
Heterogeneous IC Component Identification via EM
Side-channels

Donald Greene
Aether Argus Inc.

Atlanta, US
don@aetherargus.com

Zahir Khan
Aether Argus Inc.

Atlanta, US
zahir@aetherargus.com

Angelos D. Keromytis
Aether Argus Inc.

Atlanta, US
angelos@aetherargus.com

Baki B. Yilmaz
Aether Argus Inc.

Atlanta, US
baki@aetherargus.com

Abstract—Globalization of supply chain encompasses a mix of
both trusted and potentially untrusted entities, raising significant
security concerns. In this paper, we introduce an electromagnetic
signal-based authentication methodology for integrated circuits
within heterogeneous integrated circuits, addressing the height-
ened security vulnerabilities emerging from the globalization
of the supply chain. Our proposed method involves exciting
specific components to capture their unique EM signatures,
thereby generating a comprehensive dictionary of component
signatures. These signatures facilitate the clustering of signals
and the detection of anomalies by enabling comparisons between
test signals and a reference model derived from benign samples.
We achieved perfect clustering performance for the components
considered in HICs. Furthermore, utilizing the same setup, we
developed an anomaly detection algorithm that achieves over
95% accuracy when the loop size of the injected code exceeds
100. While our focus is on HICs, the versatility of our method
allows for straightforward application to a wide range of devices,
including microelectronics and Internet of Things (IoT) devices,
which are equally vulnerable to the complexities and risks
associated with a diversified supply chain.

Index Terms—Heterogeneous IC, EM side-channels, compo-
nent identification, signal processing.

I. INTRODUCTION

Globalization, along with the geographic distribution of
manufacturing, specialization, and the aggregation of pro-
duction volumes, has significantly increased the complexity
of the supply chain, yielding substantial cost savings for
commercially available devices and components, including
integrated circuits (ICs) and printed circuit boards (PCBs).
However, these developments have also amplified concerns
around the authentication of ICs within the semiconductor
industry. This challenge has become even more pronounced
with the industry’s shift towards heterogeneous integration
[1]. This transition introduces new threat scenarios, one of
the most significant being the vulnerabilities inherent in the
global supply chain. Heterogeneous ICs (HICs) and other
microelectronics components pass through a supply chain that
often extends beyond trusted system integrators and suppliers
to include various entities responsible for fabricating, testing,
and packaging the ICs; manufacturing the PCBs; assembling
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these PCBs with ICs and other components; loading firmware
onto these boards; and, ultimately, incorporating these boards
into subsystems that complete the final product. Addressing
the vulnerabilities that devices encounter at each stage of this
complex supply chain is crucial for enhancing system security.
However, the idea of forming a supply chain comprised solely
of trusted entities, while initially appealing, is not feasible
due to the substantial additional costs it would involve. With
the electronics market projected to reach $529.86 billion,
exhibiting a compound annual growth rate of 9.2% from
2021 to 2028 [2], addressing the issue of untrusted entities
within this vast supply chain becomes coercive. It is crucial
to tackle this challenge in a clever and economical manner,
without elevating the cost of devices. Such cost increases
could significantly contribute to global inflation, making it
essential to find balanced solutions that enhance security
without imposing additional financial burdens.

The primary threat that emerges in the context of HICs
is counterfeiting and unauthorized modifications to ICs.
Counterfeiters have developed sophisticated methods, includ-
ing reverse engineering, recycling, remarking, overproduc-
ing, cloning, tampering, forgery, and introducing defects to
manufacture counterfeit products [3]. Such activities pose a
significant threat to economic growth and innovation, ad-
versely affecting the profits, sales, and competitive standing
of legitimate companies.

To combat the issue of counterfeiting, a variety of reverse
engineering methods have been developed. These techniques
typically involve the use of Scanning Electron Microscopy
(SEM), X-ray imaging, and Terahertz (THz) scanning to
scrutinize hardware components ranging from transistors to
the entire device. Additionally, the implementation of physical
unclonable functions (PUFs) has been proposed [4]. PUFs
leverage the inherent process variations in semiconductor
manufacturing to create a unique identifier that is difficult to
replicate. In a notable application of these methods, Ahmadi
utilized a 3D X-ray microscope in conjunction with machine
learning algorithms to identify counterfeit components at the
die level [5].

