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Abstract—In this paper, we explore the use of electromagnetic
(EM) side-channel signal analysis to detect attacks on neural
networks (NNs) operating on GPUs, specifically focusing on
fault injections and NN parameter perturbation. Our primary
discovery reveals that perturbing the weights using different
distributions has distinct effects on various neural network
architectures. For instance, randomly zeroing some weights
impacts the emanated EM signals locally, while using a Gaussian
distribution for perturbation affects the signals more broadly.
Additionally, we find that employing simple, state-of-the-art
signal processing techniques is sufficient for detecting these
perturbations, suggesting that EM-based detection systems can
reduce latency and enhance accuracy. To facilitate this study, we
initially train a neural network using transfer learning methods,
then apply different perturbation techniques to various neural
layers, and finally, evaluate the detection performance with a
straightforward, state-of-the-art signal processing algorithm. This
version maintains the integrity of the technical details while
enhancing readability and flow, making it more accessible for
the intended audience.

Index Terms—EM-based side-channels, neural network, pa-
rameter perturbation attacks, neural trojan attacks.

I. INTRODUCTION

With the recent advancements in neural networks and their
exceptional performance in real-world applications, employing
these networks for various challenges has become a primary
approach for many companies and researchers. Given the
latest technological improvements and the substantial increase
in data volumes, these systems now offer more robust and
accurate solutions to many complex problems. Thanks to their
widespread popularity, many companies have begun to offer
pre-trained models as a service. These models can be directly
utilized in cloud environments or downloaded for local use.
This widespread availability has made it easier for everyone to
employ neural networks for specific purposes. However, this
widespread adoption also raises critical questions regarding
the security of these neural networks and the potential for
malicious activities to be embedded within them. The typical
goal of these attacks is to alter specific weights, causing the
network to either yield incorrect results for certain inputs or
to generate a predefined output sequence.

Given that users are generally unaware of the underlying
structures and weights of neural networks, there is a risk that
service providers or third-party companies could manipulate
these networks to trigger hidden functionalities for specific

inputs, a threat known as neural Trojans [1]. For instance, an
integrated circuit compromised during the supply chain could
be targeted by specifically tailored neural networks (NNs)
designed to activate a Trojan. Crucially, such modifications
can be made without any noticeable decline in the network’s
performance, making it extremely difficult to detect the Trojan
by monitoring network’s performance alone. However, the
security concerns with neural networks extend beyond these
hidden manipulations. Many adversarial attacks aim to alter
the functionality of neural networks in specific ways, often
by targeting certain labels to be inaccurately detected, such as
misclassifying animals through perturbed input signals [2].

Neural network attacks can be categorized into white-box
or black-box settings, depending on the attacker’s knowledge
of the system they are targeting. In a white-box setting, the
attacker has detailed information about the neural network
structure, training data, and weights. By manipulating one of
these elements, they can significantly impair the network’s
classification accuracy for specific classes or even the entire
model, or they can manipulate the system to produce a
specific sequence that triggers a Trojan. An example of such
manipulation is fault injection attacks, where the attacker alters
the neural network or its inputs in memory to cause mis-
classification [3], [4]. Another method involves adjusting the
neural network’s parameters in such a way that it introduces a
backdoor when specific inputs are presented [5]. The authors
demonstrate that with knowledge of the data used for fine-
tuning, pre-trained models can be exploited to introduce a
backdoor during this process. In [6], an adversarial parameter
perturbation attack is proposed that maintains normal per-
formance on training data while degrading the performance
under adversarial conditions. On the other hand, in a black-box
setting, the attacker only has access to observe the inputs and
outputs of the trained system, without any knowledge of the
neural network’s internal structure. In this context, the authors
in [7] developed a method to minimize the perturbation to
input images, causing the neural network to misclassify the
input. Essentially, their approach involves adding an extra layer
to the front of the neural network that perturbs a small number
of entries to deceive the network. This technique can be viewed
as a form of fine-tuning from an adversarial perspective, where
the modification occurs at the network’s head.

