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Abstract

Password Stealers (Stealers) are commodity malware that
specialize in credential theft. This work presents a large-scale
longitudinal study of Stealers and their operators. Using a
commercial dataset, we characterize the activity of over 4,586
distinct Stealer operators through their devices spanning 10
different Stealer families. Operators make heavy use of prox-
ies, including traditional VPN, residential proxies, mobile
proxies, and the Tor network when managing their botnet.
Our affiliation analysis unveils a stratified enterprise of cyber-
criminals for each service offering and we identify privileged
operators using graph analysis. We find several Stealer-as-
a-Service providers that lower the economical and technical
barrier for many cybercriminals. We estimate that service
providers benefit from high-profit margins (up to 98%) and a
lower-bound profit estimate of $11,000 per month. We find
high-profile targeting like the Social Security Administra-
tion, the U.S. House of Representatives, and the U.S. Senate.
We share our findings with law enforcement and publish six
months of the dataset, analysis artifact, and code.

1 Introduction

The impact of credential theft is inescapable. Verizon’s 2020
Data Breach Investigations Report finds credential theft to ac-
count for over 80% of breaches [1]. More concerning, the
stolen credentials are resold on the underground markets
to cyber-criminal groups with unknown motives [2], [3]. In
one instance, ransomware attacks leveraged stolen credentials
from Stealer malware to obtain access to their target network
and ransom critical services [4]. Given these factors, studying
the Stealer ecosystem and their operators can help security re-
searchers and law enforcement understand the nature, trends,
and tactics of this rampant threat.

Prior works cover different facets of the underground
economies by studying phishing [5], keyloggers [6], exploit
kits [7], spam botnets [8], [9], and social network abuse [10].
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Additionally, researchers have uncovered misconfigured drop-
zones [6], taken over botnets [11], and seized command-and-
control (C&C) infrastructure [9] to further understand how
malware operators conduct their business [12]. More active
approaches even include hiring cybercriminals from under-
ground forums to attack honey accounts so researchers can
empirically document illicit services [2]. A prime commod-
ity for malware operators in many of these diverse attacks is
credential theft [13].

Prior studies provide fascinating insights into the under-
ground markets, which motivates us to study the role of
Stealers. However, the security community has not thor-
oughly investigated how cybercriminals manage, operate, and
profit off of Stealers. On the other hand, technical blogs pro-
vide anecdotal insights about how Stealers operate, but they
only focus on specific attack instances and lack deep analysis
of their economies, service offerings, and victim targeting.
Understanding the nature and tactics of Stealer operators can
aid researchers in developing better defenses. In addition,
law enforcement can leverage the insights to prioritize their
resources when pursuing Stealer operators [14]-[16].

In this work, we examine a unique dataset that tracks 10
distinct Stealer families and their operators. We partnered
with MalBeacon, a threat intelligence company, to study the
activities of Stealer operators that span 20 months (Apr 2019
- Dec 2020). Using this dataset and other sources, we seek
to understand the trends, nature, tactics, and service offering
revenue of Stealers and their operators. These insights can
help law enforcement pursue cybercriminals more effectively
by targeting the operator’s tactics and revenue streams. In
summary, we seek to answer the following research questions:

* RQ1: How do Stealers contribute to cybercrime?
* RQ2: How do Stealers operate on the Internet?

* RQ3: What are the nature and tactics of Stealer opera-
tors and their service offerings?

In answering these questions, we make the following contri-
butions: 1) analyze the source code of leaked Stealer kits and



document their features and offerings as advertised in under-
ground forums, ii) formulate and characterize the operator
activities by implementing and evaluating a clustering algo-
rithm that resolves unique entities of the operator’s device for
cookie churn, iii) conduct measurements of Stealer hosting
and victims on the Internet, and vi) empirically investigate
Stealer service offerings and estimate their profit margins.