The traditional approaches for inspecting and authenticating
ICs, while effective, carry the risk of potential damage, require
excessive time, and often lead to the destruction of the
devices under examination. Consequently, there is a growing



demand for faster, more reliable, and cost-effective methods. In
this context, techniques based on electromagnetic (EM) side-
channels emerge as a promising solution due to their non-
invasive nature, eliminating the need for device destruction.
Leveraging these side-channels, several machine learning algo-
rithms have been proposed to facilitate electronic component
classification, IC authentication, and device investigation. A
notable example is presented in [6], where an IC authentication
method utilizes a PUF approach to generate unique EM sig-
natures for different ICs. Unlike conventional PUF techniques
that rely on complex, dedicated on-chip circuitry to produce a
specific response to an input challenge, this method introduces
a lightweight, variability-aware circuit. This innovation is
nearly non-intrusive and carries no risk of damaging the ICs.
This concept has been further extended to microcontrollers
and Field-Programmable Gate Arrays (FPGAs), utilizing EM
signatures as a means of authenticating the devices [4], [7].

EM signal-based identification and system analysis present
substantial opportunities for enhancing supply chain security.
This approach involves detailed scrutiny of software activities
in IoT devices to verify that systems are uncompromised.
For instance, as discussed in [8], EM signatures from a
reference sample are utilized to train a neural network, which
successfully classifies various programs running on an Arduino
board. This demonstrates the potential of EM signals for
software verification. Similarly, studies referenced in [9], [10]
exploit EM emissions from motherboard components, like
CPUs and memory, to differentiate hardware signatures. These
distinct signatures are analyzed using deep neural networks
to cluster component models, showcasing an innovative ap-
proach to hardware verification and security. In this paper, we
explore HICs to develop a method for identifying individual
IC components following excitation. Our approach utilizes
EM side-channel signals emitted during component excitation,
and employs these signals for effective clustering of the com-
ponents. We achieved perfect clustering performance for the
components analyzed in HICs. Additionally, we demonstrate
that the same setup can be used for anomaly detection. In this
regard, we have developed an anomaly detection algorithm
that achieves over 95% accuracy when the loop size of the
injected code exceeds 100.

The proposed method is non-invasive, as it necessitates
no additional hardware circuitry within the system; it is
also non-destructive, time-efficient, and significantly reduces
investigation costs. By identifying components and revealing
their EM signatures, our method offers a promising tool for
addressing supply chain security issues, as any compromise in
an IC component is likely to alter its signature. To the best
of our knowledge, this is the first study to examine HICs for
authentication purposes utilizing EM side-channels.

We organize the paper as follows: Section II provides
information on EM side-channels, outlining our methodologies
for capturing and processing signals. Section III presents our
experimental setups and the findings derived from these exper-
iments. Finally, Section IV offers a comprehensive conclusion,
reflecting on both the approach taken and the results obtained.

II. SIGNAL PROCESSING AND CHARACTERIZATION

For effective component classification and authentication,
the initial step involves collecting signatures that uniquely
define components, ensuring that any modifications result
in detectable deviations in these signatures. Identifying the
sources from which these signatures can be generated is cru-
cial, followed by establishing a process pipeline for signature
generation. Our proposed framework addresses this need by
collecting EM signals emitted from the components of HICs.
Utilizing advanced signal processing techniques, we reduce
the dimensionality of the received signals while retaining the
critical information necessary for clustering and authenticating
components.

