
UCBlocker: Unwanted Call Blocking Using Anonymous Authentication

Changlai Du
Virginia Tech
cdu@vt.edu

Hexuan Yu
Virginia Tech

hexuanyu@vt.edu

Yang Xiao
University of Kentucky

xiaoy@uky.edu

Y. Thomas Hou
Virginia Tech
thou@vt.edu

Angelos D. Keromytis
Georgia Institute of Technology

angelos@gatech.edu

Wenjing Lou
Virginia Tech
wjlou@vt.edu

Abstract
Telephone users are receiving more and more unwanted

calls including spam and scam calls because of the transfer-
without-verification nature of global telephone networks,
which allows anyone to call any other numbers. To avoid
unwanted calls, telephone users often ignore or block all in-
coming calls from unknown numbers, resulting in the missing
of legitimate calls from new callers. This paper takes an end-
to-end perspective to present a solution to block unwanted
calls while allowing users to define the policies of acceptable
calls. The proposed solution involves a new infrastructure
based on anonymous credentials, which enables anonymous
caller authentication and policy definition. Our design de-
couples caller authentication and call session initiation and
introduces a verification code to interface and bind the two
processes. This design minimizes changes to telephone net-
works, reduces latency to call initiation, and eliminates the
need for a call-time data channel. A prototype of the system
is implemented to evaluate its feasibility.

1 Introduction

Telephony systems, which enable individuals to place phone
calls to any phone number, have seen significant success over
the past century. At that time, people used to answer the
phone when it rang, and expect that their calls to others would
also be answered. However, phone calling has declined in
popularity in recent years. People are less reliant on phone
calls, and they are stopping answering calls from unknown
numbers. The expectation of pickup as a core aspect of the
telephone culture is disappearing. This trend is evidenced
by the polls conducted by the New York Times for the 2018
Midterm Elections [1], in which over 2.82 million phone calls
were made across the US to the callees who didn’t know the
call was from NYT for a poll. Only 1.71% of the calls were
answered.

There are several reasons why people are not willing to pick
up unknown calls. One reason is that people have become

accustomed to communicating through alternative methods,
such as messaging apps and social media, which are perceived
as less intrusive and do not require an immediate response.
Another key reason is the increasing prevalence of spam and
scam calls. Similar to email spam, spam calls are a type of
unwanted calls made to a large number of people at once.
Scam calls, on the other hand, are calls with the intention of
tricking or defrauding the callee in order to obtain personal or
financial information. According to a report by Truecaller [2],
Americans received an average of 20 spam calls per month in
2022, which amounts to approximately 8 billion spam calls
per month, and an estimated $39.5 billion was lost to phone
scams in 2022 in the US.

Two main technical factors have contributed to the ram-
pancy of spam and scam calls—the growth of Voice over
Internet Protocol (VoIP) usage and caller ID spoofing. VoIP
technology, which gained widespread popularity in the mid-
2000s, allows spammers to use auto dialers (often referred to
as robocalls) to make mass spam calls at low costs, as cheap
as $0.01 per minute [3]. Additionally, VoIP enables individ-
uals to evade prosecution for spamming and scamming by
making calls across jurisdictional lines. Caller ID spoofing
involves altering the caller ID information (phone number
and/or name) in signaling messages, allowing the caller to
impersonate others, like government agencies, businesses, the
callee’s neighbors, or even the callee’s contacts. According
to a study by Tu et al. [4], users are more likely to pick up
on spoofed calls if the caller ID has been carefully altered to
appear legitimate.

There have been various attempts by governments, busi-
nesses, and academic communities to address the problem
of spam and scam calls [5–19]. However, these efforts have
their own limitations. Some need to trade away usability
considerably by disturbing the callee too much, introducing
significant delays, or disabling legitimate incoming calls from
unknown numbers altogether. Some are hard to deploy due
to the required significant upgrades to the network infras-
tructure. Others are not robust because of caller ID spoofing
attacks. Readers are referred to [3] for a comprehensive sur-

vey on these solutions. Despite these efforts, the volume of
spam calls remains high and has not declined [2], indicating
that these solutions are not sufficient to effectively solve the
problem.

In this paper, we present UCBlocker, an end-to-end un-
wanted call blocking system that makes minimal changes
to the existing telephone networks and calling process.
UCBlocker allows the callee to authenticate the caller based
on the caller’s attributes. We use anonymous credentials
(ACs) for caller authentication. Before making a phone call,
the caller is required to provide proof of certain attributes
in her identity which satisfy the callee’s pre-defined poli-
cies. The callee will issue a verification code to the caller
if the authentication is successfully completed, which is in-
spired by two-factor authentication used by many web ser-
vices. UCBlocker binds the authentication over data channel
to the call session in telephone networks using this verifica-
tion code. We explore possible methods of transmitting the
code through telephone networks and find that re-purposing
the caller ID for carrying the code poses a novel and efficient
option. The callee checks the verification code to determine
if the call is pre-authenticated.

Compared to previous designs, UCBlocker has several ad-
vantages in usability, deployability and robustness. First, it
is user-centric and user-controlled. The callee defines what
(rather than which) phone calls are wanted using attribute-
based policies (rather than the caller ID), which enables in-
coming calls from legitimate unknown numbers. Second,
the end-to-end caller authorization can be implemented as a
separate application and Internet service, complementing the
calling function, which requires minimal changes to the tele-
phone networks. Third, the process of caller authentication
(to acquire the verification code) and call session setup can be
decoupled, which introduces minimal delays to call initiation.

We make the following contributions:

• We design a new unwanted call blocking architecture
named UCBlocker, which allows the callee to set up
authentication policies and anonymously authenticate
the caller using attributes of caller’s identities based on
anonymous credentials. Our design enables legitimate
unknown incoming calls, requires minimal changes to
the telephone networks, and introduces negligible delays
to the call setup process.

• We explore the options of binding the anonymous authen-
tication results with call sessions and evaluate their fea-
sibility in telephone networks. We find that re-purposing
the caller ID header field in signaling messages to trans-
mit the verification code is promising in that it does not
require any change to the signaling protocols in the tele-
phone networks, which relieves the network operators
of caller ID attestation.

• We implement a prototype of UCBlocker and evaluate

the feasibility and performance of the system. We mea-
sure the time cost of caller authentication. The result
show that code verification delay is negligible. For con-
secutive calls after the authentication, the additional la-
tency of the authentication process is about 1.5s.

With UCBlocker, we aim to address the issue of unwanted
calls from the perspective of the callee. Functionally, our
design will: 1) allow calls from the callee’s contacts with
minimal disruption; 2) allow unknown but callee-defined wel-
come calls to reach the callee; and 3) effectively block all
unwanted calls out of the callee’s preferences. Considering
the numerous advantages for consumers including enhanced
fraud protection, reduced disturbance and frustration, and less
wasted time, as well as benefits to businesses and governments
such as increasing the likelihood of customer engagement and
enhancing trust, we hope UCBlocker will rebuild trust in
telephone networks and revitalize the use of phone calls.

The rest of this paper is organized as follows. Section 2 pro-
vides background information about the telephone networks
and anonymous credentials. Section 3 describes the overview
of our design, including the system model, adversary assump-
tions, design requirements, and some use cases. Section 4
formally specify the design of the authentication protocols
based on anonymous credentials. Section 5 describes the bind-
ing of authentication and call session as well as its security
discussion. Section 6 provides details of our implementa-
tion and the results of our evaluation experiments. Section 7
makes some clarification discussion. Section 8 compares our
work with related work and Section 9 concludes the paper.

2 Background

This section provides a brief introduction to the telephone
network architecture and the anonymous credential concepts.

2.1 Modern Telephone Networks
The global telephone network is a system that connects var-
ious types of telecommunication networks, including Pub-
lic Switched Telephone Networks (PSTN), mobile cellular
networks, and Voice over Internet Protocol (VoIP) networks.
These networks are connected through gateways located at
their boundaries. In a VoIP network, IP devices are connected
to a Private Branch Exchange (PBX), which can routes phone
calls over IP networks. In order to make phone calls to PSTN
landlines and mobile phones on cellular networks, the PBX
must be connected to a VoIP service provider that offers trunk-
ing services though an IP/PSTN gateway.

In order to initiate and terminate a phone call, a control
channel is used for signaling and an end-to-end voice chan-
nel is used to transmit the voice data. There are various
protocols that are used for signaling, including Signaling Sys-
tem 7 (SS7) [20], Session Initiation Protocol (SIP) [21], and

H.323 [22]. Telephone service providers provide caller ID ser-
vices, which transmit the caller’s phone number and/or name
to the recipient so that they can identify the caller before an-
swering the call. In traditional PSTN and cellular networks,
the caller ID is generated and/or authenticated by the network.
However, in VoIP networks, the caller ID is generated on the
caller’s side which can be set to any value. Some VoIP service
providers even offer call ID spoofing as a featured service.
The low cost and capability to set arbitrary caller IDs make
VoIP networks a common location to start telephone spam
and scams.

2.2 Anonymous Credentials

Attribute-based authentication. Anonymous Credential
systems [23, 24] allow users to prove their identities satis-
fying certain properties without revealing the identity details.
This type of authentication provides increased privacy, as only
the necessary attributes are leaked, rather than the user’s full
identity. In advanced systems, predicates can also be tested,
further reducing the amount of information leaked.

Roles. An anonymous credential system has three key play-
ers: the holder, issuer, and verifier. The holder holds one or
more credentials that correspond to their different identities.
The issuer creates and issues these credentials to the holder,
making assertions about their attributes. When the holder
wants to access a resource, they present their credentials to
the verifier anonymously. The verifier then checks the presen-
tations to determine if access should be granted.

Features. Anonymous credentials have four key features
that set them apart [25]. Selective Disclosure allows the cre-
dential holder to select which attributes to reveal to the verifier,
while keeping the rest private. Unlinkability randomizes the
issuer’s signature, preventing it from serving as a correlating
factor. Private Holder Binding binds the credential to the
holder without creating any information that needs to be re-
vealed during presentation. Predicates allow hidden values
to be used in operations with values provided by the verifier,
such as proving that a bank account balance is above a certain
threshold without revealing the exact balance.

W3C DID scheme. W3C has published standards for
Decentralized identifiers (DIDs) [26] and Verifiable Creden-
tials [27]. DIDs are a type of identifiers that enable verifiable
and decentralized digital identity. DIDs are generated by the
identifier owners. A DID can be resolved to a DID document
containing the public keys of the DID owner, which is stored
in a verifiable data registry like a distributed ledger. W3C
also defines the Verifiable Credential data model, which is a
set of claims about the holder that can cryptographically veri-
fied. Anonymous credentials, which provide anti-correlation
properties through technologies like zero-knowledge proofs,
are a type of verifiable credential.