Our analysis of the leaked Stealers source code shows that
they offer a wide range of functionality, including DDoS, key-
logging, dropper, reverse shell, and screenshot capabilities.
Hosted Stealer services appear to require little upfront cost
and can potentially offer a large return on investment from the
resale of credentials. The hosting infrastructure require min-
imal resources and operators often abuse free infrastructure
services like country code top-level domains (ccTLD) and
cloud-fronting. Our estimates show that Stealer services en-
joy profit margins between 81% and 98%. Moreover, a lower
bound estimate shows that the highest netting service provider
profits approximately $10,910.55 per month. Unfortunately,
we find newly registered Stealers domains to appear on public
blocklists on average 74 days after registration. The detec-
tion lag can allow operators time to exercise other malware
capabilities (i.e., install ransomware [17]).

Although we find that the highest Stealer activities appear
to originate from Nigeria, Stealer operators rely heavily on
proxy networks to masquerade their real IP addresses. When
profiling the operators, we find that operators use proxy ser-
vices ranging from traditional VPNs to mobile and residential
proxies, to Tor networks, where the mobile and residential
proxies can be harder to identify. We also find operators have
varying privileges and access forming a stratified organiza-
tion for Stealer services. Our targeting analysis identifies
sensitive government networks with potential Stealer infec-
tions, including the U.S. Social Security Administration, the
U.S. House of Representatives, and the U.S. Senate. We have
shared our findings with law enforcement, and we discuss the
ethical considerations in Section 4. To foster reproducibility
and transparency, our paper accompanies six months of the
Stealers dataset and the implementation code '.

2 Background: Stealers & Cybercrime

Stealers are specialized commodity malware that harvest cre-
dentials from infected hosts. Stealers utilize many attack
vectors, including drive-by download, application repackag-
ing, remote exploitation, social engineering, and phishing.
However, security reports [18]-[20] show that business email
compromise (BEC) attacks are the most popular infection
vector. Upon infection, Stealers harvest the operating system
(OS) information, the system’s settings, the user’s profile, and
stored credentials. These credentials belong to applications
and services, including websites (browser stored passwords),
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remote management tools (FTP clients), and messenger ap-
plications. Furthermore, Stealers can steal cryptocurrency,
install keyloggers, exfiltrate files, and drop other malware.
Note that Stealers target stored credentials while keyloggers
log keystrokes, which may include credentials. In summary,
Stealers specialize in credential theft but may overlap in their
features with remote access tools (RATSs), spyware, download-
ers, worms, and ransomware.

Credential Theft Lifecycle. There are four phases in the
credential theft lifecycle [21]. In the first phase, cybercrimi-
nals harvest credentials through various channels, including
phishing [5], social engineering, data breaches, and Stealers
(malware) [13]. In the second phase, cybercriminals sort cre-
dentials like email, social network, financial, and corporate ac-
counts. In phase three, automated tools verify the credentials
to ensure a high-quality batch. In phase four, the credentials
are sold to other cybercriminals. The pricing for each type of
credential varies from $1.50 up to $9.

Cybercriminal Roles. Within the Stealer enterprise, there
are varying roles ranging from low to high technical compe-
tency. Figure 1 depicts this relationship. We identify three
primary roles, namely developers, service providers, and op-
erators [21]. Developers are the most technical and they are
responsible for writing the Stealer code. The next tier are ser-
vice providers who typically buy a license from developers to
offer Stealer as a service. The service providers can be the de-
velopers themselves or other cybercriminals who may be less
technical (non-developers). Developers are incentivized to sell
licenses of their Stealer malware to increase their revenue and
market share. Lastly, Stealer operators can be the developers,
the service providers, or other cybercriminals. Less techni-
cal cybercriminals may use Stealer-as-a-service offering to
participate in the credential theft ecosystem. Note that highly
technical cybercriminals can assume all three roles, while less
technical cybercriminals can assume only the operator role.

Table 1: A list of top password stealers found in our dataset.

