting algorithm. We
then determine the generalizability of our attacks against
SV1 and evaluate their real-world practicality in terms of



Group Total Importance

Popularity 0.3625
Graph 0.164
Registration 0.1469
Lexical 0.0187
Evidence 0.0185
RR 0.0132

TABLE 4: Feature importance per-feature group,
SV1/aDNS model—Feature importance is computed based
on mean decrease in impurity on our random forest model.
Appendix B3a contains a per-feature breakdown.

Attack Success rate ∆R Time $

IP mimicry 10% 0.39 1hr – 1wk $0
Response overloading - - <1 hour $0
Record stuffing - - <1 week $0

Popularity list manipulation - - - $15
Top 1M 2.0% 0.33 <10 days $10
Top 500K 100% 0.6 <2 weeks $10

Long-term registration - - - -
>1 year 4.0% 0.16 <1 minute $15
>5 years 6.0% 0.21 <1 minute $60

1. Mimicry 10% 0.39 <1 day $0
2. Mimicry/2yr reg. 60.0% 0.45 <1 day $15
3. Pop 1M/mimicry 92.0% 0.55 <10 days $10
4. Mimicry/Pop 500K 100.0% 0.33 <2 weeks $10
5. Mimicry/500K/2yr reg. 100.0% 0.38 <2 weeks $25

TABLE 5: Practicality of evasion attacks against
reference model—We compare the success rates for each
attack/attacker with their practicality.

financial cost and time. Finally, we explore sabotage attacks
against our reference model and SV1.

6.1. Attacking Individual Feature Groups

We begin our exploration of evasion attacks by attacking
each feature group individually. Although an attack can
be made more powerful by incorporating multiple feature
groups, considering each feature group independently
establishes a baseline and helps to illustrate the trade-off
between ease of feature manipulation and evasion success.
We consider manipulations of the most impactful feature
groups: popularity-based features, graph-based (RHDN and
RHIP) features, and registration-based features. Although
the other feature groups (lexical features, resource records,
TTL values, and temporal resolution patterns) affect the
classification, they contribute just 5% of the total mean
impurity, as indicated by Table 4. In each experiment, we
randomly sample 200 malicious domains from the test set
correctly labeled by the classifier. The overall results are
shown in the upper half of Table 5.

6.1.1. IP Mimicry. To evaluate the strength of IP mimicry,
we add A records resolving to IPs used by benign domains
found in the consistent Tranco Top 100K. We assume
a weak level of data visibility for the attacker: benign
domains are sampled only from the testing set. We add
n = 1, 2, 3 records greedily––in each iteration, we select the
IP address that causes the greatest increase in reputation.

If no such IP exists, the algorithm terminates. Figure 3b
shows the results of this experiment.

6.1.2. Popularity. Our reference classifier uses five binary
features related to popularity: existence in the Tranco
1M, 500K, 100K, 10K, and 1K. For our 200 malicious
domains, we evaluate the effect on reputation by an attacker
able to achieve each of these ranks. Figure 3a shows the
relationship between rank and reputation. When the domain
is in the top 500K, the model labels the domain as benign.
When the domain is in the top 100K, the reputation
approaches a perfect score.

6.1.3. Registration Length and Domain Age. Finally,
we measure the effect of changing a domain’s lifetime on
its reputation. Figure 3c shows how registering a domain
for at least two years increases its reputation regardless
of the domain’s age, but generally does not surpass the
threshold for benign classification. Aging a domain, on the
other hand, provides only a small increase in reputation, as
shown in Figure 3d. In the next section, we will see that the
effects of manipulating a domain’s lifetime are amplified
when combined with mimicry and popularity list attacks.

6.2. Reputation Boosting

Although some attacks do not cause the domain to cross
the benign-malicious decision boundary, they do increase
the domain’s reputation. An attacker can combine such
attacks to craft a hybrid attack that crosses the boundary. We
greedily select problem-space actions that do not exceed the
attacker’s budget using the hill-climbing Algorithm 1. Ta-
ble 5 shows the results for five different adversarial models.

Attacker 1: baseline financial cost = $0, time = 1
day. This attacker has no additional budget and has a
short amount of time to perform their attack. In our action
space, the only possible attack is a mimicry attack under
these constraints, so this reduces to a single-feature group
mimicry attack.