The anonymous credential system is the main cryptography
building block of the design for UCBlocker, and W3C DID

scheme facilitates the discovery of the anonymous credential
services from telephone numbers.

3 UCBlocker Design

Telephone networks are becoming increasingly complex, es-
pecially with their convergence with the Internet. We will
omit the network details and use a simplified system model
to characterize UCBlocker as an end-to-end solution. We
present the system model, security assumptions, and our de-
sign overview in this section.

3.1 System Model
UCBlocker consists of two subsystems: the distributed anony-
mous authentication function over the Internet and the call
session initiation and verification function over the telephone
networks. The same entity has different roles in the two sub-
systems. Without loss of generality, we refer to Alice as the
caller/ credential holder, and Bob as the callee/verifier. We
also refer Alice and Bob to their devices or the UCBlocker ap-
plications installed on their devices (known as the user agents).
The devices must have some level of processing power in or-
der to support the installation of UCBlocker. Examples of
such devices include smartphones, VoIP phones, computers,
or smart devices connected to landline PSTN phones with
internet access. Alice and Bob have UCBlocker installed on
their devices and use it to initiate and answer phone calls.

In addition to Alice and Bob, there are other participants
involved in the distributed anonymous authentication system.
The issuer is responsible for issuing credentials to Alice,
which can be individuals who are direct contacts of Alice, or
organizations who have connections with Alice in real life as
defined in W3C [27]. In an ideal scenario where digital iden-
tity and anonymous credentials are ubiquitously deployed, an
issuer refers to any organization or entity that holds the respon-
sibility of issuing specific documents or credentials within a
particular context, and its identity can be publicly verified. For
example, the Department of Motor Vehicles (DMV) serves as
an issuer. Notably, digital driver’s licenses have already been
introduced in several US states, including Arizona, Colorado,
Maryland, and Georgia, and more states are also committed
to support the feature [28]. To facilitate the initial imple-
mentation of UCBlocker, a Mobile Virtual Network Operator
(MVNO) can act as an issuer to verify and assert the attributes
of UCBlocker users before the widespread deployment of the
AC infrastructure. This approach presents a valuable busi-
ness opportunity for an MVNO to attract security-conscious
customers who value UCBlocker’s capabilities. Alternatively,
UCBlocker is designed to allow third parties to assume inde-
pendent roles, such as that of an issuer or verifier, with the
possibility of receiving compensation from subscribers. The
public storage, implemented as a public ledger, provides se-
cure and trusted record-keeping and querying services. Bob’s

verifier is implemented as a service endpoint, which should
be always available for potential callers.

3.2 Adversary Model
We consider an adversary (Eve) who does not hold any valid
credentials that Bob accepts. As an attacker, Eve’s goal is
to make a successful phone call to Bob. In our call blocking
context, a phone call is successful as long as it reaches Bob,
regardless Bob answers the call or not. Eve may or may not
be a UCBlocker user. Eve may perform several attacks:

Attacks to authentication. Eve may intercept the com-
munication between the parties involved to acquire either the
anonymous credential during its issuance or the credential
presentation during its transmission. Eve may try to forge the
credential or replay the presentation to deceive the verifier to
issue her a verification code. Eve may eavesdrop the verifica-
tion code when it is distributed from the callee to the caller
and place a phone call using the code before Alice, which is
named code eavesdropping attack.

Attacks to call initiation. Eve may eavesdrop the verifi-
cation code when it is transmitted in the telephone system to
initiate the call. Eve may try to use the code to place another
call. If Eve places the call concurrently with Alice, we name
it race attack. Otherwise if Eve places the call at a later time,
we name it code replay attack.

The design of UCBlocker is based on the following security
assumptions. We assume that Eve is unable to break the
cryptography used in the anonymous credentials. Even if she
gets the credential, she can not construct valid presentations
without the holder’s private key. We also assume that both the
telephone and Internet service providers are trusted and will
follow their service protocols. The verification code works
as a one-time password so it is not susceptible to code replay
attacks, and we will discuss the code race attack in Section 5.4.
UCBlocker deals with the presentation replay attack and the
code eavesdropping attack in the design of the protocols.

3.3 Requirements
Given the adversary assumptions outlined above, UCBlocker
aims to achieve the following design goals.

Security. The unwanted call blocking system should guar-
antee that only calls that follow the callee’s policies can get
through to the callee. An adversary cannot bypass the verifi-
cation process to make disturbance to the callee.

Usability. The call blocking system should enable legiti-
mate calls from unknown numbers as long as the caller can
provide proof of holding accepted credentials. Additionally,
the system should be user-friendly and require minimal extra
effort from both the caller and the callee. For the callee, this
means that their only responsibilities would be creating poli-
cies and making any necessary updates. The caller may need
to interact with the call blocking system to select the required

attributes and authorize the disclosure of these attributes to
the callee for verification to obtain verification codes.

Compatibility. The call blocking system in UCBlocker
should make minimal changes to the telephone networks.
Modifying telephone networks can be both costly and time-
consuming.

Efficiency. The call blocking system should have minimal
computation and communication costs, so it does not add
significant delays to the original call session setup and can be
deployed on devices with limited resources.

3.4 Use Cases
There is a wide range of use cases of UCBlocker. We high-
light some common examples and explain how to use anony-
mous credentials in their implementation.

Bob accepts calls from his contacts only. In this simplest
use case, Bob can issue credentials to his contacts, indicating
their legitimacy to call him. In fact, this can also be achieved
by using a local white list. However, setting a policy to
block all unknown calls is not a satisfying solution, as most
telephone users still want to be reachable by people they have
not spoken with before.

Bob gives his phone number to others and expects their
callbacks. Examples of this use case include scenarios where
Bob applies for a job online or makes an appointment with a
specialist doctor. In these cases, Bob can issue a credential
and send it to the potential caller along with his phone number.
Additionally, Bob can add more attributes to the credential,
such as setting an expiration date or a maximum number of
times the credential can be used to call him.

Bob accepts calls from those who have authority-issued
credentials. This can include situations where an employee
from Bob’s bank contacts him about suspicious activity on
his account, or a local plumber advertises his services to Bob,
where the plumber can prove his location by sharing the zip
code of his home address from his driver’s license issued by
DMV. Bob can set his policy to only accept calls from people
in his immediate area by creating a list of approved zip codes.
This way Bob can accept calls from his real neighbors, rather
than being bothered by neighbor spoofing scammers.

Bob sets a policy requiring multiple credentials. We can
use the following scenario as an example. Bob is searching for
a local, licensed plumber and has advertised his phone number
on a local billboard. In order for a plumber to contact Bob,
he must provide evidence that he is in the area (by showing
the zip code on his driver’s license) and that he possesses a
valid plumber certificate from a governing authority.

The School case study. Consider a scenario in which an
elementary school teacher, Alice, is attempting to contact a
parent, Bob, for urgent notice. Alice is not in Bob’s contact
list, but she has a credential issued by the School to prove her
identity. Bob has set his policy to accept phone calls from
teachers of the School. This scenario will be used as a running

example to demonstrate the core designs of the UCBlocker
system in this paper.
MVNO as the bootstrapping issuer. Prior to the wide

availability of the AC infrastructure, it is possible to estab-
lish an MVNO that can serve as an issuer of credentials for
UCBlocker users. In the specific case of the School scenario,
the MVNO can undertake the verification process of Alice’s
work certificate and subsequently issue a credential that attests
to her employment at the school, particularly if the school
itself is unable to provide such a credential at that time.

3.5 Design Overview

Blocking unwanted calls ultimately requires end-to-end caller
authentication, because the recipient is the only one who can
determine which calls are welcome. There are various con-
siderations when designing such an authentication scheme.

Authentication channel. Telephone networks typically
use two channels for creating a phone call: a control channel
for signaling and an end-to-end voice channel for voice data
transmission. It is currently infeasible to achieve end-to-end
authentication using the control channel because different
telephone networks use different signaling protocols. All the
protocols and devices will need to be updated, otherwise, the
authentication information carried by signaling messages may
be lost when they are translated at the gateways connecting
the telephone networks. On the other hand, it is possible to
used the voice channel for end-to-end authentication, as exam-
pled by Reaves et al. in AuthLoop [12]. However, AuthLoop
introduced additional delays because implementing security
protocols (e.g. TLS) on the narrow band voice channel is time
inefficient. The third option is the data channel. With the
convergence of telephone networks to IP networks, more tele-
phone devices have access to a data channel, which connects
the devices to the Internet. UCBlocker takes advantage of the
data channel for caller authentication.

Centralized or distributed. End-to-end authentication
can be implemented either centralized or distributed. How-
ever, because of the unique requirement of unknown caller
authentication in telephone networks, a distributed solution is
more feasible. An unknown caller must reveal some informa-
tion of his/her identity to the callee to get authenticated, where
an identity is defined as a set of claims made by one subject
about itself or another subject [29]. The claims are attributes
of the caller, which are usually privacy-sensitive information.
In a centralized architecture, the central server is responsible
for collecting and forwarding these attributes, which will pose
a significant risk to the callers’ privacy. UCBlocker adopts
the distributed approach and employs anonymous credentials
to safeguard privacy during authentication.

Binding authentication to call session. Once authentica-
tion is completed over the data channel, the next question
is how to link it to a call session. One option is to rely on
a trusted third party to help with call initiation as shown by

(1c) SEND(𝑃ℎ𝑁𝑢𝑚!, 𝐶𝑟𝑒𝑑!")

Alice Bob

(3a) INVITE(𝐹𝑅𝑂𝑀:𝑉𝑒𝑟𝑖𝐶𝑜𝑑𝑒, 𝑇𝑂: 𝑃ℎ𝑁𝑢𝑚!)

(3b) 𝐹𝑅𝑂𝑀 ∉ {𝑉𝑒𝑟𝑖𝐶𝑜𝑑𝑒} REJECTalt

(3c) 𝐸𝑙𝑠𝑒 ACCEPT

Out-of-band channel
Signaling channel

Public Ledger Verifier

(2a) LOOKUP(𝑃ℎ𝑁𝑢𝑚!)
(2b) 𝐴𝑑𝑑𝑟#

(2c) VERIFY(𝐶𝑟𝑒𝑑$"/𝐶𝑟𝑒𝑑!")
(2d) 𝑉𝑒𝑟𝑖𝐶𝑜𝑑𝑒

Internet

(1b) Policy

Issuer

(1a) 𝐶𝑟𝑒𝑑$"

(2e) 𝑉𝑒𝑟𝑖𝐶𝑜𝑑𝑒

(3d) Voice call

Authentication

Call
Session

Voice channel

Figure 1: UCBlocker overview.

