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Abstract—As cyber threats become more advanced and preva-
lent, network operators use a variety of tools and techniques to
detect and defend against these attacks. Due to the importance
of the domain name system or DNS in almost all internet
communications, security controls that are based on DNS are
often used by network operators as a first line defense to detect
and block malicious network traffic. In this work we present
how DNS data can be augmented by combining it with its
corresponding network traffic data that is often collected from a
different point in the network. This will allow operators to exactly
identify hosts within the network that have resolved malicious
domains and can identify exactly how much communication
happened with the malicious domain. Both of these are not
possible using only the passive DNS data that is collected from
the network. In this paper we demonstrate this process using
DNS data and network traffic data collected from a university
network. To this aim, we first identify and measure clock offset
between the two datasets. After accounting for the clock offset,
we identify traffic to malicious domains by augmenting the DNS
data with network traffic data. Furthermore, we do an in-depth
analysis to identify the type of malice of the malicious domains
which we identified in the data.

Index Terms—DNS, Malicious Traffic, NetFlow

I. INTRODUCTION

Cyber threats are becoming more sophisticated and
widespread today. These include malware, phishing, ran-
somware, advanced persistent threats (APTs) etc., which can
cause significant damage to individuals and organization’s
cyber assets. Hence organizations employ a variety of tools
and techniques deployed at various points across their network
to detect and defend against such cyber threats. Network
operators also monitor and collect various types of network
data for further analysis.

Among the various tools used by network operators to
protect their networks, one of the most important is the
suite of security measures that leverage the Domain Name
System (DNS). DNS is a critical component of the internet
which is used to convert human-readable domains names to
IP addresses. Since most of the activities on the internet starts
with a DNS request, network operators use this as a effective
first line defense in detecting and blocking communication
with malicious entities.
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Applications send DNS requests to DNS recursive servers
provided by the network which resolves the request. Network
operators use this as a bottle-neck to monitor and block
communication to potentially malicious entities and for policy
enforcement. In addition to real-time monitoring, organizations
often collect this DNS data for further analysis and auditing
purposes as well. It is common practice for DNS data to be
collected from above the recursive server. While collecting
DNS data in this manner provide storage efficiency, we lose
information about the exact hosts within the network that sent
the DNS request. This is because above the recursive every
DNS request is sent by the recursive itself.

In this work we demonstrate how we can augment this DNS
data collected from a network with the network traffic data
from the same network. This approach is novel compared to
traditional DNS-based security measures, as it offers network
operators deeper insights by pinpointing the exact host that
resolved a malicious domain and determining the precise
volume of traffic sent to it. We do this using the DNS and
network data collected from a university network. Often in
large networks DNS data and network traffic data are collected
from different points in the network. So it is common to have
clock synchronization issues between the two data collection
points. Hence we first measure and correct any potential clock
offset between these two datasets before correlating DNS data
with its corresponding network traffic.

The contributions of this paper are as follows:

o Using the DNS data and network traffic data collected
from a university, we present a technique to identify and
measure the clock offset between the two data collection
points.

o After correcting the clock offset, we demonstrate how
DNS data can be augmented with network traffic data to
identify the exact hosts that resolved malicious domains
and the amount of traffic that was sent to these domains.

o We carried out an in-depth analysis to identify the nature
of malice of the malicious domains that we identified in
our data.

II. BACKGROUND

This section provides an overview of some of the key
concepts relevant to this paper.



A. NetFlow

NetFlow is a widely used standard developed by Cisco for
summarizing traffic between two IPs [1]. Each flow represents
the packets send from a source IP to a destination IP that
share some common characteristics. In our case, each flow is
a summary of all the packets that have the same source and
destination IP address, port number and protocol. The flow
also keeps track of the number of packets and total bytes sent.
Usually on enterprise networks NetFlow is enabled on network
devices like switches and routers to collect network traffic
data. While raw network packets can provide more granular
information and details, network operators often prefer col-
lecting NetFlow as opposed to raw packets as NetFlow has a
significantly smaller storage footprint. NetFlow data is used
for a wide variety of applications including, but not limited
to, network monitoring, traffic analysis, intrusion detection,
network behavioral analysis etc.