A. EM Side-channel Signals
EM side-channels generate emanations as a result of fluctu-

ating current flows within a device’s electronics, leading to
the creation of EM waves [11]. Among the various types
of side-channels, EM side-channels stand out due to their
broad bandwidth and the capability to monitor devices from a
distance, offering distinct advantages over other methods [12].
However, one significant challenge is that EM emanations can
be exceptionally weak, occasionally making detection difficult.
In contrast, power side-channels (PSCs) arise from similar
principles, as they too are a consequence of current flows
within a device’s electronics [13]. Yet, PSCs differ notably in
that they require a direct connection to the device and generally
exhibit limited bandwidth [14]. This limitation is largely due to
the design of mechanisms intended to stabilize supply voltage
fluctuations within an IC package, which inadvertently act as
low-pass filters for the current and voltage measurable at the
device’s external connections.

Though EM side-channels are often viewed as undesir-
able byproducts that may leak sensitive information, such as
cryptographic keys [15], [16], it has been demonstrated that
these channels can be leveraged to protect systems in air-
gapped scenarios. Our framework utilizes emanated signals
to generate unique signatures for IC components by running
excitation programs that target specific functionalities. For
example, Figure 1 displays a spectrogram captured from the
Ethernet component of the Zynq UltraScale+ MPSoC ZCU102
board [17] while executing a program designed to transmit
Ethernet packets to a client. The vertical and horizontal axes
in the spectrograms represent time and frequency, respectively,
and the excitation program repetitively carries out the same
set of commands in a continuous loop. Observations from the
spectrogram reveal that executing consistent code sequences
generates similar signals, thereby facilitating the creation of
reliable signatures. To capture the most distinctive signatures
through EM side-channel analysis, we propose the following
procedure:

• Signal Acquisition: While running the excitation code,
we explore both the probe location and type to ensure
the acquisition of the cleanest signal. This step aims to
minimize interference from other components and envi-
ronmental noise, while also maximizing signal strength.



• Frequency Spectrum Selection: Our investigation ex-
tends to identifying the most suitable frequency spec-
trum for capturing clear signals specific to a component.
Following the insights provided in [18], we concentrate
on frequencies modulated by the harmonic of the com-
ponent’s clock frequencies. The objective is to select
frequency bands around the clock frequencies of the
target component, ensuring they do not overlap with the
clock frequencies or their harmonics of other components.

• Verification with Spectrum Analyzer and SDR: With
the aid of a sophisticated spectrum analyzer, we final-
ize the choice of frequency band, probe location, and
type. Subsequently, we employ a Software-Defined Radio
(SDR) to test the reproducibility of the identified patterns.
This step is critical for evaluating the feasibility of our
measurement setup and is essential for managing the cost
associated with the authentication process, considering
the potential expense of spectrum analyzers.

After successfully completing these steps, we proceed to
the signal processing phase, aimed at developing a model for
clustering and authenticating the components.

B. Signal Processing

To achieve more reliable signature acquisition, it is es-
sential to capture EM signals over extended periods and
at higher sampling rates. This approach necessitates dealing
with millions of samples for each signature and addressing
potential phase differences that arise due to variations in the
measurement start times. To navigate these challenges, we
propose a modified version of the signal processing algorithm
originally introduced in [19].

Fig. 1: The max-pooling operation applied to the spectrogram
values before averaging to minimize the smearing effect.

The algorithm for processing the captured EM signals
involves several key steps, aimed at generating reliable sig-
natures with reduced computational complexity and memory
storage cost. These steps can be listed as follows:

• For each measurement, apply Short-Time Fourier Trans-
form (STFT) operation, specifying both the window size
and the corresponding window function, along with a
given overlap ratio. This process generates a matrix used
to create the spectrogram, as illustrated on the left side of
Figure 1. The resulting spectrogram matrix’s dimensions
are determined by the STFT window size (number of
columns) and the number of STFT operations performed

on the measured signal snippet (number of rows). Here,
the time interval between consecutive STFT operations
can be calculated by factoring in the sampling time and
the count of non-overlapping samples.

• Apply a max-pooling operation to the matrix, utilizing
predetermined pooling parameters in both frequency and
time dimensions, as detailed in Figure 1. We operate
under the assumption that the stride lengths match the
pooling parameters. This max-pooling step effectively
reduces the matrix size, thus lowering computational
complexity. It also addresses the smearing effect issues,
which arise from the imperfections of system clocks.