Reaves et al. in Authenticall [13] . An alternative is to gener-
ate a one-time-use shared secret after authentication, which
can be sent from the caller to the callee over telephone net-
works when the call session is established. In this paper, we
refer to the authentication secret as a verification code, similar
to the code used in two-factor authentication systems on the
Internet. Voice channel can be used to transmit the verifi-
cation code by using a data-voice modem. Control channel
is another option, but transmitting the secret using control
channel can be tricky because of the message translation at
the network gateways. One of the few pieces of information
that can transit between networks is the caller ID. Because of
its declarative nature, it is possible to use caller ID to carry
the authentication secret. We call it caller ID customization
instead of caller ID spoofing because our intent is not to spoof
other phone numbers but to transfer the authentication secrets.
Another benifit of using the verification code is that its gen-
eration and usage can be decoupled. The caller can acquire
multiple codes during one authentication, store them in his
device and use them later. Using caller ID to send the code
and start a phone call introduces no extra delays to the call
session setup process.

In summary, UCBlocker uses anonymous credentials for
caller authentication and explore different methods of carry-
ing the verification code for channel binding. The overview
of UCBlocker is depicted in Figure 1. There are five main
participants, including the caller Alice (also the credential
holder), the callee Bob, the credential Issuer, a Public Ledger
and the Verifier which is a service endpoint working as a
verification agent for Bob.

The workflow of UCBlocker is broken down into three
phases: the setup phase, the authentication phase, and the call
initiation phase. In the setup phase, Alice requests anony-

mous credentials from Issuer (1a and 1c), Bob sets his policies
encoding his preferences of wanted calls (1b), and Alice ob-
tains the contact information of Bob (1c). Message 1c is an
example where Bob sends his phone number to Alice, to-
gether with a credential proving Alice has been added to his
contacts. In cases where Alice is an unknown caller, she can
also get Bob’s phone number from any other sources. In the
authentication phase, Alice looks up Bob’s service endpoint
on the public ledger (2a, 2b) and presents her proof to Bob
to get the verification code (2c-2e). Later when Alice wants
to make a phone call to Bob, she initiates the call by sending
the verification code to Bob (3a, sending the code via caller
ID header field is depicted), which Bob can verify to accept
or block the call request (3b-3d).

3.6 Deployment

The UCBlocker client is designed as an application. For the
callee, UCBlocker assists users in selecting attributes and con-
figuring policies. In cases where incoming calls fail to meet
the specified policies, UCBlocker silently blocks these calls.
Users also have the option to redirect blocked calls to their
voicemail. Detailed discussions regarding policy deployment
can be found in Section 4.1.2. On the caller’s side, it is neces-
sary to initiate phone calls using the UCBlocker application.
If there are no available verification codes, UCBlocker will
authenticate the caller to the callee. During this authentica-
tion process, UCBlocker automatically matches the callee’s
policies against the caller’s credentials. The caller will receive
a warning when certain attributes need to be revealed for suc-
cessful authentication. To provide a visual representation of
how callers can choose to expose specific attributes when
making a phone call, a user interface example is included in
the Appendix A.

In order to facilitate the initial implementation of our
scheme, UCBlocker incorporates a public ledger. This ledger
serves as a secure and trusted public database, storing cru-
cial public information within the system. This includes the
published schemas of issuers, the public keys of all stakehold-
ers, and the decentralized identifiers/documents associated
with UCBlocker users. By maintaining this public ledger,
UCBlocker ensures the availability and integrity of essential
data, contributing to the overall functionality and security of
the system.

Before the credential issuance infrastructure is fully func-
tional, a practical solution to start UCBlocker service is to
set up an MVNO that serves as the bootstrapping issuer.
UCBlocker users can present their proofs of certain attributes
(e.g. name/home address on a physical driver’s license) to the
MVNO to get a credential issued by the MVNO. However, as
the credential issuance infrastructure becomes more widely
deployed, users are expected to acquire credentials from other
"formal" issuers. For example, obtaining a digital driver’s
license from the DMV can replace the credentials initially

Issuer

(1) Schema 𝑆, 𝑝𝑘!

HolderPublic Ledger

(2) 𝑆, 𝑝𝑘!
(3) Secure channel

Set hidden attributes(4) Credential request

Set unhidden attributes
Generate credential 𝐶

(5) 𝐶

Verify 𝐶

Figure 2: Credential issuance protocol.

issued by the MVNO. This transition promotes the use of cre-
dentials from established and recognized issuers, enhancing
the credibility and reliability of the UCBlocker system.

4 Authentication

This section provides a thorough explanation of attribute-
based anonymous authentication protocols, including the
steps involved in both the setup and authentication phases.

4.1 Setup Phase
The setup phase encompasses three types of activities: the
caller obtaining credentials (1a, 1c in Figure 1), callee de-
ploying policies (1b), and caller acquiring callee’s contact
information (1c). These activities are typically conducted
through out-of-band channels, and there are usually multiple
options available. For instance, Alice may obtain her employ-
ment credential by logging in the School website or visiting
the HR office, and Bob may provide his phone number to
Alice through social media or during a face-to-face meeting.

4.1.1 Credential Issuance

An anonymous credential is a type of attribute-based creden-
tial that enables users to prove certain attributes without re-
vealing additional information or being linked across multiple
credential presentations.

The credential issuance protocol is illustrated in Figure. 2.
In message 1, issuer defines a credential schema S, selects
the public key pkI to be used with this schema, and pub-
lishes S and pkI on the ledger. A credential schema is the
data template for a credential [30], which defines the list
of attributes included in the credential. It serves as a shared
point of trust for the issuer, holder, and verifier. For each
attribute, its name, data type and whether it’s hidden from
issuer are specified. If an attribute is hidden from issuer,
its value will be set by holder and blinded before sent to is-
suer for signing(i.e. blind signature). E-voting system is
a typical application scenario of blind signature, where the

local authority checks and signs the eligibility of a voter,
without learning the voter’s choice. As an example of cre-
dential schema, in the School case, the School may define
a two-attribute schema for its employment credentials sim-
plified as {"name":{"type":string,"hidden":false},"
employed":{"type":boolean,"hidden":false}}. If the
MVNO works as the issuer instead of the School, one more
attribute is needed: "school":\{"type":string,"hidden
":false\}.

The form of pkI varies based on the chosen signature
scheme. In this paper, we use BBS+ signature [31]as an
example to present the cryptography processes. Other signa-
ture schemes are available in the literature, and UCBlocker
has cryptographic portability. Let G1, G2, GT be groups of
prime order p. Issuer sets up a bilinear map e :G1×G2→GT .
Assuming there are L attributes in the credential, issuer ran-
domly takes generators (h0,h1, . . . ,hL)← GL+1

1 , g1 ← G1,
g2←G2, and integer x← Z∗p. Issuer then computes w = gx

2,
and sets pkI = (g1,g2,w,h0,h1, . . . ,hL). The private key skI
is x.

In message 2, the holder retrieves S and pkI from the public
ledger. Step 3 is a mutual authentication between issuer
and holder to set up a secure channel. Holder then assigns
values to the hidden attributes according to the credential
schema and sends a credential request to issuer in message
4 which includes the hidden attribute values. Without loss
of generality, we assume that the attributes of the credential
are encoded into integers (m1, . . . ,mL) ∈ ZL

p. For an attribute
mi whose value is hidden to issuer, the blinded value will be
Mi = hmi

i . We reserve m1 for a secret skH which is chosen by
holder as an unique identifier. The secret is known to holder
only and is hidden before it is sent to issuer. The secret is used
to combine multiple attributes from different credentials to
form a single proof. It is named link secret by the Hyperledger
[32] community as it literally links multiple credentials to the
same holder.

Issuer will proceed by setting the unhidden attributes
and generating the credential C. In the School case,
School/MVNO assigns the attributes {name="Alice",
employed=true} for Alice. The attributes will be encoded to
integers, but for simplicity, we just denote {m_2="Alice",
m_3=true} without causing ambiguity. Issuer selects random
numbers e,s← Zp and computes

B = g1hs
0

L

∏
i=1

hmi
i , A = B

1
e+x (1)

Issuer returns the credential C = (A,e,s,MI) to holder, where
MI is a set consisting of the values assigned by issuer to the
unhidden attributes.

Holder verifies C by checking

e(A,wge
2)

?
= e(B,g2) (2)

Holder will add the hidden attributes to C and store it as
C = (A,B,e,s,{mi}i∈[1,...,L]).

4.1.2 Policy Deployment

UCBlocker is an authentication system that allows each user
to set their own unique authentication policies for accepted
calls. The policies must be easily understandable by non-
technical users, and must be clearly defined so they can be
translated into credential presentation request messages.

We define a universal set of public attributes U for tele-
phone users in UCBlocker. Each credential contains a subset
of attributes AC ∈ U and an issuer can create multiple cre-
dential schemas. To create a policy, Bob can either search
for an issuer and then select the desired credential and at-
tributes, or search for specific attributes and then choose from
the available credentials which contains the attributes. As
mentioned earlier, the credential schemas are stored on the
public ledger. The UCBlocker client provides assistance to
facilitate the search process and display the results to Bob.
Bob then selects the desired attributes and incorporates predi-
cate logic to define the policies. For detailed information on
policy creation and formulation and a user interface example,
please refer to Appendix A.

UCBlocker translates policies into a credential presentation
request, which specifies what attributes from which creden-
tials are accepted. A presentation request is a disjunction of
multiple policies. Each policy is a set of attributes combined
using predicate logic [33]. In the School case, a presenta-
tion request for Bob’s policy looks like

{"policies":[{{
"employed":True,
"schema":"did:schema:abcde"}}]}

In this example, there is one policy defined in the presenta-
tion request, which contains an equal predicate to check if the
value of employed attribute is True. schema defines the uni-
versal unique identifier of the schema used. We will discuss
the zero-knowledge proof of predicate logics in Section 4.2.2.

4.1.3 Contact Credentials

Besides credentials issued by third parties, callees can is-
sue their own contact credentials. UCBlocker defines a con-
tact credential schema containing three attributes {"name","
phone number","contact"}. Using this, UCBlocker helps
users to issue credentials to their contacts.