Attacker 2: mimicry + 2 year registration financial
cost = $15, time = 1 day. This attacker has a small
financial budget per domain and can extend their domain’s
registration period, which costs less than $15 for most
domains and does not require aging. As shown in Table 5,
the success rates of mimicry and 2-year registration
individually are less than 5%, but when they are combined,
attack success soars to 60%. The average change in
reputation increases to 0.45 when combining the attacks,
which is less than the sum of the individual changes after
mimicry and 2-year registration attacks (0.39+0.16 = 0.55),
implying some overlap between the two features.

Attacker 3: mimicry + popular 1M financial cost =
$10, time = 10 days. In addition to mimicry, this attacker
has the financial resources and patience to manipulate a
stable popularity list. Similar to Attacker 2, the popular 1M
feature and mimicry features both have under 5% success
rate on their own, but together evade the model 92% of
the time, which is a 50% improvement over the more
time-constrained Attacker 2’s success rate.
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Figure 3: Reputation of malicious test set after manipulation of important feature groups. We sweep across each
attack and show the reputation for 200 malicious domains with that parameter.

Attacker 4: mimicry + popular 500K financial cost =
$10, time = 2 weeks. Unsurprisingly, pairing mimicry at-
tacks with 500K popularity list manipulation does not reduce
the effectiveness of reaching 500K on a popularity list.

Attacker 5: mimicry + 2 year registration + popular
500K financial cost = $35, time = 10 days. This is the
upper bound of the financial costs and time for our attack
space. The attacker continues to evade the model, and the
change in reputation continues to increase as more feature
groups are targeted.

6.3. Generalizability

Academic models provide insight into which feature
classes are used in malicious domain detection and the
impact of each feature group but often make assumptions
that can increase false positive or false negative rates under
real-world demands. In this section, we evaluate our attacks
against a well-known security vendor (SV1). SV1 computes
reputation scores based on features that are similar to prior
work but uses a deterministic system engineered using
expert heuristics to do so.

We introduce candidate domains into SV1’s DNS
reputation system by embedding them within malicious
Windows executables generated by Metasploit’s msfvenom
tool [71]. In all of our experiments, the malicious binary
is correctly classified as malicious by SV1’s classifier. We
arm the binary with defanged payloads that embed our
domains in three different ways: (1) resolving the A record
for the domain, then attempting to open a TCP connection
to the IP over a non-standard, closed port, (2) running a
Powershell command that performs a DNS lookup over a
Cloudflare’s DNS-over-HTTPS (DoH) resolver [24], or (3)
storing the domain name in the binary, but not resolving it.

We found that the domain was only ‘seen’ by SV1
when the malware resolved the record, and did so in
cleartext. This indicates that an attacker could evade the
model for free if they can prevent it from being queried
in a sandbox or look it up over DoH. For this reason,
we primarily focus on malware that actually resolves the
record and attempts to connect to it.

This requires executing our attacks in the real world,
which can lead to unintended side effects. We leveraged
our partnership with SV1 to ensure that our attacks
remain isolated, which avoids poisoning the system against

legitimate benign domains. Section 7.4 discusses our ethical
considerations in detail.

6.3.1. Domain Generation. To generate domains suitable
for a real-world evaluation, we must ensure that the
domains are representative of a previously undetected
malicious campaign. We consider domains in two groups:
generic domains (e.g., california-news<.>com)
and DGA domains (e.g., pnxp4<.>com). While each
group has different lexical characteristics, we did not find
evidence that SV1 utilizes these features. For each group,
we seed a large language model [59] with examples taken
from a known campaign, then prompt it to generate five
more. We then apply some steps to reduce potential noise.
We separately consider domains that have been previously
registered and domains that share their name with pre-
existing domains. Then, we register the domains using
Namecheap. We primarily register domains with low-cost
TLDs (e.g., .xyz). While we did not find evidence that TLD
affects classification on SV1, we note that a feature related
to low-cost or abused TLDs would likely lower a domain’s
reputation, which would make our results non-optimistic
for an attacker willing to spend more than $2/domain. We
also assume that the operator has configured DMARC and
DNSSEC. Many nameserver providers provide DNSSEC
out of the box, including Namecheap. DMARC records are
free to set up and have a negligible time cost. We use IPs
from DigitalOcean to emulate a C2 server, ensuring that
each IP address does not already appear on any blocklists.

SV1 lists all domains less than 24 hours old, so
an attacker must wait a minimum of 24 hours before
attempting to evade the model. We evaluate against SV1
when each domain has completed its attack, which closely
bounds our proposed financial and time costs.