• The final step involves averaging the max-pooled matrix,
either before or after converting the matrix values into
decibels (dB). The outcome is a vector with a length
determined by floor (WS/KF ), where FS represents the
STFT window length and the KF frequency dimension’s
pooling parameter. This step is crucial for efficiently
condensing the signal data, especially when dealing with
millions of samples, significantly reducing the memory
storage requirements for the signatures.

The signal signatures generated through our process are
aggregated into a feature dictionary, representing unique EM
profiles of different components within a subject HIC. This
repository becomes instrumental in identifying deviations that
may indicate tampering or compromise. Manufacturing varia-
tions, inherent to electronic component fabrication, ensure that
any alteration or substitution of components will alter the EM
field around them. These changes surface in the EM signal
patterns, even if the component continues to meet expected
digital test outcomes. Consequently, our method provides a
robust mechanism for authorizing HICs and other electronic
devices, leveraging the subtle but distinct variations in EM
signatures to detect unauthorized modifications.

C. Clustering with Neural Networks

The snippets generated from the signal processing algorithm
are utilized not only for authentication but also for clustering
the components of HICs. To achieve this, we propose the
application of a deep neural network (DNN), the architecture
of which is depicted in Figure 4a. Given that the processed
snippets are 1D vectors, our DNN architecture starts with 1D
convolutional layers. This choice is deliberate, to accommo-
date the nature of the snippets, in contrast to the 2D or 3D con-
volutional layers commonly used in image processing tasks.
Following the convolutional layers, the network transitions to
linear layers. The design results in the output layer comprising
a number of nodes equal to the count of IC components
targeted within the subject HIC.

To mitigate the risk of overfitting within our deep neural
network, we incorporate dropout layers and implement early
stopping mechanisms. These techniques help to regularize
the model, ensuring it generalizes well to unseen data. Ad-
ditionally, for purposes where visualization of the clusters
is beneficial, we can adjust the architecture of the linear
layer, specifically the one labeled as fc3, to align with our



visualization goals. For instance, setting this layer to have
two nodes enables the visualization of clusters within a two-
dimensional space. After the network is trained, transfer
learning techniques can be applied to remove all subsequent
layers, allowing us to plot the outputs directly from this two-
dimensional layer.

For scenarios where visualization is the primary concern,
techniques like t-SNE can be utilized [20]. However, it is
important to note that while t-SNE is powerful for visualizing
high-dimensional data in lower dimensions, the transformation
it applies is not directly extendable to new data points.
Therefore, our approach, which allows for both clustering
and visualization in 2D or 3D spaces, offers a more ver-
satile solution. This adaptability is crucial, especially since
the proximity of signal signature projections within these
visual spaces serves as an indicator of cluster membership.
Modifications to a component of a subject HIC due to supply
chain discrepancies will result in a divergence from its original
cluster. This feature is instrumental in detecting and addressing
supply chain integrity issues.

III. EXPERIMENTAL SETUP AND RESULTS

In this section, we detail the experimental results obtained
from testing on the Zynq UltraScale+ MPSoC ZCU102 board.
Our experiments focused on three key components: the CPU,
UART, and Ethernet. The initial step is to follow the proce-
dures outlined in Section II-A for EM side-channel analysis.
For our probes, we selected two near-field probe sets, one from
Aaronia and another from Tekbox, complemented by a Siglent
spectrum analyzer (SA) and an Ettus USRP SDR. Through
extensive and meticulous experimentation, we identified the
optimal probe placement as depicted in Figure 2. Additionally,
the specific probe types utilized in our experiments, along
with their corresponding center frequencies, can be listed as
follows: 1) AAronia near-field magnetic-field probe at 1.108
GHz for CPU, 2) Tekbox near-field magnetic-field probe at
125 MHz for UART, and 3) AAronia near-field electric-field
probe at 1.24 GHz for Ethernet.