If Alice is already in Bob’s contact list, Bob issues the
credential CredBA and sends it to Alice through any commu-
nication channel. If Bob and Alice are new friends and Bob
is adding Alice to his contacts, Bob shares his phone number
and issues the credential to Alice at the same time. Otherwise
if Alice is an unknown caller, she can get Bob’s phone num-
ber from any sources (e.g. Bob’s personal website, yellow
pages, their mutual friends), but she will resort to third party
credentials to get authenticated by Bob.

4.2 Authentication phase
The authentication phase includes the processes of callee’s
verification service endpoint (the verifier) lookup (2a in Fig-
ure 1), credential presentation (2c), and verification code
generation and distribution (2d, 2e).

4.2.1 Verifier Lookup

UCBlocker utilizes a public ledger to facilitate the retrieval of
verifier’s address. We adhere to W3C standards [26], utilizing
Decentralized Identifiers (DID) and DID documents to store
information related to those identifiers.

Decentralized identifiers. As previously stated in Sec-
tion 4.1.1, each user selects a secret key sk to prove ownership
of a specific credential and to link multiple credentials to the
same holder. The secret key identifies the user cryptographi-
cally and must be masked before being transmitted to issuer
or verifier to ensure unlinkability. A cryptographic tool is
commitment schemes such as the Pedersen Commitment [34].
The public parameters of Pedersen Commitment consist of
a group G of prime order p and generators (g0, · · · ,gm). To
commit values (v0, · · · ,vm) ∈ Zm

p , the commitment is calcu-
lated as C = gr

0 ∏
m
i=1 gvi

i , where r ∈ Zp is a random value.
Using Pedersen Commitments, an arbitrary number of pub-
lic keys can be generated from the same private key sk by
choosing different random numbers r, resulting in pk = gskhr.
These generated public keys serve as pseudonyms for the
user in the pairwise relationship between holder and issuer or
verifier.

A DID is a globally unique identifier generated by the
user with four essential characteristics: decentralized, per-
sistent, cryptographically verifiable, and resolvable. DID is
defined by W3C in the format of scheme:method:method
-specific-identifier. For example, did:example
:123456789abcdefghi. For cryptographically verifiabil-
ity, DID should be generated from the user’s keys, e.g.
DID = Hm(pk), where Hm is a hash function specific to DID
methods. A DID resolves to a DID document stored on the
public ledger. DID document typically contains the DID, ver-
ification methods including the public keys, and a set service
endpoints. A service endpoint is a network address at which
to communicate or interact with the DID owner.

UCBlocker features a digital wallet component that man-
ages DIDs and credentials. The wallet generates a public
DID using the user’s secret key, along with the related DID
document, and stores it on the public ledger to register the
user’s public DID.

Verifier lookup with a phone number. Phone number
is more human-friendly than DIDs. In UCBlocker context,
it is desirable to discover the verifier address starting from
a phone number. To map the phone number to a DID and
the verifier address in a verified and trusted way, we store
the callee’s phone number in his DID document. When a
DID document is registered on a public ledger, the ledger

VerifierHolder

(1) Verification request
(2) Presentation request, Nonce 𝑛

(3) 𝑅

Construct presentation 𝑃
Select random 𝑟
Calculate 𝑅 = 𝐸!"!(𝑃| 𝑛 |𝑟)

Decrypt 𝑃| 𝑛 |𝑟 = 𝐷#"!(𝑅)
Verify 𝑃, 𝑛

(4) 𝑟⨁𝑐𝑜𝑑𝑒

Figure 3: Credential presentation protocol.

will send a verification code to the phone number to prove its
ownership. A caller looks up the callee’s DID using his phone
number, which resolves to a DID document on the public
ledger containing the verifier address.

The verifier operates on behalf of the callee. The verifier
can be deployed in the cloud or on-premises, or even on
user’s telephone device. We assume that the service is public
available through the Internet and the server is in the same
security domain as the user device.

4.2.2 Credential Presentation

When Alice wants to make a phone call to Bob for the first
time as an unknown caller, she first approaches to Bob’s
verifier by sending a verification request, as shown in Fig-
ure 3. Verifier will generate a presentation request from
Bob’s authentication policies and send it to Alice. Formally,
the presentation request is the disjunction of M policies
PR = Pl1 ∨Pl2 ∨ ·· · ∨PlM . Alice is verified if her creden-
tial presentation satisfies any of the policies. Each policy is
a set of attributes combined using predicate logics including
equality, inequality, conjunction, disjunction, set member-
ship check, and range check. Alice checks if her credentials
satisfy the presentation request, creates the credential presen-
tation using zero-knowledge proofs and sends it to Bob for
authentication.

Zero-knowledge proofs. Alice can prove she has the cre-
dentials containing required attributes without revealing the
credentials by using non-interactive zero-knowledge proofs.
We consider Schnorr protocol [35] as an example of zero-
knowledge protocols. Schnorr protocol is based on discrete
logarithm assumption, with a group G of prime order p and
generator g as commonly agreed parameters. Assuming Al-
ice has a secret sk which she wants to convince Bob her
knowledge that satisfies pk = gsk, Schnorr protocol works
as follows: 1) Alice chooses a random number r← Zp, and
sends a = gr as an announcement to Bob. 2) Bob chooses
a random number c← Zp as a challenge and sends it to Al-

ice. 3) Alice calculates z = r+ c · sk and sends it to Bob. Bob
checks gz = a · pkc to get convinced without learning anything
about sk.

Using Fiat-Shamir heuristic [36], we can turn Schnorr pro-
tocol into non-interactive zero-knowledge protocol under ran-
dom oracle model [37], where a cryptographic hash func-
tion H is used as a random oracle. Instead of the interactive
messages, Alice calculates c = H(pk,a = gr),z = r+ c · sk,
and sends (a,z) to Bob as a proof of knowledge of sk. Bob
calculates c = H(pk,a) and checks gz = a · pkc. We define
π=(a,z) and express the zero-knowledge proof of knowledge
(zk-PoK) of sk as π ∈ PoK{(sk) : pk = gsk}.

Besides Schnorr protocol, constructions of proofs of equal-
ity, inequality, conjunction, disjunction, set membership and
range have been proposed in the literature [38–46]. We omit
the details of these proofs but only demonstrate the concepts
using the example of holder binding. In UCBlocker, m1 is
reserved for holder’s secret key. To prove that multiple creden-
tials are issued to the same holder, we can construct a proof
using an equality composition as π ∈ PoK{(m1,r1,r2) : y1 =
gm1

1 hr1
1 ∧ y2 = gm1

2 hr2
2 }, where m1 is the secret key sk, y1,y2

are blinded public keys, r1,r2 are two random numbers and
(g1,h1), (g2,h2) are the public keys of the credentials. The
proof contains two sub proofs, and the conjunction proves
that the two public keys y1,y2 are generated from the same
private key.

Presentation construction. Suppose Alice holds the cre-
dential C = (A,B,e,s,{mi}i∈[1,...,L]) that satisfies one of Bob’s
policy Pl, and D are the indexes of the attributes that will be
revealed to Bob. The hidden attributes are {mi}i/∈D . Alice will
use some random numbers to blind the credential so that the
presentation is not linkable to the credential. To do so, Alice
chooses two random numbers r1← Z∗p and r2← Zp, and sets
A′ = Ar1 , Ā = A′−eBr1 , r3 =

1
r1

and B′ = Br1h−r2
0 ,s′ = s−r2r3.

Then she generates a proof

π ∈ PoK{({mi}i/∈D ,e,r2,r3,s′) :

Ā/B′ = A′−ehr2
0 ∧ g1 ∏

i∈D
hmi

i = B′r3h−s′
0 ∏

i/∈D
h−mi

i } (3)

The credential presentation Alice sends to Bob will be P =
(A′, Ā,B′,π). The proof contains two subproofs, where the
first proves the validity of π and the second proves the validity
of the hidden attributes. More detailed discussion of the
construction of π is available in [31].

To verify the credential presentation, Bob’s verifier checks:
1) A′ 6= 1G1 where 1G1 is the identity of G1, 2) e(A′,w) =
e(Ā,g2), which is zk-PoK of A and 3) π, which is zk-PoK of
({mi}i/∈D,e,r2,r3,s′).

Please be noted that until now the presentation protocol
only shows the predicate that Alice is in possession of an
anonymous credential, and she can selectively disclose some
of the attributes in the credential. For more advanced attribute
predicates, the proof construction protocols mentioned above

can be utilized. In case the requested attributes are split across
multiple credentials, the holder will need to prove that these
credentials are issued to the same secret key using the equality
composition of zero-knowledge proof protocols.

4.2.3 Verification Code Distribution

Upon successful verification of the credential presentation,
the verifier generates one or more verification codes and sends
them to both the caller and callee. These codes function as
a one-time password, serving to confirm the authentication
during the call setup. The number of codes to be issued for
each policy can be defined by the callee, with multiple codes
issued at once to reduce future authentication efforts. The
cached codes allow caller to make calls without another prior
authentication, reducing additional call setup latency. The
format of the codes can vary depending on their intended use,
and may be a sequence of random numbers, or follow the
E.164 standard [47] if using the caller ID as the code carrier
to avoid potential blocking by telephone networks. Verifier
sends the code to caller through data channel (message 2d in
Figure 1 and message 4 in Figure 3). Verifier also sends the
code to callee through any secure channels (message 2e in
Figure 1), and callee is not required to have Internet access
during caller authentication phase.

4.3 Security Analysis

We assume the cryptography building blocks are secure under
corresponding security assumptions.

Credential security. During the credential issuance stage,
the anonymous credential C should be transferred securely.
Both the issuer and the holder must be authenticated with
each other. A secure channel is assumed to be set up for
this, such as Alice accessing the School website through a
secure TLS connection using her username and password. If
a secure channel is not present, the issuer and holder can use
an authenticated encryption method to transfer the credential,
making it impervious to theft by an outside party such as Eve.

Presentation security. The presentation is safeguarded
against replay attacks using a nonce n. The verifier sends n to
the holder along with the presentation request as depicted in
Figure 3. The presentation, nonce, and a random number are
encrypted using verifier’s public key. Verifier then decrypts
and confirms n to ensure that the presentation has not been
replayed.