6.3.2. Popularity List Manipulation. We manipulate
popularity lists by sending a small number of DNS queries
to the Cisco OpenDNS resolver and Cloudflare’s 1.1.1.1
resolver from a modest number (N ≤ 12, 000) of unique
IPs between November 14, 2023 – December 1, 2023. We
repeatedly grab new IPs from a $10/month subscription to
Private Internet Access [68].

Figure 4 shows the results of sending DNS queries
from various numbers of unique IP addresses using two
VPN services. With a $10 subscription to PIA, we found
that 9,000 lookups from different clients are sufficient to



TLD Tranco rank Mw embedding Age Reg. length IP mimicry NS mimicry ID’d as indicator Evasion

.xyz >1M DNS lookup 3 days 1 yr ✓ ✓ ✓
.network >1M DNS lookup 3 days 1 yr ✓ ✓

.xyz >500K, <1M DNS lookup 3 days 1 yr ✓ ✓ ✓
.online >1M DNS lookup 3 days 2 yrs ✓ ✓ ✓ ✓

.xyz <500K DNS lookup 15 days 1 yr ✓ ✓ ✓ ✓
.online <500K DNS lookup 7 mo. 1 yr ✓ ✓

.xyz >1M FQDN in strings 165 days 1 yr ✓ ✓

.xyz >1M DoH lookup 165 days 1 yr ✓

TABLE 6: Results of experiments against SV1
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Figure 4: Results from popularity list manipulation on Cisco Umbrella, Cloudflare Radar, and Tranco—Daily
popularity rankings after manipulation using a VPN service.

achieve high rankings in the Umbrella and Radar lists. We
consistently achieved a ranking of under 250,000 on the
Cisco Umbrella list. On the Cloudflare Radar list, which
contains only 2LDs, we consistently achieved a ranking in
the top 100,000. As a result, we achieved a ranking of 1
million on the Tranco list within 10 days and within 500K
on the Tranco list within 14 days.

6.3.3. Reputation Boosting against SV1. By combining
our domain generation and popularity list manipulation
techniques, we can combine attacks. We take a grey-box
approach to SV1. We have partial knowledge of their fea-
tures, and also in some cases experiment directly with their
malicious ground truth, which is available commercially for
around $500k. We do not have access to the implementation
details or feature enrichment data used at SV1, including
the source of DNS traffic. We find that SV1 is similar to
the same types of attacks as both reference classifiers. We
find that SV1 can be evaded at either a $15/domain cost in
around a day or at a $10 total cost in around two weeks.

The results are shown in Table 6. We began by running
IP mimicry and popularity list attacks individually against
SV1. We found that IP mimicry was not effective and that
popularity list manipulation is only effective when boosted
by another feature. We found that the registration length
of a domain, which was effective in boosting IP mimicry
against the reference classifier, also sufficiently boosts
popularity manipulation, allowing it to succeed.

While our model does not model nameserver-based
features, we learned that SV1 is vulnerable to nameserver
mimicry attacks through manual testing. An attacker can
create a false link between their domain and a reputable
nameserver to increase their reputation. When overloading
DNS responses with mimicked nameservers, round-robin

nameserver selection introduces a m/N resolution error,
where n is the number of mimicked nameservers and N is
the total number of nameservers. When using the stronger
record stuffing technique to poison the historical DNS
dataset, this error disappears at a negligible time cost.
We notified SV1 of this issue, who confirmed that it is
a vulnerability. We propose two solutions: consider only
current nameservers when assigning positive reputation,
which mitigates response stuffing, and ensure that the
domain resolves on each of its advertised nameservers,
which mitigates response overloading. We found that this is
a viable way to boost the reputation of the registration length
feature, which reduces the time cost for an attack from two
weeks to around one day for nameserver propagation.

6.4. Practicality

We now analyze our attacks through the lens of an
attacker who is constrained by financial and temporal
resources, as introduced in Section 3. We also qualitatively
assess the detectability risk of each attack.

6.4.1. IP Mimicry. IP mimicry via response overloading is
easy to perform—an adversary can simply add new type A
RRs to the domain’s DNS records. When implementing an
attack with periodic record stuffing, however, the feasibility
decreases as an attacker must coordinate benign periods
and malicious periods with their malware code or phishing
campaign, which takes additional time. In both cases, the
detectability is high—mimicked IP addresses may result in
HTTP requests to the IP’s legitimate owners, which often
include metadata about the domain name used to initiate
the request. The attack is difficult to attribute because



the adversary is not required to register any additional
infrastructure that could reveal their identity.