B. Domain Name System

The Domain Name System or DNS is one of the most
fundamental component of today’s internet. DNS is primarily
used to translate or resolve user-readable domain names to
IP addresses. DNS has become a crucial component of the
internet since most of the resources on the internet today are
accessed using domain names. Hence most of the communi-
cations online start with a DNS resolution.

Typically, to resolve a domain name the DNS client on a
user device sends a DNS request to a DNS recursive resolver
in the network. The DNS request contains a gname field which
is the domain name the client needs to resolve, say foo.com for
example. When a recursive resolver receives a DNS request it
first checks its cache to see if it already have the response for
the request. If it is not available, the recursive handles the name
resolution on behalf of the client by iteratively sending DNS
request from itself to a series of DNS servers. The resolver first
queries the DNS root name server which will respond with the
IP address of the Top Level Domain (TLD) DNS server which
is .com TLD in our case. The resolver then sends a request to
the .com TLD server which then responds with the IP address
of the nameserver of foo.com. Finally, the recursive resolver
sends a query to the nameserver of foo.com which will return
the IP address of foo.com. The resolver will then return this
IP address to the DNS client that send the DNS query.

DNS responses are in the form of resource records. Every
record will have an rtype field which specifies the type of value
that is contained in the rdata field. Type A record indicates
that the rdata field contains an IPv4 addresses and type AAAA
record indicates that the rdata field contains an IPv6 addresses.
Another important field in the resource record is the time-to-
live field or #7l. This specifies how long each record is valid
for.

Once a resolver resolves a domain the response is cached
for the duration specified in #l. Any subsequent queries to
the same domain name during this time period will be served
directly from the cache by the resolver without further queries
to any DNS servers. Caching of DNS responses happen on the
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Fig. 1. Local DNS recursive servers in enterprise networks are often

configured to sinkhole DNS requests to malicious domains thereby preventing
communication.

client side at the OS level and application level as well [2].
Once the user application have the IP address of the domain
name it can establish communication with the online resource.

C. DNS Based Security Controls

Since a DNS resolution is the starting point of most of
the communication online, it provides an ideal bottleneck to
monitor network communications and to enforce security poli-
cies. Hence, devices on large enterprise networks are typically
configured to use the local DNS recursive servers within the
network which are under the control of the organization’s
network operators instead of external recursive servers. The
operators will configure these servers to identify potentially
malicious DNS requests and will block such requests thereby
preventing further communications with a malicious entity
(Figure 1).

1) Collecting Passive DNS Data: Passive DNS data is
the collection of DNS requests and responses observed in
a network. Usually it is collected from a point above the
recursive or from a point below the recursive. Collecting DNS
data from a point below the recursive means logging every
single DNS request and response in the network. Here the
source address of each request will be the exact device that
send the request and the destination will be the IP address of
the recursive DNS server in the network to which the device
send the request to and vice-versa for the responses. When the
DNS data is collected from a point above the recursive, data is
logged only when there is a cache miss at the DNS recursive.
Here all the request originate from the DNS recursive servers
in the network.
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Fig. 2. A representation of an enterprise network. These networks often have
its own local DNS recursive servers where DNS is monitored. The DNS data is
collected from the recursive server and the NetFlow is collected from various
network monitoring points.

While collecting DNS data from below the recursive is the
more granular and comprehensive approach, the data volume
is too high to be practical. For example, if the DNS data is
collected from above the recursive, the response of a domain
example.com with a ttl of 60 minutes will be logged only once
in 60 minutes when the first device in the network resolved
it. In the following 60 minutes every subsequent request for
example.com will the served from the cache. Depending on the
size of the network there could be dozens or even hundreds
of requests for a given domain that will be served from the
cache. Collecting the DNS data from below the recursive will
require logging all these request making it impractical. While
this will provide exact information about all the devices that
resolved a given domain, network operators prefer collecting
the data from above the recursive due to its manageable size.
Additionally, in [3], the authors talks about the preference to
collect the DNS data from above the recursive as it protects
end user privacy.