Verification code security. The verification codes should
be sent securely. UCBlocker uses public-key authenticated
encryption schemes, e.g. Elliptic Curve Integrated Encryption
Scheme (ECIES) [48] to protect the verification codes. Holder
chooses a random number r as a one-time pad, which is en-
crypted using verifier’s public key pkV with ECIES scheme
together with the credential response P and the nonce n from
verifier: R = EpkV (P||n||r). Holder sends the presentation re-

Internet PSTN

VoIP
Client PBX VoIP

Provider
PSTN
Client

SIP PSTNGateway

INVITE
To: tel:+17208881000

From: sip:+12021234567@home.com

100 Trying

ANM
200 OK
ACK

IAM
CPN: +17208881000
CIN: +12021234567

Figure 4: VoIP to PSTN call flow.

sponse R to verifier. Verifier decrypts R to get P,n,r and sends
the encrypted verification code r⊕ code to holder. Because
of the encryption, both the presentation and the verification
code are secure against eavesdropping attacks.

5 Call Session Binding

After call authentication, the next challenge is how to bind
the authentication result (i.e., the verification code the caller
received) to telephone call sessions. This is crucial as authen-
tication occurs on the Internet, while call session signaling
takes place in telephone networks. As previously discussed in
Section 3.5, there are several options to bind the authentica-
tion to a call session. We explore several methods and discuss
their feasibility in this paper: carrying the verification code
in an existing field of signaling protocol messages, adding a
new field in signaling messages, and transmitting the code
through the voice channel instead of the control channel.

5.1 Caller ID Carrying the Code

Caller ID can be a viable option as it can traverse different
telephone networks. As we have discussed, caller ID doesn’t
guarantee the caller’s identification, which is leading to an
increase in spam and scam calls. In UCBlocker, we dis-
cover that this weakness of caller ID can be turned into an
authentication opportunity—we can re-purpose it to carry the
verification code. This code serves as a binary signal that ver-
ifies the caller’s authenticity and ensures the call is legitimate,
replacing the phone number that is potentially spoofed.

We first analyze the feasibility of the Caller ID Carrying
the Code method in different networks.

VoIP networks. Customizing caller ID in VoIP networks
is straightforward. The call flow between a VoIP client and
a PSTN client is shown in Figure 4 [49]. VoIP networks
use SIP signaling protocol, while PSTN networks use SS7,
where Integrated Services Digital Network (ISDN) User Part
(ISUP) is used on level 4 for controlling telephone calls and
for maintenance of the network. The VoIP service provider
has a gateway that translates SIP messages to SS7 messages

and vice versa. The caller ID can be set by the VoIP client
or the connected PBX in the From header field of the SIP
INVITE message. In the example, the From header contains
a SIP URI with a telephone number in it. At the SIP/ISUP
gateway, the INVITE message is translated into an Initial
Address Message (IAM), which contains the Called Party
Number (CPN) and the Calling Party Number (CIN). Though
CIN is not a mandatory ISUP parameter, it is present in most
of the gateway implementations.

Cellular and PSTN networks. Customizing Caller ID
is more challenging in cellular and PSTN networks com-
pared to VoIP networks. In cellular networks, the SIM card’s
pre-installed keys are used for subscriber authentication, and
the phone number is stored by Mobile Network Operators
(MNOs) in the core networks, who set the Caller ID for signal-
ing messages. In 4G VoLTE networks, the signaling protocol
SIP is used in the IP Multimedia System (IMS), but Kim
et al. [50] reported flaws in the VoLTE implementation that
allowed clients to set the From header field in the INVITE
message, potentially leading to spoofed Caller IDs. However,
exploiting the flaws does not align with our goal because the
implementation vulnerabilities can be fixed and exploiting
them may have legal restrictions. In PSTN networks, the
Caller ID is inserted by the carrier’s local exchange, making
it difficult to customize.

Feasibility evaluation. We assess the possibility of send-
ing verification codes through caller ID in VoIP networks.
We establish a Private Branch Exchange (PBX) system and
obtain a SIP trunk service with Calling Line Identification
Presentation (CLIP) no screening capability. Then, we make
a call from a SIP client and set the caller ID to a random
telephone number. We successfully receive the altered caller
ID without issues.

Due to the mandatory implementation of STIR/SHAKEN,
the majority of VoIP service providers in the US no longer
support the use of arbitrary caller IDs. However, it should be
noted that customizing the caller ID itself is not against the
law in the US. We believe that the Caller ID Carrying the
Code method remains a viable option because of its simplicity.
This method is appealing to international operators who are
not obligated or motivated to invest in STIR/SHAKEN. Ad-
ditionally, for VoIP service providers and MVNOs looking to
promote their anti-spam capabilities, this lightweight method
could be attractive.

5.2 Adding a Header Field

The second option is to add a header field in signaling
messages for the verification code. This is exactly what
STIR/SHAKEN implements where an Identity header is
added to the SIP INVITE message. Unlike the simple verifi-
cation code, the Identity header is complex, which contains
the attestation level of the caller ID and the signature from the
originating carrier. However, implementing STIR/SHAKEN

requires substantial investment from all phone service and
gateway service providers. Although STIR/SHAKEN can be
mandatory in the US, as an end-to-end solution, it is unrealis-
tic for UCBlocker to expect all stakeholders to cooperate in
changing the signaling protocols for it to function.

5.3 Voice Channel Carrying the Code

In addition to the signaling channel, another option is to use
the voice channel to transmit the verification code, which
has been demonstrated by Reaves et al. in AuthLoop [12].
Compared to their effort to transfer a standard authentication
protocol like TLS, using the voice channel to carry a secret
code is expected to be more time efficient.

Feasibility evaluation. We use the Audio Modem Com-
munication Library [51] to verify the feasibility of transmit-
ting the verification code through voice channel. The software
version is v1.15.4. We connect two laptops with an audio
cable, both running Ubuntu 18.04. We limit the data trans-
mission rate to 1 kbps to resemble the 500 bps data channel
implemented in Authloop. The channel parameters are: car-
rier frequency 2000 Hz, sampling frequency 8 kHz, symbol
modulation 2-QAM. The channel successfully transferred a
60kB random data file in 490s. For a 128 bits verification
code, if we use the 500 bps channel and add the header and
footer the same as Authloop, the estimated time cost will be
about 300 ms.

5.4 Security Analysis

The verification code is a one-time password (OTP) generated
randomly. In the Caller ID Carrying the Code method, the
caller ID may be transmitted unprotected. Eve may actively
monitor the signaling messages, eavesdrop the caller ID and
place another call to race the legitimate caller. However, as
discussed by Rubin in [52], active attacks needs resources
beyond the abilities of most attackers. In our case, the active
attacker must have a faster route to reach the callee so that she
can win the race. Further, UCBlocker can reject concurrent
or consecutive calls from the same caller ID and notice the
caller so that the race attack is discovered.

The entropy of the OTP depends on the number of bits
it consists of and the quality of the pseudo-random number
generator (PRNG) used to generate it. When using caller ID
to transmit the OTP, the entropy is subject to phone number
regulations, such as the North American Numbering Plan
(NANP) [53], which has rules for reserved phone numbers.
The NANP phone number format can be summarized in the
ten-digit notation NXX NXX-XXXX, where N denotes any of the
digits 2-9, and X denotes any digit 0-9. These rules reduce
the entropy of the generated random phone numbers from
approximately log21010 ≈ 233 to about 232.

6 Evaluation

In this section, we present our prototype implementation and
the evaluation results.

6.1 Prototype Implementation
We create a prototype including two sub-systems: the
anonymous-credential-based authentication system comprises
an issuer, a holder, a verifier, and a public ledger; UCBlocker
client implemented as an application which sends and checks
the verification code, and initiates and blocks calls.

The implementation of the anonymous credentials is based
on Relic toolkit [54] and libpabc [55]. BBS+ blind signatures
using BLS12-381 Elliptic Curve [56] is implemented. To
encrypt the verification code at the end of the presentation
phase, we use an public-key authenticated encryption based
on libsodium [57]. We use Hyperledger Indy [58] with a local
pool as the public ledger.

We set up a VoIP PBX using Asterisk 18 [59]. The PBX is
running on an Amazon Web Services (AWS) instance with a
t3.small configuration. where the operating system is Ubuntu
18.04 LTS. UCBlocker clients connect to the PBX through
a Virtual Private Network (VPN), and the PBX connects to
the telephone networks using SIP trunk services. We tested
GoTrunk as well as Nextiva for the feasibility. They both
deliver VoIP calls to our Verizon phone without issues. How-
ever, neither of them support the Clip no Screening feature
anymore because of the deployment of STIR/SHAKEN.

UCBlocker client is implemented in Python, which con-
tains a digital wallet that stores the anonymous credentials,
the program instances of the issuer, the holder and the verifier.
The verifier is deployed on the same computer as the VoIP
client, instead of using a cloud service. It is feasible as long as
the verifier is in the same security domain as the callee and is
reachable through the Internet. UCBlocker also integrated an
command line VoIP client to set the caller ID. The UCBlocker
client is running on a MacBook with 2.6 GHz 6-Core Intel
Core i7 processor, 16 GB memory, and macOS version 13.1.

6.2 Evaluation
The evaluation results are far from comprehensive because
our purpose of this evaluation is to demonstrate the feasibility
of the proposed solution. Through this evaluation, we are
trying to make the point that the caller authentication process
does not add significant delays to call setup.

Credential issuance. Our first experiment measures the
credential issuance time. We measure the time from the in-
stant when the issuer received the credential request to the
moment of the credential is successfully generated. Creden-
tial issuance is a one-time operation, and it is done before
the authentication. It will not introduce latency to the authen-
tication process or the call setup process. We measure the

1 2 3 4 6 8 101520304050
Number of attributes

17.5

20.0

22.5

25.0

27.5

R
un

tim
e

(m
s)

(a) Credential issuance

1 2 3 4 6 8 101520304050
Number of attributes

15

20

25

R
un

tim
e

(m
s)

(b) Proof generation

1 2 3 4 6 8 101520304050
Number of attributes

15.0

17.5

20.0

22.5

25.0

R
un

tim
e

(m
s)

(c) Verification

128 256 1k 8k 128k
Data size (bits)

0.2

0.4

0.6

0.8
R

un
tim

e
(m

s)

(d) Public key encryption

Figure 5: Time cost for anonymous credential issuance, proof
construction, proof verification, and public key encryption.

issuance time for various numbers of attributes from 1 to 50.
It is less possible for a person to have a credential with too
many attributes. The results are shown in Figure 5a. The me-
dian values are from about 18 milliseconds to 27 milliseconds.
It takes more time for more attributes, but the difference is
not significant.