. First . Panels Hosts
Family Sold Price Leaked (N = 5.295) (N =2.602)
LokiBot [22] 2015 $80-$300 v 3,613 (68.23%) 1,952 (75.01%)
Formbook [23] 2016 $29-$299 1,195 (16.62%) 285 (5.32%)
Amadey [24] 2018 $600 v 56 (1.05%) 44 (1.70%)
Baldr [25] 2019 $100-$150 32 (0.6%) 32 (1.22%)
Blacknet [26] 2019  Open Source 12 (0.22%) 12 (0.46%)
AZORult [27] 2016 $100 v 8(0.15%) 8(0.31%)
Neutrino [28] 2013 $200-$500 v 9 (0.17%) 8(0.31%)
Agent Tesla [29] 2014 $12-$69 5 (0.09%) 5(0.19%)
Nexus [30] 2020 $100 5 (0.09%) 5(0.19%)
KPOT [31] 2018 $85 2 (0.03%) 2 (0.08%)

Stealer Management Interface. Stealers have two main
components, namely the bot program and the management
interface. The management interface for Stealers can be im-
plemented as a web or desktop application. This work fo-
cuses only on Stealers with web-based management inter-
faces. While there are other popular Stealer malware families
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Figure 1: Cybercriminal roles in
the Stealer ecosystem.
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with desktop management interface (i.e., Redline [32]), they
are out of scope. Table | documents the Stealer family name,
first advertised/sold year, the offering price, leaked source
code, and counts found in the Stealers dataset. We manu-
ally analyze the source code for the open-source and leaked
Stealer kits. We assess the technical barrier to entry and the
capabilities of Stealers through the installation method, en-
cryption functions, panel authentication, and malware control.
All of the analyzed panels are built with PHP, HTML, and
JavaScript, and their core functionality focuses on credential
theft. The panels use SQL-based databases for storage and
they are storing information about the bots and stolen data.
Table 9 in Appendix A summarizes the source code analy-
sis for the leaked Stealer panels. Panel setup can be manual,
scripted, and guided, which vary in technical difficulty.

For authentication, AZORult only requires a password for
login, whereas LokiBot checks the username, password, user-
agent, and captcha. LokiBot uses captcha and randomizes the
admin panel login path to make it harder to find. BlackNet
allows users to enable 2FA using Google Authenticator as an
additional layer of security. Neutrino bans IP addresses that
attempt to enumerate files on the C&C. Stealers use varying
degrees of defense to hide from internet scanners. Stealers
provide numerous functions (bot commands) including DDoS,
DNS spoofing, download or load executable (load/drop), shell
command, open a browser and visit a page (visit page), screen-
shot, message (msg) victim, and keylogger. From Table 1, we
can see offerings as low as $12 per week, which lowers the
technical and financial barrier required for any cybercriminal
to participate.

Takeaway-1: Stealers contribute to the credential harvest-
ing phase. Stealers have a mature and competitive market
that lowers the financial and technical barrier and caters to a
wide range of cybercriminals. Hosted Stealer services appear
to require little upfront cost and can potentially offer a large
return on investment from the resale of credentials.

3 Data and Methodology

In collaboration with MalBeacon, we had initially set out to
answer our research questions and gain insights that can help
researchers develop better defenses (detection and prevention)
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Figure 2: An overview of Stealer data collection.

Table 2: A list of data sources used in this study.

Dataset Description Source
Stealers Stealer tracker MalBeacon
Active DNS Domain reg./resolution ActiveDNS Project [33]

US ISP, Global Recursives,
Nameserver Authority, TLD Authority
URLScan [34], VirusTotal [35]

Threat Intelligence ~ Malware and domain intel.  IP Reg. [36], bot tracker [37]-[39]
residential and mobile proxies [40], [41]

Recursive and authority

Passive DNS domain lookups

Table 3: Stealer dataset fields summary.

Field Name Description Unique

Timestamp The time a tracking event was 202,538
observed.

IP Address IP address used by the operator 21812
to access the panel server.

User-Agent Uiser-agent smng’assoc.lated 1,484
with the operator’s device.

Cookie ID A session identifier set })y the 5552
tracker for the operator’s browser.

Panel Web The referrer field sent to the 27.823

Address tracker. ’

and aid law enforcement to pursue cybercriminals more effec-
tively (deterrence). Unfortunately, the Stealer dataset alone
does not allow us to fully explore these questions; therefore,
we must augment the dataset with external data sources. We
rely on DNS and threat intelligence. The DNS dataset char-
acterizes DNS records, volumetrics, and client resolutions.
The threat intelligence datasets enrich, validate, and identify
additional artifacts of malicious infrastructure. Table 2 sum-
marizes our data sources.