D. Augmenting DNS data with NetFlow Data

As mentioned before, DNS data is usually collected from
points above the recursive. This comes at the cost of losing
information regarding the exact device(s) that resolved a
particular domain. This is because from a collection point
above the recursive, every request is sent by the recursive itself
on the behalf of the devices in the network that originally sent
the DNS requests. Hence during an analysis when a network
operator needs to identify the exact device that tried to resolve
a malicious domain, we need to enrich the DNS data with the
network data.

As shown in Figure 2, in large networks it is common for
network data and DNS data to be collected from different
points. Usually network data is collected from edge routers as
flows and DNS data is collected at the recursive as mentioned
before. So enriching DNS data with network data required
combining two related but disjoint datasets. When combining
two datasets like these it is important to ensure that there
is no clock offset between the two datasets. In our case
synchronization issues between netflow collection and DNS
collection can lead to inaccuracies.

Let us recall that every flow (which is the representation
of the communication between two devices) is preceded by
a DNS resolution and that each resolution will have time
interval in which it is valid. Every flow have a timestamp
which is the timestamp of the first packet in that flow. Hence,
ideally the timestamp of every flow should fall within the
valid time interval of its corresponding DNS resolution. In
this paper we call these valid flows. But due to clock offsets
in data collection sometimes we see flows with timestamps
before or after the valid duration of its corresponding DNS
resolution. We call such flows preceding flows and trailing
flows respectively. In this paper we observe these flows to
measure the clock offset between our two datasets so that it
can be corrected for accurate results.

III. RELATED WORK

Various work have shown different applications of DNS
data and Netflow data. Maghsoudlou et. al. [4] developed and
deployed a system that can correlate netflow and DNS data
in real time on data from a European ISP. They used this
technique primarily for network planning purposes and also
to identify traffic to malformed domains. The authors in [5]
studied over 1.6 trillion DNS transactions to characterize DNS
deployments and traffic patterns. Khalil et. al. took advantage
of the dynamic nature and associations among malicious
domains to identify more malicious domains from a set of
existing known ones using passive DNS data [6]. Similarly
passive DNS data was used by Bilge et. al. in [7] to detect
malicious domains by extracting various features from DNS
traffic which helps in characterizing their properties. Many
works have also shown how passive DNS data can be used to
detect internet abuse [8] and other suspicious internet traffic
[9].

NetFlow data have also been used for various security
applications [10] like intrusion detection [11] and for studying
traffic patterns [12]. There is a rich body of academic literature
on DNS based security. This includes various security controls
that can be implemented using DNS [13], [14] and also
controls ensuring the integrity of the DNS infrastructure itself
[15], [16].

IV. DATASET AND METHODOLOGY

In this section we talk about the different datasets used in
this paper and the methodology we used to link the network
traffic data with its corresponding DNS resolutions.

A. Dataset

For this paper we used the network traffic data and DNS
data collected from an American university network from 1
May 2023 to 31 May 2023. Passive DNS data is collected
from points above the various DNS recursive servers located
in the network. In our DNS data, each day on average we had
approximately 265M DNS responses.

The network traffic data is collected in the NetFlow format
by the IT department using various sensors located throughout
the university network. It is well known that real world
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Fig. 3. Visual representation of our methodology. We process Passive DNS
and NetFlow data in four steps and we integrate a domain name block-list.

network data is extremely noisy. Additionally, since we are
using DNS data collected locally from our network we need
to limit the scope of our analysis to network traffic from our
own network. To achieve this, we first used various filters to
filter out the noise from the network data and also removed all
the incoming traffic. After this data sanitization step we are
left with approximately 2.22M flows on average each day.

Finally, to identify malicious domains, we used the Multi
ULTIMATE DNS blocklist from [17]. This list is compiled
from over 400 sources and includes mroe than 622,000
domains associated with Ads, Affiliate, Tracking, Metrics,
Telemetry, Phishing, Malware, Scam, Free Hoster, Fake, Coins
etc.

B. Methodology

Our methodology consists of two distinct processes that help
prepare the data before we correlate it. As mentioned earlier,
identifying traffic and corresponding DNS requests may be
cumbersome, especially as data grows, hence, we are following
the process outlined below to increase our accuracy.