As depicted in Figure 2, we opted to capture signals from
the rear of the board, a decision influenced by the presence
of a heat-sink attached to the core components. This strategic
positioning of probes, along with their specific locations and
center frequencies, was determined after thorough investi-
gation, ensuring minimal interference and sufficient signal
strength for the clustering algorithm to perform effectively. It
is important to note that while we do not assert this setup as
the definitive best for maximizing the Signal-to-Interference-
plus-Noise Ratio (SINR), given the vast array of possible
experimental configurations, it proved adequate for achieving
our algorithm’s desired performance levels. The spectrograms
illustrated in this figure highlight the distinctiveness of each
component’s signal, both in terms of pattern and center
frequency. This distinction is particularly valuable, enabling
us to generate unique signatures for each component. These
signatures are pivotal for subsequent clustering or detecting

deviations, emphasizing the efficacy of our experimental ap-
proach.

(a) CPU (Spectrogram Center Frequency: 1.108 GHz)

(b) UART (Spectrogram Center Frequency: 125 MHz)

(c) Ethernet (Spectrogram Center Frequency: 1.24 GHz)

Fig. 2: Experimental setups and corresponding spectrograms.
The vertical axis represents time, covering approximately 5
seconds, while the horizontal axis corresponds to frequency.
The spans for the spectrograms around the given centers are 8
MHz, 2 MHz, and 1 MHz, respectively, for clearer illustration.

As the next step, we proceeded to collect signals using the
USRP SDR, adhering to the experimental setup and center
frequencies determined previously. For each component under
investigation, signals were captured for a duration of 3 seconds
at a sampling rate of 8 MSPS. This approach resulted in each
signature being derived from a signal comprising 24 million
complex numbers, reflecting the baseband signals returned by
the SDR. In our analysis, we intentionally disregarded the
knowledge of center frequencies to increase the processing
algorithm’s challenge, essentially simulating a scenario where
all component signals are presumed to be informative within
the same frequency band. This decision adds an extra layer of
complexity to the signal processing task. Despite these con-
straints, the processed EM signals representing the signatures
for the three components we examined are illustrated in Figure
3a. To achieve the desired outcomes, we configured the STFT
window size to 40960, with pooling parameters set at 10 in
frequency and 8 in time. This configuration effectively reduced



the dimensionality of the signal from 24 million to 4096.
This significant reduction in signal size not only simplifies
the computational demands of our analysis but also retains
the essential characteristics necessary for accurate component
identification and anomaly detection.

Despite the intentional analytical challenges and the diffi-
culty in discerning signal differences directly from the figures,
our analysis reveals distinct signal patterns for different com-
ponents, coupled with a notable consistency within signals
of the same class. This demonstrates our method’s ability
to effectively differentiate and cluster component signals,
affirming its potential for reliable authentication and anomaly
detection.

(a) Before projection. (b) After projection.

Fig. 3: Processed baseband signals.

A. Clustering Components

After acquiring the signatures, we proceed to train the neural
network as detailed in Figure 4a. The network is configured
with output channels set at 5, 20, and 1 for the convolutional
layers, each employing a kernel size of 2. For the linear
layers, we establish the number of nodes at 60, 20, 2, and 3,
respectively, incorporating a dropout rate of 30% to mitigate
over-fitting.

After completing the training phase, we modified the net-
work by removing all extraneous layers, focusing on visualiz-
ing the outputs of the adjusted network as depicted in Figure
3b. The visualization clearly shows that each class is densely
populated and distinctly separated from the signals of other
components. This separation underscores the uniqueness of the
signal patterns for each component, effectively demonstrating
the proposed framework’s capability to distinguish between
different component signals. We need to note here that the
excitation codes used in our experiments are not the only
or optimal codes for conducting these tests and achieving
the observed performances. We believe there are countless
possibilities for excitation codes that could be utilized. For
our experiments, we employed simple codes, such as sending
Ethernet packets to stimulate Ethernet components or execut-
ing basic algorithmic operations on the CPU to activate it.
Even with these simple codes, we were able to successfully
identify different components.