Proof generation. Figure 5b demonstrates the results of
time consumption to generate a proof from a single credential.
The median values are around from 15 to 25 milliseconds for
attribute number distribution from 1 to 50. Proof construction
with predicates from multiple credentials needs more expo-
nentiation and multiplication and are expected to cost more
time. The proof construction time will be added to the total
call setup latency for unknown calls. The results prove that
proof construction does not introduce significant delays.

Proof verification. The verifier checks the proof before
issue a verification code to the caller. Figure 5c shows the
results. The median time for verification is from 16 to 26
milliseconds, which shows that proof verification is not a
main contributor to call setup latency.

Public key encryption. The caller needs to send a one-
time password to the verifier so that the verification code can
be issued securely. This is done using public-key authenti-
cated encryption. The time cost for encryption of different
sizes of random bits using libsodium is demonstrated in Fig-
ure 5d. The public-key authenticated encryption is fast with
running time less than 1ms.

End-to-end delay. We measure the end-to-end delay of
the authentication process. The total latency is about 1.5
seconds including DID lookup (400ms), proof construction
(20ms), proof verification (20ms), verification code issuance

(20ms), public key encryption and decryption (1ms), and com-
munication time (1000ms in local network). Communication
delays may vary for different network conditions.

Please be noted that the time cost of transmitting and check-
ing the verification code in telephone networks is negligible.
If we use the caller ID to carry the code, the process is exactly
the same as using a real phone number to make a call, so
there will be no delays at the caller side. At the callee side,
the only additional effort is to check if the verification code is
in a local database. The time cost is trivial to match a record
from hundreds of records for ordinary users.

7 Discussion

We discuss the design choice of UCBlocker by considering
several common questions.

Who will be issuers? During the initial bootstrapping
stage, UCBlocker can establish an MVNO to act as the issuer,
thereby mitigating trust and scalability concerns that arise
when a large number of issuers need to be involved. How-
ever, this approach presents a privacy challenge as users are
required to disclose all their attributes to the MVNO, which
serves as the sole trusted entity. In the long run, as the cre-
dential issuance infrastructure is developed, UCBlocker will
incorporate newly launched issuers/schemas, alleviating the
burden on the MVNO as the exclusive issuer. This integration
will address the privacy issue and distribute the responsibility
among multiple trusted parties.

What are the differences between AC infrastructure
used in UCBlocker and existing PKI? The DID scheme
does not depend on centralized registries for identifiers or
centralized certificate authorities for key management. The
Blockchain-Based PKI is a new architecture called Decentral-
ized Public Key Infrastructure (DPKI) [60]. DPKI architec-
ture is distributed, self-sovereign and transparent. However,
it is still developing and lack maturity.

Why do we need an anonymous credential instead of
just a certificate? A certificate contains an identity and a
public key. To present the certificate, both the identity and
public key will be exposed. The holder does not have the
choice to selectively reveal only the attributes needed for the
verification. Further, the public key is a link point, where the
holder’s activity will be traced by multiple presentation of
the certificate. For example, Alice holds an digital driver’s
license and she wants to call Bob. She may be willing to
reveal her zip code to prove her location, but not her home
address or date of birth. Anonymous credentials, on the other
hand, offer selective disclosure and unlinkability. Callers
won’t be discouraged to make a call by privacy leakage risk.

What if the anonymous caller is a scammer? Is the
anonymous caller accountable for misbehaviours? The
anonymous credential protocols can incorporate accountabil-
ity through cooperation between the issuer (I), verifier (V),
and an authorized third party (E), such as law enforcement.

During issuance, I verifies the holder’s identity, sends it to
E, and E encrypts the identity using its public key. The en-
crypted identity is then added as a backdoor to the credential
by I. During presentation, V must verify the backdoor. The
backdoor can be decrypted by E using its private key when
necessary. For simplicity, the design details are not discussed
here. Further information about accountability can be found
in the work by Camenisch et al. [61].

Are the credentials revocable? Yes. There are various so-
lutions for designing revocable anonymous credentials, with
accumulator-based solutions [62] being the most widely used.
An accumulator is a single value that accumulates all revoked
credentials. The accumulator value is independent from the
revoked credentials list size. The issuer updates the accumu-
lator on the ledger when a credential is revoked. To present a
credential, the holder must retrieve a non-membership proof
and present it to the verifier to demonstrate that her credential
is still valid. In the accumulator design of [62], no operation
is linearly dependent on the number of current or total deleted
members. Instead, all operations only need to read and com-
pute data that are linear in the number of changes since last
read, but not in the total number of changes.

Is it legal to customize the caller ID? It depends on the
laws of the jurisdiction in question. In the US, the FCC’s rules
under the Truth in Caller ID Act prohibit the transmission
of misleading or inaccurate caller ID information with the
intent to defraud, cause harm, or wrongly obtain something
of value. Illegally spoofing calls can result in penalties of up
to $10,000 per violation. However, spoofing is not always
illegal and there are legitimate uses for it, such as when a
doctor calls a patient from their personal mobile phone and
displays the office number instead of their personal number
or when a business displays its toll-free call-back number.

How does it work with those who don’t use
UCBlocker? If the person being called is not a user of
UCBlocker, the caller will not be able to get authenticated
and will have to resort to traditional phone calling. If the
caller is not a UCBlocker user and the person being called
is, then the caller won’t be able to reach them without the
proper credentials. The decision to use UCBlocker to block
unwanted calls is at the discretion of the person being called.
The caller can choose to join UCBlocker and obtain the nec-
essary credentials if they want to make the call.

Is UCBlocker compatible with STIR/SHAKEN? The
target of STIR/SHAKEN is caller ID spoofing attacks. The
scheme links every call to a digital signature of the originating
carrier, which signs the caller ID, callee ID and an attestation
level. The call is given one of three attestation levels (A, B,
or C). The Caller ID Carrying the Code method may result
in randomly generated caller IDs being assigned level "C".
UCBlocker will ignore the attestation level. It evaluates the
call by matching the caller ID (verification code) to local
records. In situations where the originating carrier masks
the customized caller ID or even blocks the calls (instead of

giving a level "C"), then we will have to choose other binding
methods like using the voice channel.

How is it compatible with legitimate caller ID spoofing
use cases? Legitimate caller ID spoofing replace the really
phone number with another legitimate number for various
purposes. Apparently, UCBlocker users does not need to hide
their real phone numbers. For the purpose of providing a
call-back number, this number can be sent in the credential
presentation phase and is mapped to a verification code.

The callee has to publish his policies of accepted phone
calls. Does it leak the callee’s privacy? When Callee sets
the policies, there is a balance between policy efficacy and in-
formation disclosure. The more specific the policies, the more
information about Callee’s preferences is revealed. There is
also a trade-off between disclosing Caller’s information and
Callee’s preferences. For instance, if Callee sets a policy
as zip code is 20001, an attacker might deduce Callee’s
home location, but nothing about Caller’s location is revealed
because the predicate is checked on Caller side which returns
only True or False. On the other hand, Callee can choose
to protect his location information by setting the policy to
disclose zip code. However, this policy will force Caller
to reveal her location, which might discourage her from mak-
ing the call.

8 Related Work

Technical solutions for combating spam calls focus on ad-
dressing the problem of caller ID spoofing. These solutions
aim to either authenticate the caller’s identity or attest to the
authenticity of the caller ID.

One approach is to use network-based solutions that at-
test whether the caller ID is spoofed or not. For example,
the STIR/SHAKEN protocol [7, 8] is a standardized solution
that has been deployed by the telecom industry in the US
to address this issue. However, these types of solutions can
only prevent or signal caller ID spoofing but do not protect
users from unwanted calls from spammers and scammers us-
ing anonymous but legitimate caller IDs. Another approach
is to use end-to-end solutions that authenticate the caller’s
identity before the signaling messages are sent. These so-
lutions rely on extra channels to authenticate the caller at
the callee’s side, such as the voice channel [12], low-bitrate
data channels [13], or normal internet connections [14, 15].
Authentication through voice channel introduces significant
delays because of the low bandwidth. The data-channel-based
methods fail to provide a security mechanism to bind the au-
thentication and the call session. Moreover, these methods are
caller-ID-based, which means they may protect users from
caller ID spoofing, but not from other type of unwanted calls.

Caller spoofing detection has been implemented in several
countries through mandatory SIM-card registration. This pro-
cess necessitates mobile users to provide their real names and
personal details when signing up for phone services, poten-

tially enabling extensive public surveillance. However, it is
worth noting that there are currently no laws in the US support-
ing mandatory SIM-card registration. Despite the existence
of caller spoofing detection, it does not effectively prevent
unwanted calls when attackers utilize legitimate caller IDs.
In contrast, UCBlocker offers an attribute-based approach
that empowers users to define what constitutes “unwanted”
calls based on their own criteria. This personalized approach
allows users to establish policies and preferences for call ac-
ceptance, providing a more flexible and customizable solution
compared to traditional caller spoofing detection methods.

Earlier works to combat phone spam that are not caller-
authentication-based are classified by Tu et al. [3] into three
categories: Call Request Header Analysis, Voice Interactive
Screening, and Caller Compliance. Call Request Header Anal-
ysis filters calls based on the header information associated
with the call request including Caller ID Blacklisting and
Whitelisting [63], Caller Reputation System [64], Caller Be-
havior Analysis [65], Device Fingerprinting [66] and more.
Voice Interactive Screening forces the caller to interact with
a voice input-based interactive system to decide if the call
is spam after analyzing the caller’s interaction. Published
solutions include Audio Fingerprinting [67], Speech Content
Analysis [68], Acoustic Pattern Analysis [69], CAPTCHA/-
Turing Test [70], etc. Caller Compliance requires the caller to
first satisfy a compliance requirement prior to or during a call
request, including Do Not Call Registry [5], Graylisting [71],
Call Back Verification [72], Weakly Secret Information [73],
Payment at Risk [74], to name some of them.

9 Conclusion

We present UCBlocker, an end-to-end unwanted call blocking
system that is based on anonymous credentials. One novel
idea in our design is to authenticate the caller based on at-
tributes instead of the phone number, which makes unwanted
call blocking possible. Another novel ideal is the decoupling
of the caller authentication process and the call initiation pro-
cess using the verification code. This design achieves our goal
to minimize changes to the telephone networks, minimize ex-
tra call initiation delays, and eliminate the requirement on
call-time data channel. The design of UCBlocker brings forth
a significant potential to foster the restoration of public trust
in telephone networks and promote increased utilization of
phone calls.

Acknowledgement

This work was supported in part by the US National Sci-
ence Foundation under grants 1916902, 2154929, 2247560,
2247561, and 2247562, the Office of Naval Research un-
der grant N00014-19-1-2621, and DARPA under contract
HR001120C0155.