6.4.2. Popularity List Manipulation. Our VPN-based
technique is an effective, low-cost solution to popularity
list manipulation. VPN subscriptions range from free to
around $10 and provide access to thousands of IPs around
the world. Compared to prior work, which uses ephemeral
IPs in cloud hosting providers [47] or IP spoofing [43]
to manipulate the list, our technique can achieve higher
rankings in less time and financial cost. Finding a hosting
provider that allows IP spoofing is difficult, and abusing
ephemeral cloud IPs comes at a financial cost and may lead
to abuse complaints. Furthermore, our VPN-based method
achieves a ranking of 500K on the Tranco list in under 14
days, which is more effective than prior methods.

7. Discussion

Our findings reveal the poor resistance of DNS
reputation systems to adversarial attacks, even from
relatively unsophisticated actors. To advance the robustness
of these systems, we outline opportunities for hardening
reputation models and ultimately translating these insights
to production DNS reputation systems. We then discuss
our study’s limitations and ethical considerations.

7.1. Hardening DNS Reputation Systems

7.1.1. Remove Easily Evadable Features. Some of our
evasion tactics are easier to deploy than others. Avoiding the
use of certain features can help prevent evasion at the cost
of overall model performance. We analyze the trade-off be-
tween evasion success and model performance and find that
in some cases, the risk of potential evasion is higher than ex-
cluding the evadable feature. In Table 7, we show the change
in TPR, FPR, and attack success rate against our reference
model after removing certain feature classes. Across each
experiment, we use identical training processes (train/test
split, feature extraction, etc.). While removing the popularity
features is detrimental to model performance (427% increase
in FPR, 4.5% decrease in TPR), it reduces the efficacy of
popularity manipulation, our most effective attack vector.

7.1.2. Adversarial Training. A popular technique for
defending against adversarial attacks is for the defender to
train their model on adversarial samples, thus increasing
the model’s robustness to the attacks [34]. DNS reputation
systems commonly operate with a human-in-the-loop,
which enables retraining on evasive samples. Over time,
human analysts manually label popular, sophisticated, or
unique threats. A defender could also generate hand-labeled
adversarial samples by running the attacks outlined in our
paper. If these hand-labeled samples are included in the
model’s training set, then the model could learn to correctly
classify samples despite our attacks. Although this would
provide a safeguard against mimicry attacks, large volumes
of successful adversarial attacks could poison the retrained
DNS reputation systems, thus increasing false positives.

7.2. Limitations

Our examination of practical attacks against DNS
reputation systems faces several limitations. First, we
cannot fully test every component of systems. If a malicious
domain is used for spam rather than C2, systems could
gather information related to the number of emails delivered
and the timing of email deliveries. We cannot deliver spam
as a part of an experiment as it is against the terms of
service of most hosting providers. Additionally, emails
traverse through many services en route to their destination,
which makes it difficult to obtain informed consent from all
parties that may be negatively impacted by sending large
amounts of spam emails. Second, the practical constraints
are best-effort approximations, sourced from publicly
available market costs. In practice, there may be bulk-
purchase discounts for pDNS data or domain registration,
or alternate methods for popularity list manipulation.
Fine-tuning these models is a topic for future work.

While we focus on attacks against the features used
in DNS reputation systems, other methods of attack
exist. Attackers could abuse blocklist removal requests or
compromise a server hosted on a high-reputation domain.
Such attacks are outside the scope of this work. Similarly,
malware operators that use DNS services can program their
malware to avoid or circumvent DNS reputation systems.
For instance, malware authors could implement execution
guardrails that alter behavior when the malware is run by
someone other than their intended target [67], a technique
commonly exploited by APT groups [46]. Malware can
also leverage the DNS over HTTPS (DoH) protocol to
bypass DNS reputation systems deployed by recursive
resolvers, network firewalls, or dynamic analysis systems.
We find that this technique is effective in evading SV1’s
DNS reputation system.