In light of these attack methodologies, researchers are



developing various strategies to enhance the robustness of
neural network classifications. These methods include perturb-
ing input signals and employing larger, more sophisticated
neural networks [8]. However, introducing perturbations at
each epoch and utilizing larger networks can prolong the time
required for the models to converge. In this scenario, physical
side-channels could serve as valuable resources to improve
model reliability. Among the available side-channel options,
EM side-channels are particularly advantageous due to their
air-gapped nature, which eliminates the need for direct contact
with the subject device.

EM side-channels result from changing electromagnetic
fields caused by fluctuating current flows within a device’s
electronics [9], [10]. These side-channels offer significant
advantages over other side-channel types due to their broad
bandwidth and the ability to monitor devices from a distance
[11]. For example, EM side-channels are closely related to
power side-channels (PSCs), which also arise from currents
within a device’s electronics. Unlike EM side-channels, PSCs
require a direct connection to the device and generally have
limited bandwidth [12]. This limitation is partly due to the
design of IC packages that incorporate mechanisms to stabilize
supply voltage, acting as low-pass filters for the current and
voltage measurable at external connections (the IC pins).
However, one key disadvantage is the relative weakness of EM
emanations, which can sometimes make detection challenging.

Although EM emanations are commonly exploited by at-
tackers to extract cryptographic keys from devices [10], [13],
[14], they can also be utilized to monitor systems. Such
monitoring can provide insights into the device’s operational
status without requiring modifications to the device or its
software [15]–[17]. EM-based monitoring retains functionality
even if the monitored system is fully compromised. This
decoupling from the subject device enhances security, as it
introduces no new vulnerabilities.

This paper investigates how EM side-channel signals can
be leveraged to detect intrusions on NNs that operate on
GPUs, with a specific focus on fault injections and parameter
perturbations in a white-box setting. In such settings, attackers
possess comprehensive knowledge of the NN’s architecture,
including its weights and training data. We use signals from
a “golden sample,” an unaltered reference, as the baseline for
our monitoring approach. Our study examines two perturbation
types to the neural network, either by injecting Gaussian noise
or by selectively zeroing out neurons at predetermined rates.
We evaluate the impact of these manipulations on two distinct
neural network structures: linear and convolutional layers.
Our results show that zeroing weights impacts EM signals
locally, whereas Gaussian perturbations cause broader signal
alterations. Furthermore, we find that even simple, advanced
signal processing techniques are capable of effectively detect-
ing these perturbations.

The rest of the paper is organized as follows: In Section
II, we describe how the neural network is configured. Section
III details the changes in EM signals resulting from different
perturbation techniques. In Section IV, we present the results

of our experiments conducted on two GPUs using two state-of-
the-art neural network structures. Finally, Section V provides
insights and discussion based on our findings.

II. NEURAL NETWORKS AND TRANSFER LEARNING

Literature on adversarial weight perturbation suggests that
introducing noise to weights during training is a common
strategy to enhance robustness against these attacks [18].
Furthermore, in attacks that involve fine-tuning of the neural
network structure, weights are slightly adjusted to adapt to a
new dataset. Given the large number of neural nodes in modern
network structures and the implications of the central limit
theorem, it is reasonable to assume that the weight differences
between the original model and the fine-tuned model will
exhibit a normal distribution. In light of this, to determine
if different perturbation techniques yield distinct signature
patterns, we explore two approaches: perturbation with a
normal distribution and random zeroing of some nodes. Our
aim is to demonstrate that these injection faults can be detected
through EM side-channel monitoring, suggesting that merely
using additional adversarial training may be insufficient.

Fig. 1: The neural network structure after applying transfer
learning techniques to AlexNet [19].