References

[1] The New York Times. Polling in Real Time: The
2018 Midterm Elections. https://www.nytimes.
com/interactive/2018/upshot/elections-
polls.html. Accessed 15-Jan-2023.

[2] Truecaller. Truecaller Insights 2022 U.S. Spam &
Scam Report. https://www.truecaller.com/blog/
insights/truecaller-insights-2022-us-spam-
scam-report, 2022. Accessed 15-Jan-2023.

[3] Huahong Tu, Adam Doupé, Ziming Zhao, and Gail-
Joon Ahn. Sok: Everyone hates robocalls: A survey
of techniques against telephone spam. In 2016 IEEE
Symposium on Security and Privacy (SP), pages 320–
338. IEEE, 2016.

[4] Huahong Tu, Adam Doupé, Ziming Zhao, and Gail-
Joon Ahn. Users really do answer telephone scams. In
28th USENIX Security Symposium (USENIX Security
19), pages 1327–1340, 2019.

[5] FTC. National Do Not Call Registry. https://www.
donotcall.gov/, 2023. Accessed 15-Jan-2023.

[6] FTC. How To Block Unwanted Calls.
https://consumer.ftc.gov/articles/how-
block-unwanted-calls, 2021. Accessed 15-Jan-
2023.

[7] Signature-based Handling of Asserted information using
toKENs (SHAKEN). https://access.atis.org/
apps/group_public/download.php/67436/ATIS-
1000074.v003.pdf, 2022. Accessed 15-Jan-2023.

[8] C Wendt and M Barnes. Personal Assertion Token
(PaSSporT) Extension for Signature-based Handling of
Asserted information using toKENs (SHAKEN). Tech-
nical report, IETF, 2019.

[9] Jürgen Quittek, Saverio Niccolini, Sandra Tartarelli,
Martin Stiemerling, Marcus Brunner, and Thilo Ewald.
Detecting SPIT calls by checking human communica-
tion patterns. In 2007 IEEE International Conference
on Communications, pages 1979–1984. IEEE, 2007.

[10] Merve Sahin, Marc Relieu, and Aurélien Francillon. Us-
ing chatbots against voice spam: Analyzing {Lenny’s}
effectiveness. In Thirteenth Symposium on Usable Pri-
vacy and Security (SOUPS 2017), pages 319–337, 2017.

[11] Ram Dantu and Prakash Kolan. Detecting Spam in VoIP
Networks. SRUTI, 5:5–5, 2005.

[12] Bradley Reaves, Logan Blue, and Patrick Traynor.
AuthLoop:End-to-End cryptographic authentication for
telephony over voice channels. In 25th USENIX Secu-
rity Symposium, pages 963–978, 2016.

https://www.nytimes.com/interactive/2018/upshot/elections-polls.html
https://www.nytimes.com/interactive/2018/upshot/elections-polls.html
https://www.nytimes.com/interactive/2018/upshot/elections-polls.html
https://www.truecaller.com/blog/insights/truecaller-insights-2022-us-spam-scam-report
https://www.truecaller.com/blog/insights/truecaller-insights-2022-us-spam-scam-report
https://www.truecaller.com/blog/insights/truecaller-insights-2022-us-spam-scam-report
https://www.donotcall.gov/
https://www.donotcall.gov/
https://consumer.ftc.gov/articles/how-block-unwanted-calls
https://consumer.ftc.gov/articles/how-block-unwanted-calls
https://access.atis.org/apps/group_public/download.php/67436/ATIS-1000074.v003.pdf
https://access.atis.org/apps/group_public/download.php/67436/ATIS-1000074.v003.pdf
https://access.atis.org/apps/group_public/download.php/67436/ATIS-1000074.v003.pdf

[13] Bradley Reaves, Logan Blue, Hadi Abdullah, Luis Var-
gas, Patrick Traynor, and Thomas Shrimpton. Authen-
tiCall: Efficient identity and content authentication for
phone calls. In 26th USENIX Security Symposium,
pages 575–592, 2017.

[14] Jikai Li, Fernando Faria, Jinsong Chen, and Daan Liang.
A mechanism to authenticate callerID. In World Confer-
ence on Information Systems and Technologies, pages
745–753. Springer, 2017.

[15] Ya Chen, Yazhe Wang, Yu Wang, Mingxuan Li,
Guochao Dong, and Chao Liu. CallChain: Identity
Authentication Based on Blockchain for Telephony Net-
works. In 2021 IEEE 24th International Conference
on Computer Supported Cooperative Work in Design
(CSCWD), pages 416–421. IEEE, 2021.

[16] Muhammad Ajmal Azad, Samiran Bag, Shazia Tabas-
sum, and Feng Hao. Privy: Privacy preserving col-
laboration across multiple service providers to combat
telecom spams. IEEE transactions on emerging topics
in computing, 8(2):313–327, 2017.

[17] Scott E Fahlman. Selling interrupt rights: A way to
control unwanted e-mail and telephone calls [Technical
forum]. IBM Systems Journal, 41(4):759–766, 2002.

[18] Jaeseung Song, Hyoungshick Kim, and Athanasios Gke-
lias. iVisher: Real-Time Detection of Caller ID Spoof-
ing. ETRI Journal, 36(5):865–875, 2014.

[19] Haotian Deng, Weicheng Wang, and Chunyi Peng.
Ceive: Combating caller id spoofing on 4g mobile
phones via callee-only inference and verification. In
Proceedings of the 24th Annual International Confer-
ence on Mobile Computing and Networking, pages 369–
384, 2018.

[20] ITU-T. Q.700 : Introduction to CCITT Signalling
System No. 7. https://www.itu.int/rec/T-REC-
Q.700. Accessed 15-Jan-2023.

[21] IEEE. SIP: Session Initiation Protocol. https://www.
ietf.org/rfc/rfc3261.txt. Accessed 15-Jan-2023.

[22] ITU-T. H.323 : Packet-based multimedia communi-
cations systems. https://www.itu.int/rec/T-REC-
H.323. Accessed 15-Jan-2023.

[23] Christina Garman, Matthew Green, and Ian Miers. De-
centralized anonymous credentials. Cryptology ePrint
Archive, 2013.

[24] Siamak F Shahandashti and Reihaneh Safavi-Naini.
Threshold attribute-based signatures and their applica-
tion to anonymous credential systems. In International
conference on cryptology in Africa, pages 198–216.
Springer, 2009.

[25] Michael Backes, Jan Camenisch, and Dieter Sommer.
Anonymous yet accountable access control. In Pro-
ceedings of the 2005 ACM Workshop on Privacy in the
Electronic Society, pages 40–46, 2005.

[26] W3C. Decentralized Identifiers (DIDs) v1.0. https://
www.w3.org/TR/did-core/. Accessed 15-Jan-2023.

[27] W3C. Verifiable Credentials Data Model v1.1. https:
//www.w3.org/TR/vc-data-model/. Accessed 15-
Jan-2023.

[28] 9to5mac. Here’s where you can use your iPhone
as your digital driver’s license or ID in 2023.
https://9to5mac.com/2023/05/22/digital-id-
drivers-license-iphone-states-airports/,
2023. Accessed 15-May-2023.

[29] Kim Cameron. The laws of identity. Microsoft Corp,
12:8–11, 2005.

[30] W3C. Verifiable Credentials JSON Schema Spec-
ification. https://w3c-ccg.github.io/vc-json-
schemas/v1/index.html. Accessed 15-Jan-2023.

[31] Jan Camenisch, Manu Drijvers, and Anja Lehmann.
Anonymous attestation using the strong diffie hellman
assumption revisited. In International Conference on
Trust and Trustworthy Computing, pages 1–20. Springer,
2016.

[32] Hyperledger Foundation. https://www.
hyperledger.org/. Accessed 15-Jan-2023.

[33] Wilfrid Hodges. Elementary predicate logic. In Hand-
book of philosophical logic, pages 1–129. Springer,
2001.

[34] Torben Pryds Pedersen. Non-interactive and
information-theoretic secure verifiable secret sharing.
In Advances in Cryptology—CRYPTO’91: Proceedings,
pages 129–140. Springer, 2001.

[35] Claus-Peter Schnorr. Efficient signature generation by
smart cards. Journal of cryptology, 4(3):161–174, 1991.

[36] Amos Fiat and Adi Shamir. How to prove yourself: Prac-
tical solutions to identification and signature problems.
In Advances in Cryptology—CRYPTO’86: Proceedings
6, pages 186–194. Springer, 1987.

[37] Mihir Bellare and Phillip Rogaway. Random oracles are
practical: A paradigm for designing efficient protocols.
In Proceedings of the 1st ACM Conference on Computer
and Communications Security, pages 62–73, 1993.

[38] Berry Schoenmakers. Lecture notes cryptographic pro-
tocols, 2022.

https://www.itu.int/rec/T-REC-Q.700
https://www.itu.int/rec/T-REC-Q.700
https://www.ietf.org/rfc/rfc3261.txt
https://www.ietf.org/rfc/rfc3261.txt
https://www.itu.int/rec/T-REC-H.323
https://www.itu.int/rec/T-REC-H.323
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/
https://9to5mac.com/2023/05/22/digital-id-drivers-license-iphone-states-airports/
https://9to5mac.com/2023/05/22/digital-id-drivers-license-iphone-states-airports/
https://w3c-ccg.github.io/vc-json-schemas/v1/index.html
https://w3c-ccg.github.io/vc-json-schemas/v1/index.html
https://www.hyperledger.org/
https://www.hyperledger.org/

[39] Fabrice Boudot. Efficient proofs that a committed num-
ber lies in an interval. In International Conference
on the Theory and Applications of Cryptographic Tech-
niques, pages 431–444. Springer, 2000.

[40] Stefan Brands. Rapid demonstration of linear rela-
tions connected by boolean operators. In International
Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 318–333. Springer, 1997.

[41] Jan Camenisch and Markus Michels. Proving in zero-
knowledge that a number is the product of two safe
primes. In International Conference on the Theory
and Applications of Cryptographic Techniques, pages
107–122. Springer, 1999.

[42] Jan Camenisch, BRICS, and Markus Michels. Separa-
bility and efficiency for generic group signature schemes.
In Advances in Cryptology—CRYPTO’99: 19th An-
nual International Cryptology Conference Santa Bar-
bara, California, USA, August 15–19, 1999 Proceed-
ings, pages 413–430. Springer, 1999.