Scope. Our work investigates the harvesting phase of the
credential theft lifecycle. The resale and distribution of the
credentials throughout the underground forums or other illicit
markets are out of scope. Specifically, this work studies one
harvesting channel, namely Stealer malware, their Stealer
operators, and the service providers, which we highlight with
a dotted box in Figure 1. Readers can refer to prior works [2],
[51, [9], [12], [13], [18] on credential theft profits.



3.1 Data Sources

Stealers Dataset. MalBeacon, a threat intelligence com-
pany, provided us with access to their commercially available
Stealers dataset. MalBeacon tracks many Stealer families,
which are listed in Table 1. In our initial analysis, we noticed
a skewness in the dataset that can potentially be attributed to
the malware’s (Lokibot, Formbook, AZORult) popularity in
the wild [23], [27], [42], limitation of the data collection pro-
cess, or a combination of both. MalBeacon uses a proprietary
pixel-tracking technique, similar to email marketing, embed-
ded into artificial credentials, documents, and other sensitive
information that Stealers target. When the operator views the
stolen information, the browser will request the embedded
pixel from MalBeacon’s server and reveal information about
their device (IP address, user-agent, etc.).

Figure 2 is an overview of how MalBeacon collects the
Stealer dataset. Step @ the Stealer infects a system and sends
stolen artificial data with the embedded pixel (@) to the C&C
server, which is committed to the backend storage (). Next,
when the operators use their device (@) to connect to the
C&C server (@), they log in to the management panel (®)
where the embedded pixel gets rendered (@). Before the pixel
can render, the operator’s browser will connect to the pixel
server (@) to retrieve the pixel. The pixel server logs the
HTTP request from the operator’s browser into an activity log
database and generates a unique random long-lived cookie
ID that is sent back in the response header. Any subsequent
requests by the operator would include the cookie ID, which
enables tracking operators across different panels. Table 3
summarizes the dataset fields and their counts.

MalBeacon did not disclose the proprietary implemen-
tation details for their system, but we demonstrate how
to collect a similar dataset using the approach found
in Nachum et al. [43]. In brief, Nachum et al. mod-
ify stolen system artifacts by inserting an HTML im-
age tag alongside the original in the following for-
mat: Original Value + Image Tag, i.e. “DESKTOP-
UUIKCDG<img/src=//domain.tld/name.gif>." When the
stolen artifacts are rendered in the HTTP panel interface
(C&C), the operator’s browser will callback to the image
hosting server and the hosting server will log the IP address,
user-agent, and HTTP headers. To test this hypothesis, we
implemented the system found in Nachum et al. and tested
five Stealer malware families (Amadey, Azorult, BlackNet,
LokiBot and Neutrino) for the following browsers: Chrome
96.0.4664.45, Firefox 94.0.2, and Edge 95.0.1020.44. We col-
lected the same fields (IP address, user-agent, HTTP header)
by using a Windows 10 virtual machine and hooked system
calls to modify values such as the IP address (Amadey, Neu-
trino), Computer Name (Azorult, BlackNet), Global Unique
Identifier (Lokibot) and Bot Name (Neutrino).

Additional fields can be utilized to insert the pixel code,
but we leave that for future work. We were able to induce a

pixel callback and cookie ID persistence for all families and
across all three browsers. When testing with private browsing,
we observe the cookie IDs are cleared after each session. Our
testing found that privacy features on modern browsers trim
the full referrer field. Specifically, we observed that starting
with Firefox 87 and Chrome 89 the path and the query string
information of the referrer field are missing [44]. The privacy
feature impacts future collection of similar dataset and limits
our cookie merging and malware labeling methodology. How-
ever, in this work, the Stealers dataset was collected before
the browser privacy change (March 2021).