To achieve our goal, we first configure a neural network
structure by applying transfer learning techniques to AlexNet
[19]. Transfer learning allows us to leverage either existing
pre-trained models or untrained models, modifying the final
layers to suit specific needs [20]. This technique is particularly
valuable when training data is scarce. In such scenarios,
a state-of-the-art neural network, originally designed for a
similar task, can be adapted by freezing the weights of initial
layers and training only the last few layers to meet the new
requirements.

The modified structure of the model is illustrated in Fig.
1. Our objective with this neural network is to determine
whether a given image contains a military aircraft. To tailor the
network for this specific task, we remove all layers following
the second linear layer of the original AlexNet structure and
integrate new layers as depicted in the ‘Transfer Learning’
section of the diagram. To leverage the pre-trained model, we
have frozen the inherited weights from AlexNet. For training
the system, we utilize the dataset given in [21]. However, since



Fig. 2: True predictions of the trained neural network.

the original labels in the dataset specify the type of aircraft,
we have relabeled the images to indicate whether each one is
a military aircraft.

Some of the predictions alongside their actual labels and
corresponding images are presented in Fig. 2. For the test
data, we achieve an accuracy rate of 86.5%. Please note that
the primary focus of this paper is not on the performance of
the neural network itself, but rather on investigating the impact
of perturbations on the received EM signal. Consequently,
we train this model primarily to serve as a baseline for our
perturbation analysis, allowing us to assess whether and how
perturbations affect the performance of the classification task
within this neural network framework.

III. WEIGHT PERTURBATION EFFECTS ON EM SIGNALS

Numerous studies attempt to modify neural networks by
adjusting weights or fine-tuning the network with poisoned
data, which can also be viewed as a form of perturbation if
both benign and compromised neural network structures are
known. Given the various approaches aimed at either making
adversarial attacks more covert or enhancing the robustness
of neural networks against these attacks, we model all such
attacks as samples from a distribution. This distribution is
defined by hyperparameters such as the target layer, the per-
turbation rate, and the perturbation type. Since it is impossible
to cover all potential scenarios, our analysis will focus on the
effects of perturbations when the perturbation types are either
normal distribution or zeroing, and the target layers are either
a convolutional or linear layer.

As an initial step, we begin by randomly zeroing 20% of
the nodes in each layer of the network. This perturbation
resulted in a performance drop to approximately 84% in
the worst-case scenario, representing about a 2% decrease.
While this decline in performance is not substantial, it could
potentially be a strategy employed by attackers to activate a
Trojan. Consequently, periodic checks of the neural network
structure against the trained model might yield misleading
results. However, our analysis of the EM signals indicates
that these perturbations affect the signals locally and can be
detected by analyzing the emanated signals.

(a) Perturbation on Fully Connected 3.

(b) Perturbation on Fully Connected 4.

(c) Perturbation on Fully Connected 5.

Fig. 3: Linear layer perturbation by zeroing out 10% of the
nodes in the layers randomly.

An example of the signals captured from both the benign
and compromised states of the system is presented in Fig.
3, specifically for the linear layers. We chose to illustrate
the results using linear layers as they are straightforward to
explain; however, similar behavior has been observed in other
layers as well. In the figure, we perturbed the last three linear
layers sequentially and provided two types of signals for each:
a processed signal captured when 1) the system is benign, and
2) the system is perturbed. We observe that the deviations in
the signal are localized to the perturbed layers, indicating that
the effects of the perturbations are confined and do not impact
the remainder of the signals.

The signals discussed are generated using several signal pro-
cessing techniques, as the EM signals captured from devices
like Software Defined Radios (SDRs) are inherently complex-
valued. To refine these signals for analysis, we undertake the
following processing steps:

• SDRs capture downconverted signals at high frequencies,
which are inherently complex. The first step involves tak-



ing the magnitude of these complex samples. Following
this, we apply a uniform filter to the magnitudes. The goal
is to enhance the signal-to-noise ratio (SNR) for improved
visualization and analysis by smoothing the signal.