7.3. Sabotage Attacks

In addition to evading the model, an attacker can induce
false positives for other domains by performing graph-based
attacks or by submitting malware referencing these domains.
This can cause a denial of service for the victim or cause
alert fatigue for security analysts. A dual interpretation
of our results in Table 6 is that by uploading malicious
binaries to threat intelligence systems, attackers can induce
false positives for certain benign domains. While the lower
bound for defending against sabotage attacks is only $15
and three weeks, a benign site is unlikely to defend against
the attack by proactively performing mimicry attacks or
popularity list manipulation. In reality, unpopular domains
(Tranco >500K) with short registration lengths are highly
susceptible to sabotage attacks. As many threat intelligence
platforms gather data from the same sources, their indicators
often overlap [49]. As a result, attackers may be able to
attack many security vendors using this technique.

7.4. Ethical Considerations

We took several precautions to ensure that our study
remained ethical by following widely accepted ethical
principles in computer security [7] and by strictly adhering



Removed feature group TPR FPR IP Mimicry Pop. (1M) Pop. (500K)

S ∆R S ∆R S ∆R

RHDNs 97.33% 3.27% 0.00% 0.01 2.00% 0.35 100.00% 0.61
Lexical 97.80% 2.82% 12.50% 0.03 50.00% 0.19 100.00% 0.39
Registration 97.91% 9.09% 0.00% 0.00 100.00% 0.12 100.00% 0.31
Network 97.95% 2.64% 20.00% 0.04 100.00% 0.27 100.00% 0.42
Popularity 94.66% 7.01% 2.22% 0.02 0.00% 0.00 0.00% 0.00
RRs 97.81% 2.87% 0.00% 0.00 100.00% 0.19 100.00% 0.34
None 99.12% 1.33% 10.00% 0.39 2.00% 0.33 100.00% 0.60

TABLE 7: Effect of removing features on model performance and robustness (gray-box attack against aDNS model
with SV1 ground truth)

to our institute’s data governance policies and contractual
agreements with our vendors. First, when performing
controlled attacks against the operational system at SV1,
we worked closely with their team to ensure that we did not
compromise the service’s integrity or availability. We also
coordinated with their team to isolate the reputation change
caused by our experiments from real-world infrastructure.
Further, we ensured that our experiments were not included
in their historical dataset, preventing real infrastructure
from being negatively affected in the future. We disclosed
all vulnerabilities found to SV1. We notified both Cisco and
Cloudflare of the potential for popularity list manipulation,
who informed us that this is a known issue.

When operating on pDNS records from our data
provider, we look at only aggregated daily resolution data,
which does not reveal any information about a single
client’s behavior. This data is stored on a secure server
compliant with our institution’s computer security policy
with limited user access.

8. Conclusion

DNS reputation systems are an interesting subclass of
ML models where adversarial attacks are highly constrained
by their realizability and practicality. By constructing a
reference model, we are able to evaluate the success rate,
financial cost, and time cost of attacks against these systems.
These reference models help construct precise attacks
against commercial DNS reputation systems. In both cases,
operators face a trade-off between attack susceptibility
and runtime/memory/classification performance. Our novel
attacks against multiple DNS reputation feature classes
show that current approaches in both academia and industry
can be evaded with up to a 100% success rate by an
attacker with a budget of $10 and two weeks of aging.
Our discussion of the attacks, their practicality, their root
causes, and their mitigations will assist future researchers
and commercial vendors. We open-source our system’s
code to improve reproducibility in this research area.
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Paper DNS visibility Specialization Models Deployment Addt’l data sources Feature types Detection

Perdisci09 [61] Rec NS (below) Fast flux Clustering/Classifier Telcom IP probing Clustering, Infra. Operation

Antonakakis10 [3] Rec NS (above) Agnostic Classifier Telcom Blocklists, IPWHOIS Evidence, Infra., Zone Operation

Antonakakis11 [4] Auth/TLD NS (below) Malware Classifier Zone authority - Infra., Pop., Resol. Operation

Bilge11 [10] Rec NS (above) Agnostic Classifier Telcom - Lex., Resol. Operation

Choi11 [20] Rec NS (below) Botnets Clustering/Classifier Telcom/Enterprise - Lex., Infra., Resol. Operation

Antonakakis12 [5] Rec NS (above) DGA via NXDOMAIN Clustering/Classifier Telcom - Clustering, Lex., Infra. Operation

Perdisci12 [62] Rec NS (above) Fast flux Clustering/Classifier Telcom - Infra. Operation

Schiavoni14 [74] Rec NS (above) DGA Clustering/Classifier Telcom - Lex., Infra. Operation

Mishsky15 [53] Rec NS (above) Malware Graph Telcom Block/Allowlist, WHOIS Infra. Operation

Rahbarinia15 [70] Rec NS (below) Malware Classifier Telcom Block/Allowlist Infra., Pop., Resol. Operation

Hao16 [36] Registry logs Agnostic Classifier Registry WHOIS Lex., Regis. Regis.