DNS Datasets. We use the aDNS from the ActiveDNSPro-
ject [33]. The project resolves over 1,100 different zones and
includes resolutions for Alexa’s Top 1M and public blocklists.
Each domain is resolved two times during a period of 24-
hours. We use aDNS to investigate Stealer infrastructure by
enumerating relationships between observed IPs and domains.
Furthermore, we use three passive DNS (pDNS) datasets from
a US-based internet service provider (ISP), geographically
distributed local and global DNS resolvers, and an authorita-
tive nameserver responsible for several zones and a top-level
domain (TLD) authority. The pDNS datasets are anonymized
to exclude any customer-related information. We use pDNS
to amplify the coverage of the stealer domain resolutions and
estimate potentially infected networks resolving the stealer
domains. Combining these datasets we get global visibility
from over 80 million internet-connected devices.

Threat Intelligence Datasets. We use eight threat intelli-
gence sources, namely URLScan [34], VirusTotal [35], IP
Registry [36], residential and mobile proxy dataset [40], [41],
and botnet trackers [37]-[39]. URLScan implements a web-
site scanning engine to analyze JavaScript, HTML, and em-
bedded content to detect malicious code. VirusTotal (VT) is
a threat-sharing platform used by hundreds of commercial
companies and thousands of security researchers to share ma-
licious indicators. IP Registry is an IP intelligence service that
collects and correlates data from partner networks and public
sources like BGP tables, regional internet registry databases,
internet service provider data, geofeeds, and latency measure-
ments. The data provides coverage for 99.9% of the IPv4
space but excludes loopback, link-local, multicast, private,
site-local, and wildcard IPs. The botnet trackers use open
source threat intelligence to track C&C servers. The residen-
tial and mobile proxy datasets are sourced from an academic
study [40], [41] that includes 6.42M residential IPs collected
between May 2017 and February 2018 and 8 M mobile proxy
IPs collected between April and August 2019.

3.2 Data Validation

The raw pixel server logs contain HTTP request records where
each record has a timestamp, the source IP address, and the
HTTP header. MalBeacon processes the HTTP headers into
three fields, namely the user-agent (UA), cookie ID, and refer



field. The final dataset format is a JSON file that contains the
fields in Table 3. Our initial analysis of the Stealer dataset
aims at validating the dataset by inspecting the consistency of
user-agents, the persistence of cookie IDs, the identification
of C&C instances, and the labeling by malware families.

User-Agent Validation. To investigate if the UA strings
are potentially spoofed, we analyze the number of unique
browsers and operating systems per cookie ID. If UA spoofing
was present, the browser and operating system of the UA per
cookie ID would change. We found six (0.01%) cookie IDs
with more than one unique browser and 25 (0.45%) cookie
IDs with more than one operating system. Manual inspection
of those records reveal six cookie IDs with multiple versions
of the Windows OS, four cookie IDs with multiple versions
of macOS, and 12 cookie IDs with other operating systems
(Linux, Android, etc.), which suggests potential UA spoofing.
On the other hand, 99.55% cookie IDs have only one op-
erating system and browser with 73.23% having only one
browser version. The rest change their browser version but
they are consistent with the release of browser updates. For
example, we find 50% of the devices update their browser
within 21 days or sooner and 75% update their browser ver-
sion within 41 days or sooner. However, a set of records from
Firefox have versions before the update release, which can
indicate spoofing or beta/early testing. Those UAs were as-
sociated with 145 cookie IDs and 6,068 records. In total, the
potentially spoofed UAs account for 6,243 (3.0%) records
associated with 170 (3.0%) cookie IDs. We discard those
records when we perform operator device measurements.

Table 4: Top 10 user agents and related statistics.

oS Browser Cookie IDs C&C Update (Days)

Windows 7 Chrome 75.0.3770.100 116 119 22.50
Windows 10 Chrome 79.0.3945.130 112 110 24.15
Windows 10 Firefox 68.0 112 140 36.32
Windows 10 Firefox 69.0 111 113 47.23
Windows 10 Chrome 75.0.3770.142 109 120 53.54
Windows 10 Chrome 75.0.3770.100 108 122 21.74
Windows 10 Chrome 73.0.3683.103 95 88 28.57
Windows 10 Chrome 74.0.3729.169 88 109 22.31
Windows 10 Firefox 70.0 82 96 24.95

Windows 7 Chrome 75.0.3770.142 80 72 17.46

Lastly, we analyzed the top 10 UAs found in the dataset and
present the results in Table 4. We group by OS and browser
and count the associated cookie IDs, C&C, and the average
days between a browser update release and a UA change. The
most popular OS is Windows and the most popular browsers
are Chrome and Firefox. We found on average there are 1.25
cookie IDs associated per C&C, while 75% of the C&C in-
stances are associated with a single cookie ID. Although,
these statistics imply that the overwhelming majority of the
UAs are not spoofed, an operator can still spoof the most
popular UAs to masquerade their true device fingerprint. This
is an artifact limitation that we can not verify from the dataset.