• To reduce computational complexity, we downsample
the smoothed signal. Given the high sampling rates of
SDRs, which can handle millions of samples per second,
downsampling is crucial, especially if signal monitoring
needs to be cost-effective on less powerful computing
devices.

• As the final step, we normalize the downsampled signal
vector to have zero mean and unit power. This standard-
ization is essential for comparing signals in a consistent
way.

After applying these steps, we observed some differences
throughout the signals; however, the most significant differ-
ences occur at the end of the signals, where the linear layers
are located. Additionally, we noted that the deviation length
of the signals correlates with the size of the respective layer.
For instance, Fully Connected 3 takes longer to execute than
Fully Connected 4 because it has a larger number of weights,
whereas Fully Connected 5 takes the shortest time since it has
fewer nodes than the previous two layers.

(a) Perturbation on Conv 1.

(b) Perturbation on Conv 3.

Fig. 4: Convolutional layer perturbation with a normal distri-
bution and selecting 10% of the nodes in the layers randomly.

After our initial investigation, we proceeded to examine
perturbations using samples from a normal distribution. In-
stead of targeting the entire network, we focused on specific
nodes within a single layer. Following this adjustment, the
accuracy of the neural network dropped to 50% in the worst-
case scenario. This significant decrease in performance could
potentially be detected by monitoring the network’s perfor-
mance using evaluation data. However, given the continuous

operation of the network, such regular monitoring could be
prohibitively costly. Consequently, implementing air-gapped
monitoring could offer a more cost-effective and efficient
alternative.

Our main observation from this investigation is that, com-
pared to zero-out perturbation, perturbations based on a normal
distribution affect the received signals more broadly. Although
the signals before the perturbed layer resemble those of their
benign counterparts, significant differences emerge in the
subsequent signals. This contrast is particularly apparent in
the convolutional layers, which are typically the initial layers
in a neural network system. For illustration, signals from both
benign and compromised networks, specifically from layers
Conv 1 and Conv 3, are presented in Fig. 4. In these cases,
20% of the nodes in the corresponding layer were perturbed.
The effects of these perturbations are much broader and more
dispersed than expected, indicating that the differences in the
signals are spread rather than localized to specific positions.
Consequently, we can infer that perturbations in the initial
layers are more detectable than those in the last layers.

IV. EXPERIMENTAL RESULTS & DISCUSSION

To demonstrate that EM-based monitoring frameworks can
effectively identify weight perturbations, fault injections, and
other anomalies, we conducted multiple experiments using
different distributions. For these experiments, we employed a
near-field electric-field probe [22], an ETTUS SDR [23], and a
laptop that receives and processes signals transmitted from the
SDR. After training, we saved a copy of the trained model.
This model was either used directly or perturbed randomly
with specified parameters such as the perturbation ratio and
the layer to be perturbed. Once the final model configuration
was established, we began collecting signals by querying
test images on the neural network. Our experiments were
conducted on two GPUs: the Nvidia Quadro P400 [24] and
the GT710 [25].

(a) Nvidia Quadro P400. (b) Nvidia GT710.

Fig. 5: Experimental setups to monitor neural network activity.

The setup for the experiments is illustrated in Fig. 5. Since
the rear sides of the GPUs lack heatsinks, we have found that
these areas are optimal for collecting EM signals as closely as
possible to achieve a high SNR. The center frequency for the
measurements is set to 50 MHz, and the batch size is set to
20. To validate our previous observations, we captured more
than a thousand signals over several days.



Once the signals are collected, we first apply the normaliza-
tion and dimensionality reduction method described in Section
III. After this initial processing, the next step involves aligning
and comparing the distances between the test signals and the
training signals. Alignment is achieved by ensuring that the
correlation coefficient exceeds a specific threshold, which is
determined during the evaluation stage. This threshold must
be chosen carefully to accurately capture neural network
activity, even when the network is compromised, as it is
essential to differentiate between the system’s idle and active
states. This differentiation can be efficiently accomplished by
capturing signals while the GPUs are idle. Once GPU activity
is confirmed, the framework will then calculate the distance
between signals. This selective calculation reduces the number
of comparison operations, hence, minimizing latency.