[43] Agnes Chan, Yair Frankel, and Yiannis Tsiounis. Easy
come—easy go divisible cash. In International Confer-
ence on the Theory and Applications of Cryptographic
Techniques, pages 561–575. Springer, 1998.

[44] David Chaum. Blind signatures for untraceable pay-
ments. In Advances in cryptology, pages 199–203.
Springer, 1983.

[45] David Chaum and Torben Pryds Pedersen. Wallet
databases with observers. In Advances in Cryptology,
Santa Barbara, California, USA August 16–20, 1992
Proceedings 12, pages 89–105. Springer, 1993.

[46] Ronald Cramer, Ivan Damgård, and Berry Schoenmak-
ers. Proofs of partial knowledge and simplified design
of witness hiding protocols. In Advances in Cryptol-
ogy—CRYPTO’94: 14th Annual International Cryptol-
ogy Conference Santa Barbara, California, USA August
21–25, 1994 Proceedings, pages 174–187. Springer,
2001.

[47] ITU-T. E.164 : The international public telecommunica-
tion numbering plan. https://www.itu.int/rec/T-
REC-E.164/. Accessed 15-Jan-2023.

[48] Michel Abdalla, Mihir Bellare, and Phillip Rogaway.
DHAES: An Encryption Scheme Based on the Diffie-
Hellman Problem. IACR Cryptol. ePrint Arch., 1999:7,
1999.

[49] G Camarillo, AB Roach, J Peterson, and L Ong. In-
tegrated services digital network (isdn) user part (isup)
to session initiation protocol (sip) mapping. Technical
report, IETF, 2002.

[50] Hongil Kim, Dongkwan Kim, Minhee Kwon,
Hyungseok Han, Yeongjin Jang, Dongsu Han, Taesoo
Kim, and Yongdae Kim. Breaking and fixing volte: Ex-
ploiting hidden data channels and mis-implementations.
In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages
328–339, 2015.

[51] Audio Modem Communication Library. https://
github.com/romanz/amodem.

[52] Aviel D Rubin. Independent one-time passwords. com-
puting Systems, 9(1):15–27, 1996.

[53] NANPA. North American Numbering Plan Admin-
istrator. https://nationalnanpa.com/. Accessed
15-Jan-2023.

[54] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S.
Wahby, and K. Liao. RELIC is an Efficient LIbrary
for Cryptography. https://github.com/relic-
toolkit/relic.

[55] Martin Schanzenbach and Maximilian Kaul. Privacy-
preserving Attribute-based Credentials. https://
github.com/Fraunhofer-AISEC/libpabc.

[56] Sean Bowe. BLS12-381: New zk-SNARK Elliptic
Curve Construction. https://electriccoin.co/
blog/new-snark-curve/, 2017.

[57] Libsodium. https://github.com/jedisct1/
libsodium.

[58] Hyperledger Indy. https://www.hyperledger.org/
use/hyperledger-indy.

[59] Asterisk. https://www.asterisk.org/.

[60] Christopher Allen. Decentralized Public
Key Infrastructure. https://github.com/
WebOfTrustInfo/rwot1-sf/blob/master/final-
documents/dpki.pdf/, 2015. Accessed 15-May-
2023.

[61] Jan Camenisch, Susan Hohenberger, and Anna Lysyan-
skaya. Balancing Accountability and Privacy Using
E-Cash. In Security and Cryptography for Networks:
5th International Conference, SCN 2006, Maiori, Italy,
September 6-8, 2006. Proceedings 5, pages 141–155.
Springer, 2006.

[62] Jan Camenisch and Anna Lysyanskaya. Dynamic ac-
cumulators and application to efficient revocation of
anonymous credentials. In Crypto, volume 2442, pages
61–76. Springer, 2002.

https://www.itu.int/rec/T-REC-E.164/
https://www.itu.int/rec/T-REC-E.164/
https://github.com/romanz/amodem
https://github.com/romanz/amodem
https://nationalnanpa.com/
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://github.com/Fraunhofer-AISEC/libpabc
https://github.com/Fraunhofer-AISEC/libpabc
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://github.com/jedisct1/libsodium
https://github.com/jedisct1/libsodium
https://www.hyperledger.org/use/hyperledger-indy
https://www.hyperledger.org/use/hyperledger-indy
https://www.asterisk.org/
https://github.com/WebOfTrustInfo/rwot1-sf/blob/master/final-documents/dpki.pdf/
https://github.com/WebOfTrustInfo/rwot1-sf/blob/master/final-documents/dpki.pdf/
https://github.com/WebOfTrustInfo/rwot1-sf/blob/master/final-documents/dpki.pdf/

[63] Sharbani Pandit, Roberto Perdisci, Mustaque Ahamad,
and Payas Gupta. Towards Measuring the Effectiveness
of Telephony Blacklists. In NDSS, 2018.

[64] Vijay Balasubramaniyan, Mustaque Ahamad, and Hae-
sun Park. CallRank: Combating SPIT Using Call Dura-
tion, Social Networks and Global Reputation. In CEAS.
Citeseer, 2007.

[65] Payas Gupta, Bharat Srinivasan, Vijay Balasubra-
maniyan, and Mustaque Ahamad. Phoneypot: Data-
driven understanding of telephony threats. In NDSS,
volume 107, page 108, 2015.

[66] Hong Yan, Kunwadee Sripanidkulchai, Hui Zhang, Zon-
Yin Shae, and Debanjan Saha. Incorporating active
fingerprinting into spit prevention systems. In Third
annual security workshop (VSW’06). Citeseer, 2006.

[67] Dirk Lentzen, Gary Grutzek, Heiko Knospe, and
Christoph Porschmann. Content-based detection and
prevention of spam over IP telephony-system design,
prototype and first results. In 2011 IEEE Interna-
tional Conference on Communications (ICC), pages
1–5. IEEE, 2011.

[68] Federico Maggi. Are the con artists back? a preliminary
analysis of modern phone frauds. In 2010 10th IEEE
International Conference on Computer and Information
Technology, pages 824–831. IEEE, 2010.

[69] Vijay A Balasubramaniyan, Aamir Poonawalla, Mus-
taque Ahamad, Michael T Hunter, and Patrick Traynor.
Pindr0p: Using single-ended audio features to deter-
mine call provenance. In Proceedings of the 17th ACM
conference on Computer and communications security,
pages 109–120, 2010.

[70] Sajad Shirali-Shahreza and Ali Movaghar. A new anti-
spam protocol using CAPTCHA. In 2007 IEEE Interna-
tional Conference on Networking, Sensing and Control,
pages 234–238. IEEE, 2007.

[71] Juergen Quittek, Saverio Niccolini, Sandra Tartarelli,
and Roman Schlegel. On spam over internet telephony
(SPIT) prevention. IEEE Communications Magazine,
46(8):80–86, 2008.

[72] Hossen Mustafa, Wenyuan Xu, Ahmad-Reza Sadeghi,
and Steffen Schulz. End-to-end detection of caller ID
spoofing attacks. IEEE Transactions on Dependable
and Secure Computing, 15(3):423–436, 2016.

[73] Kumiko Ono and Henning Schulzrinne. Have I met
you before? Using cross-media relations to reduce SPIT.
In Proceedings of the 3rd International Conference on
Principles, Systems and Applications of IP Telecommu-
nications, pages 1–7, 2009.

[74] Yacine Rebahi, Dorgham Sisalem, and Thomas
Magedanz. Sip spam detection. In International Confer-
ence on Digital Telecommunications (ICDT’06), pages
68–68. IEEE, 2006.

A User Interfaces

In this Appendix, we include the user interfaces to show how
UCBlocker users can search and select credential schemas
and attributes to create policies. We also include a UI to show
how a caller can choose to expose certain attributes when
making a phone call.

Figure 6: Policy creation: step 1.

To establish a policy, UCBlocker users can initiate a search
by entering either the name of an issuer or the name of an
attribute, as illustrated in Figure 6. The UCBlocker client
then connects to the public ledger to conduct the search. The
search results are presented in the form of a three-layered
tree structure. The root layer represents the issuers, the sec-
ond layer displays the schemas defined by each issuer, and
the third layer comprises the attributes included within the

Figure 7: Policy creation: step 2.

schemas. Users can select one or more attributes from the tree
and add them to the policy by clicking the “+” button. We
show two issuers, namely the MVNO and a DMV, who have
asserted the zip code attribute of the user. The MVNO, func-
tioning as the bootstrapping issuer, can verify the users’ zip
code in the physical world and subsequently issue a creden-
tial. On the other hand, the DMV has published two schemas,
namely the State ID and the Drivers License, both of which
encompass the zip code attribute. In this scenario, the user
opts to select the zip code attribute from the Drivers License
schema, considering its more widespread usage within the
United States.

In the second step, the selected attributes are combined us-
ing predicate logic to define the policy. This process involves
various operations, such as equality, inequality, conjunction
(AND), disjunction (OR), set membership check, and range
check. These operations allow for the creation of flexible and
specific policies based on the desired conditions and relation-
ships among the chosen attributes.

As depicted in Figure 7, the user intends to establish a pol-
icy that allows phone calls solely from their actual neighbors.

Figure 8: Caller warning to reveal certain attributes.

This policy is defined by verifying the caller’s home address
zip code against a selected set of zip codes representing the
neighborhood. In this case, the user can choose a specific
set of zip codes corresponding to the desired neighborhood
and validate whether the caller’s zip code falls within this set.
This policy ensures that incoming calls are only accepted from
individuals residing within the designated neighborhood.

During the authentication phase, UCBlocker automatically
verifies the caller’s credentials against the policies defined
by the callee. If a match is found, UCBlocker will notify
the caller that certain attributes need to be disclosed in order
to successfully pass the authentication process, as shown in
Figure 8. If the caller has privacy concerns regarding the dis-
closure of specific attributes, they have the option to decline
the request and the authentication will not proceed further.
This gives the caller control over their privacy and allows them
to make an informed decision regarding the authentication
process.

	Introduction
	Background
	Modern Telephone Networks
	Anonymous Credentials

	UCBlocker Design
	System Model
	Adversary Model
	Requirements
	Use Cases
	Design Overview
	Deployment

	Authentication
	Setup Phase
	Credential Issuance
	Policy Deployment
	Contact Credentials

	Authentication phase
	Verifier Lookup
	Credential Presentation
	Verification Code Distribution

	Security Analysis

	Call Session Binding
	Caller ID Carrying the Code
	Adding a Header Field
	Voice Channel Carrying the Code
	Security Analysis

	Evaluation
	Prototype Implementation
	Evaluation

	Discussion
	Related Work
	Conclusion
	User Interfaces