Realistically, to spoof a popular UA, an operator must know
the most popular UAs in use with a particular C&C panel.

Cookie ID Persistence. We refer to the ephemeral cookie
IDs as cookie churn, where a device is assigned multiple
cookie IDs over time because they are not persistent. We find
the ratio of cookie IDs per C&C panel to be on average 1.59
with a median of one and a maximum of 67, which implies that
cookie churn is present in a subset of the dataset. We address
the cookie churn problem by applying a similar technique
to the work of Dasgupta et al. [45]. Briefly, Dasgupta et al.
address cookie churn for user-modeling and reach-frequency
in the context of online advertisement. User-modeling refers
to estimating how many users visit a particular site (users per
C&C panel), whereas reach-frequency refers to how often an
individual user visits a particular site. In our study, we focus
on user-modeling to address the cookie churn problem.

We use the OS, browser, and panel URL as device pro-
files. In addition, we use two cannot-link constraints, namely
cookie lifespan overlap and browser version. Cannot-link con-
straints are logical constraints that can disambiguate distinct
but similar device profiles. For example, the cookie ID’s lifes-
pan interval (last seen - first seen) cannot overlap. If two
device profiles use Windows 10 and the Chrome browser,
but the lifespan of their cookie IDs overlap, then we assume
that those two devices are distinct since they access the same
C&C from similar devices but using different cookies. The
browser version constraint merges cookie IDs if and only if
the browser version in later records are greater than or equal
to the browser versions in earlier records per C&C panel.

We design and implement Algorithm | to analyze and
reconcile multiple cookie IDs belonging to the same device.
The input takes a set of C&C panels and retrieves a set of
devices that access the panels (line 2). A device is a tuple of
UA string and cookie ID, where the UA is parsed for the OS,
browser, and browser version. Once we have a set of devices
(D), we group the records by the OS and browser and sort
them by the first seen date (lines 3 and 4). For each group
(g), we iterate through the cookie IDs and either allocate
a new cluster (line 9) or merge on the profile features and
cannot-link constraints (line 16). Since we lack the ground
truth to evaluate the accuracy of Algorithm 1, we define an
error metric called ambiguous merge error to quantify missed
merges. Our merge policy coalesces cookie ID candidates
with the earliest cluster (first seen) and therefore, the metric
captures how many other clusters the candidate cookie ID
could have merged with.

We calculate the ambiguous merge error (AME) using the

following formula: AME = % More specifically,
we calculate the AME per group (g;) since the merge error
can only occur when the profile features and cannot-link con-
straints are met for more than one cluster per group. We found
872 groups with at least two cookie IDs. We skip groups with

one cookie ID since they cannot be merged. Out of the 872,



Algorithm 1: Merge device’s cookie IDs.

Input: A set of unique C&C (C2)
Result: Merged Cookie ID Clusters
Merged + {}

1
2 D + GetAssociatedDevices(C2)

3 G < Group(D , by=[OS ,Browser])

4 for g in G.sortAsc(firstSeen) do

5 for i=0 to g.size do

6 if g; in Merged

7 ‘ continue

8 Merged.addNewCluster(g;)

9 for j=i+1 to g.size do

10 for ¢ in Merged.GetClusters() do

11 if g;.lifespan not overlap c.lifespans
12 and |g;.C2Nc.C2| > 1

13 and gj.browser_ver > c.browser_ver
14 ‘ MergeWithCluster(c , g)

15 return Merged
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Figure 3: Distribution of AME per top largest group.

we detected merge misses in only 29 groups. Furthermore, 19
out of the 29 groups that have merge misses are in the top 100
largest groups. The largest AME value is 1.22, which indi-
cates that the merge is ineffective, i.e merge error over 100%.
This merge error belongs to the 89" largest group, which had
nine unique cookie IDs and 11 possible merge combinations
(ambiguous merges).