B. Anomaly Detection

In this section, we demonstrate how the experimental setups
used for identifying different IC components can also be em-

ployed to detect anomalous activities. To evaluate the robust-
ness of our framework against modifications, we conducted a
controlled experiment where the size of the injected code could
be precisely adjusted. This method allowed us to investigate
the relationship between the size of the injected code and
its impact on signal patterns. Our analysis was confined to
CPU activities to facilitate the implementation of targeted
tests. Specifically, we injected a for-loop containing simple
algorithmic operations with varying numbers of iterations, as
illustrated in Fig. 4b. This variation in loop size enabled us to
systematically assess the framework’s sensitivity to changes in
code size. While we have not conducted experiments on other
components due to space constraints, similar methodologies
could be applied to them. For instance, an anomalous packet
could be sent through Ethernet and UART communications to
identify unexpected traffic.

(a)

void main ( ) {
/ / Some f u n c t i o n a l i t y
. . .

/ / I n j e c t e d code
i f ( t r o j a n i s a c t i v e ) {

f o r ( n u m b e r o f i t e r a t i o n )
(* a p o i n t e r ) + + ;

}

/ / Some f u n c t i o n a l i t y
. . .

}

(b)

Fig. 4: a) The neural network structure used to cluster the ICs.
b) An example of the pseudo-code used to obtain the results.

The spectrograms captured for different versions of the
injected code, as shown in Figure 5a, reveal that code injection
results in certain frequencies becoming prominently active, ap-
pearing as vertical lines in the spectrogram. Also, the intensity
of these active frequencies escalates with an increase in the
size of the injected code, while the smearing around these
frequencies diminishes. To analyze the system’s performance,
we initially collect benign EM signals to generate the training
model, as detailed in Section II. These signals are processed
to produce what we refer to as ‘golden samples.’ We allocate
20% of these golden samples to obtain hyperparameters like a
threshold, which is subsequently excluded from the training
model. The training model thus comprises the remaining
80% of the golden samples, along with hyper-parameters
like the threshold derived from the initial 20% of the data.
The subsequent step involves comparing test signals to the
golden samples by calculating their Euclidean distances, as
shown in Figure 5b. This figure displays the divergence of
test signals from the established baseline, where each dot
represents multiple test samples, and the black horizontal
line indicates the threshold distinguishing between valid and
anomalous samples. It is crucial to note that our method
employs a one-class classification strategy, recognizing the
challenge of predicting all potential malicious activities.

Our findings demonstrate that the proposed method achieves
a remarkable accuracy rate of 95% for detecting anomalies,
provided the loop size exceeds 100 iterations. This underscores



(a) The changes in spectrogram.

(b) Distance distribution.

Fig. 5: Experimental results for anomaly detection.

the efficacy of our framework in identifying modifications
through dynamic code changes, demonstrating its potential as
a reliable tool for enhancing system security. It is important to
note that altering the code within the loop affects the number
of instructions executed. However, variations in the number of
instructions do not linearly impact the emanated EM signals
due to the specifics of their hardware implementations. While
increasing the number of instructions tends to enhance the
quality of the received EM signals, it also extends the execu-
tion time. Consequently, the performance of our algorithm in
terms of loop size changes as the instructions change within
the loop.

IV. CONCLUSION

In this work, we have developed an authentication method
for HICs by analyzing the unique EM signals emitted from
their components. Our approach not only facilitates the cluster-
ing of EM signals but also enables the detection of anomalies,
leveraging a signature-based methodology assuming the use of
golden samples during the training phase. By creating a com-
prehensive dictionary of component signatures, modifications
to components become detectable through deviations from the
established model. Through rigorous experimentation, we have
demonstrated the utility of our method in clustering component
signals within an HIC, as well as in identifying modifications
using the same technique. A neural network model further
aids in clustering, with the capability to visualize the data in
two or three dimensions, enhancing interpretability. Given its
non-invasive nature and vendor neutrality, our method holds
promise for widespread application across various systems,
including microelectronics and IoT devices, addressing critical
security concerns in the face of the increasingly complex
global supply chain.
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