In order to combine the DNS and NetFlow data together, we
need to first transform the raw data into structures that can be

performant in the scale of hundreds of millions of events per
day. Therefore, we first convert the raw DNS data into key-
value pairs, where we retain only relevant data points that will
help us later. These include the domain names, the IP addresses
each domain name points to, and the valid time intervals of
the resolutions. This will make identifying the associated DN'S
resolutions for each of the flows faster and more efficient. Then
we follow a four step process to first measure clock offset and
then identify traffic to malicious domains as shown in Figure 3.

The first step is to combine the NetFlow data with the DNS
data to measure potential clock offset. We process data on a
daily basis, to correlate the DNS data with the NetFlow data.
For each network communication event (network flow) in a
given day, we pivot into the DNS key-value store for that same
day, to identify the domains that have pointed to the remote
side of the communication event (remote IP address, as not the
local network IP). In most cases that would suffice to merge
the DNS and NetFlow data. However, we have identified
several cases in our data where a domain resolution may have
been cached or used by a system for more than 24 hours. This
case would affect the way we perform the merger, creating
more flows that do not have an associated communication
event. We solve this problem by increasing the time window
we are working with to the previous day of the communication
event. After correlating the DNS data with the NetFlow data,
we can classify the flows with a corresponding domain name
resolution into three categories. Flows that started within the
valid time interval of a resolution are termed valid flows.
Preceding flows (preceding traffic) are those that occur before
the associated domain resolution, while trailing traffic refers
to the traffic that occurs after a resolution has expired.

The next step is to accurately measure the time difference
between the valid interval of the DNS resolution and the
timestamp of the communication event in the case of preceding
and trailing flows as these could potentially be caused by clock
offset between the two datasets. Aggregating the data allows
us to get a better understanding of the underlying distributions.
To this aim we compile this time delta data together and plot
a cumulative distribution function graph or a CDF graph. This
will show us the cumulative probabilities associated with a
variable which in our case is the time delta. Figure 4 (left)
shows the CDF of the time delta in the preceding and trailing
traffic.

The high cumulative probability for the lower values of time
delta for the preceding traffic shows a clear trend. Focusing
more on this region in Figure 4 (right) clearly shows a clock
offset of 3 second or less between the NetFlow data and DNS
data for 70% of the preceding traffic. Thus we are able to
exactly measure the clock offset.

Once we have successfully measured and corrected the
clock offset between the two datasets, we are able to start
working towards identifying malicious flows. We assemble
the lists mentioned earlier into one block-list, which we can
now correlate with the DNS data. At this point, we have
identified malicious domains which we can then attribute to
communication events.
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Fig. 4. Clock offset distribution between DNS and NetFlow data.

Therefore, at the final step, we take advantage of the
block-lists that include IP addresses and the IP addresses we
identified as related to malicious domains in the previous step,
and annotate the network communication events. Hence, we
now have flows that we know are related to malicious activity.
In the following section we present our findings and will take
a closer look to identify the type of malware the malicious
domains we identified in our data are associated with.

V. RESULTS

Using the methodology described in the previous section,
out of the 2.22M flows each day we were able to correlate
88.62% of flows with a corresponding DNS resolution. Using
the DNS blocklist we were able to identify traffic to 8176
unique malicious domain from the entire dataset. A total of
over 2.7M flows in the dataset were traffic to these malicious
domains and this traffic was generated by 609 hosts in the
network.

A. Identifying the Nature of Malice

To get a better understanding of the exact nature of these
malicious domains we identified in out data we used the
online service VirusTotal. The VirusTotal API lets users query
files, domain names, IP addresses, etc. and get analysis report
which include threat reputation and analysis details produced
by over 70 antivirus products and other security tools and
datasets. We used the VirusTotal domain API endpoint to get
the communicating_files relationship of these 8,176 malicious
domains that we found in our results. This will return a list
with the details of all the files that have been reported to
communicate with these domains.