The performance of the framework is illustrated in Fig. 6,
which displays ROC curves for various perturbation distribu-
tions. These curves represent the average of the ROC curves
generated from experiments conducted with each GPU. The
legend in the figure is formatted as follows: <distribution
type><layer no><layer type><perturbation rate>. In our
experiments, the distribution type includes zero, normal, and
uniform distributions. The layer type is indicated as CL for
convolutional layers and LL for linear layers. For instance, the
label zero2CL5 indicates that 5% of the nodes in the second
convolutional layer, selected randomly, have been set to zero.

In Fig. 6a, we observe that small zero-out perturbation
ratios are insufficient for the EM-based algorithm to detect
perturbations effectively. However, as the perturbation rate
increases, the deviation in EM signals becomes more apparent,
aiding the monitoring system in identifying anomalies. In the
case of linear layers, perturbations are detectable even at low
rates, which can be attributed to the greater number of nodes
affected. Conversely, the kernel weights in convolutional layers
are smaller, resulting in lesser deviations. On the other hand,
perturbations based on a normal distribution consistently im-
pact performance, as illustrated in Figures 6c and 6b. Although
the area under the ROC curve decreases for linear layers, it
significantly increases for convolutional layers, reflecting the
broader impact of this type of perturbation. Finally, we also
explore the effects of uniform distribution-based perturbations
in Fig. 6d. Presented as an example of bounded perturbations,
this approach yields performance that lies between the zero-
out and normal distribution perturbations.

As part of our final experiments, we sought to determine
whether the patterns observed in AlexNet are generalizable
to other architectures. To this end, we conducted similar ex-
periments using ResNet [26], a well-known image recognition
framework that utilizes residual connections. Our observations
confirmed similar behaviors to those previously noted with
AlexNet. For example, the signal patterns from these exper-
iments, as illustrated in Fig. 7, demonstrate a local effect
on the received signals. This was expected, as the zero-out
perturbation was applied to consecutive convolutional layers,
resulting in signal distortions that appeared in a consecutive
and localized manner.

(a) Zero-out perturbation.

(b) Linear layer perturbation with a normal distribution.

(c) Convolutional layer perturbation with a normal distribution.

(d) Perturbation with an uniform distribution.

Fig. 6: ROC performance of the EM based detection system
across different perturbation schemes.

Overall, we can summarize our findings as follows:

• While zero-out perturbation minimally affects the perfor-
mance of the neural network, perturbation with a normal
distribution significantly alters its performance.

• Zero-out perturbation impacts the emanated EM signals
locally, whereas normal-distribution-based perturbation
has a broader effect on the received signals.

• Both perturbation techniques can be detected by analyz-
ing the received EM signals, even with simple processing
algorithms, as the deviations in the signals are significant.



(a) Perturbation on Block2-Conv1.

(b) Perturbation on Block2-Conv2.

Fig. 7: Convolutional layer perturbation with a normal distri-
bution and selecting 10% of the nodes in the layers of the
second block of ResNet randomly.

V. CONCLUSION

In this paper, we investigate the impact of perturbing the
neural network with different distributions on the resultant
EM signals. Our goal is to demonstrate that EM-based mon-
itoring systems could offer increased resilience, as they are
capable of detecting deviations caused by various perturbation
distributions. Although covering all potential distributions for
weight poisoning is unfeasible, our results with zero-out
and normal distributions demonstrate the potential of these
side channels in detecting threats such as fault injection and
weight poisoning. Furthermore, we reveal that the cumulative
effect of perturbations changes depending on the distribution
used, thereby affecting the sensitivity of EM-based monitoring
systems. This indicates that more sophisticated perturbation
distributions could be designed to minimize detectable signal
differences within confidence intervals. Consequently, while
EM-based monitoring may not be the singular solution, it
significantly enhances system robustness.
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