Khalil16 [42] Rec NS (above) Agnostic Graph Telcom/Enterprise - Infra. Operation

Lison17 [50] Rec NS (below) Agnostic Classifier Telcom IPWHOIS, WHOIS Infra., Lex., Pop., Resol. Operation

Chiba18 [19] Rec NS (above) Agnostic Classifier Telcom/Enterprise WHOIS, Block/Allowlist Infra., Lex., Pop., Regis. Operation

Schüppen18 [75] Rec NS (above) DGA via NXDOMAIN Classifier Enterprise - Lex. Operation

LePochat20 [66] Rec NS (above) Avalanche botnet (DGA) Classifier Law Enforcement aDNS, WHOIS, CT, WM Infra., Lex., Pop., Resol. Operation

Maroofi20 [54] Blocklist+aDNS Compromised vs. Malicious Classifier Registry aDNS, WHOIS, HTTP req. Infra., Lex., Pop., Regis. Operation

Desmet21 [81] Registry logs Agnostic Classifier, Clustering Registry WHOIS Lex., Regis. Regis.

Silveira21 [78] TLD NS (above) Agnostic Classifier Registry IPWHOIS, registry logs Infra., Regis., Resol. Operation

Fernandez22 [30] Rec NS (above) Email spam Classifier Mail Servers - Evidence, Infra, Resol., SPF Operation

TABLE A1: Related work in DNS reputation systems—Prior work varies in DNS visibility, feature sets, specialization,
deployment scenarios, and machine learning models. Generic, network-deployed, operation-time detecting reputation systems
that are targeted by our reference model are bolded. Terminology borrowed from Zhauniarovich et al.’s survey [90].
CT=Certificate Transparency, Lex=Lexical, Pop=Popularity, Regis=Registration, Resol=Resolution

Classifier Malicious Ground Truth Benign Ground Truth DNS data Date Range F1 Precision Recall AUC

RF SV1 Tranco + YP.com aDNS 2023-10-07 - 2023-10-21 98.27% 99.05% 98.66% 98.76%
KNN SV1 Tranco + YP.com aDNS 2023-10-07 - 2023-10-21 96.16% 97.25% 96.70% 96.91%
LR SV1 Tranco + YP.com aDNS 2023-10-07 - 2023-10-21 86.75% 97.43% 91.78% 92.14%

RF OSINT Tranco + YP.com aDNS 2023-10-07 - 2023-10-21 95.92% 97.50% 96.70% 97.50%
KNN OSINT Tranco + YP.com aDNS 2023-10-07 - 2023-10-21 94.20% 96.62% 95.39% 96.51%
LR OSINT Tranco + YP.com aDNS 2023-10-07 - 2023-10-21 87.62% 97.53% 92.31% 94.60%

TABLE B1: Model performance—RF=random forest, KNN=k-nearest-neighbors, LR=logistic regression

Paper Malicious Ground Truth Benign Ground Truth DNS data TPR FPR

Antonakakis10 [3] OSINT Alexa Top 500 pDNS 96.8% 0.38%
Antonakakis10 [3] OSINT Alexa Top 10K pDNS 93.6% 0.4%
Antonakakis10 [3] OSINT Alexa Top 100K pDNS 80.6% 0.6%

Bilge11 [10] OSINT Alexa 1K + all domains aged >1 yr pDNS 98.4% 1.1%
Lison17 [50] OSINT/private Alexa Top 1M/OSINT/private pDNS 95% 0.1%
Chiba18 [19] Sandbox/paid lists/OSINT Alexa Top 1M aDNS 98.5% ∼ 1%

TABLE B2: Model performance of prior work in generic malicious domain detectors.