Among other details for each file, the API returns the
number of votes each file got from the security community
reporting it as malicious. Out of the 8,176 malicious domains
we queried, 527 domains had at least one malicious communi-
cating file. In total we identified 3,917 unique malicious files
that communicated with these 527 domains. Similar to the way
we queried the domain endpoint to identify the files that are
associated with the malicious domains we queried the files
endpoint to get the report for each of the 3,917 malicious

TABLE 1
TAGS GIVEN TO FILES BY SANDBOXES INDICATING THE TYPE OF

MALWARE
Malware Type Count
TROJAN 755
EVADER 701
STEALER 234
RANSOM 179
RAT 114
SPREADER 111
PHISHING 72
GREYWARE 59
EXPLOIT 57
ADWARE 42
BANKER 24

communicating files. This endpoint provides other data points
around the file queried, including the malware_classification
field. The malware_classification field includes tags in the
value that help us identify the type of malware each file is
associated with. VirusTotal assigns these tags based on the
behaviour observed during sandbox execution of the files. Note
that identifying the exact malice nature of every file is difficult.
In that case VirusTotal gives them generic classifications like
“malware” or “unknown”. The different types of malware
classification tags we observed in the data are shown in Table I.

As shown in the table the top three malware type tags that
we identified are trojans, evaders and stealer malware. Trojans
are malware that are disguised as legitimate software. Users
are tricked into opening them thereby loading and executing
the malware on their device [18]. Some malware perform
evasive tactics when it detects that it is being run in a sandbox.
When sandboxes detect such evasive behaviour these files are
labeled as evaders. Stealers are malware that are designed to
target and exfiltrate data. Stealers commonly target data like
browser data, banking data, system information etc.

VI. DISCUSSION

If our technique is implemented in real-time traffic, on a
network that already use DNS based security controls, DNS



requests to malicious domains are sink-holed thereby prevent-
ing any further communication. In this scenario the benefit
this technique provide is to identify the potentially infected
host that tried to resolve a malicious domain. On the other
hand network operators often carryout forensic investigation
on networks to identify hosts that communicated to malicious
domains that were only identified as malicious at a later
stage. An example for this are stealthy attacks from advanced
persistent threats or APTs where the indicators of compromise
like domain names are only identified weeks after the attack.
In this case, the idea of combining network traffic data with
DNS data is especially powerful as it can exactly identify the
host that tried to resolve the malicious domain and also get
details of exactly how much data was transferred. In these
scenario since the domain is reported as malicious only at a
later stage, the DNS based detector employed in the network
will not be able to sinkhole the DNS request and host will be
able to communicate with malicious domains.

In this work we were able to measure clock offset based on
preceding flows. While clock offset can also cause trailing
flows, we also note that trailing flows can also be cause
by recursive servers or by applications not honouring the #]
associated with each resource record.

VII. CONCLUSION

In this paper, we demonstrated how augmenting DNS data
with NetFlow data can significantly enhance network opera-
tors’ ability to identify precise details of traffic to malicious
domains. Our study involved collecting and analyzing datasets
from a university network over one month. The process began
with identifying and measuring the clock offset between the
two datasets, a critical step given the common clock syn-
chronization issues in large networks. This alignment ensured
accurate correlation of DNS queries with the corresponding
network traffic data.

Through this augmented analysis, we successfully pin-
pointed the exact hosts within the network that resolved ma-
licious domains and quantified the volume of communication
with these domains. This level of detail is unattainable using
passive DNS data alone, which lacks host-specific information
due to the aggregation at the recursive server level.

Furthermore, after identifying traffic directed to malicious
domains, we utilized VirusTotal for an in-depth analysis to
ascertain the nature of the threats posed by these domains.
This comprehensive examination revealed that trojans, evaders,
and stealer malware were the predominant types of malware
associated with the malicious domains detected in our dataset.
Such detailed threat classification is invaluable for network
operators, as it informs more targeted and effective defensive
measures.

The methodology and findings presented in this paper
underscore the enhanced security insights that can be achieved
through the integration of DNS and network traffic data. By
addressing clock synchronization issues and leveraging both
data types, network operators can significantly improve their
detection and response capabilities against sophisticated cyber

threats. Our approach provides a robust framework for real-
time and retrospective security analysis, thereby bolstering an
organization’s overall cybersecurity posture.
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