TABLE B3: Feature importance for SV1/aDNS and OSINT/aDNS models—Feature importance is calculated using mean
impurity of the random forest model (cutoff: 0.001)

(a) SV1/aDNS Model

Feature Importance

days_created_expires 0.2883
days_created_now 0.1469
pop_1m 0.1292
pop_500k 0.117
pop_100k 0.1131
com_other_ratio 0.0217
distinct_ips_2ld_zone 0.0177
ip_blocklist_bgp 0.0153
number_ratio 0.0108
rhdn_length_mean 0.0099
distinct_prefixes_2ld_zone 0.0093
rhdn_length_std 0.0091
rhdn_1gram_std 0.0086
rhdn_length_median 0.0073
stddev_tld_freq 0.007
distinct_ips_3ld_zone 0.0068
distinct_ips 0.0067
rhdn_1gram_mean 0.0059
rhdn_count 0.0057
rhdn_1gram_median 0.0051
median_tld_freq 0.0049
rhdn_2gram_std 0.0048
rhdn_2gram_mean 0.0046
rhdn_2gram_median 0.0038
pop_10k 0.0032
ip_blocklist_asn 0.0032
distinct_tld_count 0.0032
rhdn_3gram_std 0.0031
avg_tld_freq 0.0029
domain_length 0.0027
rhdn_3gram_mean 0.0026
longest_human_readable_substring 0.0026
num_of_trigrams 0.0025
distinct_prefixes_3ld_zone 0.0024
distinct_asn_2ld_zone 0.0016
distinct_bgp_orgs 0.0016
distinct_as_names_2ld_zone 0.0013
entropy 0.0012
num_ip_reg_dates_fqdn 0.001

(b) OSINT/aDNS Model

Feature Importance

days_created_expires 0.5145
days_created_now 0.2054
com_other_ratio 0.0334
rhdn_length_mean 0.0321
rhdn_length_median 0.0285
domain_length 0.0211
num_of_trigrams 0.0155
ip_blocklist_asn 0.0147
avg_tld_freq 0.0134
longest_human_readable_substring 0.0117
distinct_tld_count 0.0116
ip_blocklist_bgp 0.0107
stddev_tld_freq 0.0078
entropy 0.0073
rhdn_1gram_mean 0.006
rhdn_count 0.006
rhdn_3gram_std 0.0055
rhdn_1gram_std 0.0055
median_tld_freq 0.0053
rhdn_2gram_std 0.005
rhdn_1gram_median 0.0044
rhdn_3gram_mean 0.0041
rhdn_length_std 0.004
rhdn_2gram_mean 0.0034
number_ratio 0.0028
pop_500k 0.0027
pop_1m 0.0021
pop_100k 0.002
rhdn_2gram_median 0.002
distinct_ips_2ld_zone 0.0018
distinct_prefixes_2ld_zone 0.0014



Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary of Paper

The paper investigates vulnerabilities of ML-based DNS
Reputation Systems against adversarial attacks, particularly
focusing on mimicry attacks and popularity manipulation
techniques. The paper critiques previous ad-hoc and qualita-
tive analyses for their fragmented understanding of the threat
landscape, proposing a systematic approach to evaluate the
robustness of DNS reputation systems against realistically
modeled adversaries. It introduces a reference DNS reputa-
tion model that incorporates a range of features to systemat-
ically assess attack techniques like mimicry and popularity
manipulation.

C.2. Scientific Contributions

• Independent Confirmation of Important Results with
Limited Prior Research

• Provides a New Data Set For Public Use
• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field

C.3. Reasons for Acceptance

1) Providing a pipeline to perform representative security
evaluations of ML-based DNS reputation systems. Cur-
rent results show that rather unsophisticated adversaries
are reasonably effective at achieving their goals, which
demonstrates that there is a large asymmetry between
the sophistication necessary for an adversary to be
successful in bypassing a sophisticated DNS reputation
system.

2) Execution of experiments against both a reference
model and commercial DNS reputation systems.

3) A thorough analysis of the practicality of attacks, tak-
ing into account financial and temporal constraints.

C.4. Noteworthy Concerns

1) The utilized pDNS dataset is from a North American
ISP. Despite the comparison with the Tranco top list,
it may not provide comparable coverage to, e.g., the
Farsight SIE dataset. For that, a comparison to, e.g.,
zonefiles (in terms of zone coverage) and, e.g., the
Farsight SIE dataset should be conducted. Otherwise,
limited visibility in the pDNS dataset may reduce the
reliability of conclusion drawn from a methodology
built on it.

2) The literature for the utilized aDNS dataset does not
provide extensive comparisons to, e.g., OpenINTEL
(state of the art dataset for active DNS measurements),
or provide information on daily coverage and coverage
over time.
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