We discard groups that have large AME values (more than
0.20) for the analysis. We summarize the distribution of AME
for the largest top 10, 100, and all groups in Figure 3. We find
eight out of the 10 largest groups have less than 0.1 AME
rate. Additionally, five out of the 10 largest groups have 0.0
AME rate, which gives us confidence in the results since these
groups have many cookie ID nodes. For example, group two
has 68 unique cookie IDs and a merge collision count of 0.
Beyond the AME metric, we manually inspected the top 100
groups to ensure that Algorithm | correctly coalesced cookie
IDs and accounted for merge misses.

C&C Instance Identification and Labeling. The Stealer
dataset does not contain any malware family labels or panel
instance distinction, which makes our analysis challenging.
Identifying and labeling the panel instances is an important
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Figure 4: Panel signature generation and identification.

task that allows us to discern between different malware fam-
ilies and hosting infrastructure. We perform three labeling
tasks, namely the identification of panel instances, panel mal-
ware families, and panel dynamic DNS domains. A single
host can serve multiple panels. We define a panel instance
(IT) by the domain or IP address (8) and URL path (p). More
formally, IT = {3,p} where the § can be a domain or an IP
address and p is the URL path starting from the domain/IP
to file name and extension (y). For example, the following
illustrates the components of a panel URL address:
9 Y
/___/\—-'\ A
http://domain.tld/path/file.ext?param=1

—~
Y

For records that do not contain URL paths, we label as un-
known and exclude. Next, we assign a malware family label to
the panel instances. We rely on the panel’s URL components
such as the path (p), file name and extension (), and parame-
ters. We manually create Stealer family label signatures based
on leaked source codes and panel tracker services [37]—-[39].
Figure 4 presents our labeling process. In step one (@), we ex-
tract URL patterns and labels from our source code and panel
trackers. Next (@), we use the strings and their order to gen-
erate a fingerprint for each Stealer family. In step three (@),
we store the signatures and the family labels in the database.
Finally, in step four (@), we label the panel instances based
on the derived signatures. The signatures are in the form of
regular expressions. From the 202, 538 records in the Stealers
dataset, there are 15,237 (7.5%) records associated with 357
(6.7%) panel instances with unknown labels. We attempted to
use the AV labels from the malware files associated with each
panel instance; however, we found them to be unreliable and
noisy [46]. For Effective Second-Level (E2L) Dynamic DNS
domains (DDNS), we manually verify them to ensure there
are no false positives and we use pDNS to identify domains
with 50 or more subdomains.



3.3 Affiliation Modeling and Analysis

To identify business affiliations, we model the operator de-
vices and C&C panel interactions as a bipartite undirected
graph G(V, E) and perform link analysis. We create a vertex
for each operator device (D;) and panel (I;), i.e. D, IT€ V.
We construct edges (e € E) between vertices for each record
in the Stealer dataset. Next, we extract connected compo-
nents (subgraphs) from the global graph. For each connected
component, we calculate the operator device (D;) centrality
in the subgraph using eigencentrality.

FEigencentrality measures the influence of a node in a graph.
Intuitively, eigencentrality value is calculated based on con-
nections to other high-scoring nodes. Since the bipartite graph
has only edges between different node types (operator and
panel node), the operator device node’s eigencentrality will
be calculated based on the collective scores of all neighbor-
ing panel nodes. An operator will have a relatively larger
eigencentrality value (influence) if they are associated with
more panel nodes in a connected component. We calculate
the eigencentrality using the adjacency matrix of a graph
A = (a; ), such that the eigencentrality x; of node i is:

1
X =y Y arix
k

where A # 0 is a constant. We calculate A from the largest
eigenvalue associated with the eigenvector of the adjacency
matrix A, such that
Ax = Ax

Lastly, we treat each connected component as a potential
Stealer service provider and the most influential operator
devices (highest eigencentrality) are most likely the service
administrators. We base this assumption on the conjuncture
that the influential operator device nodes have privileged ac-
cess to many panels, but the service customers do not have the
same access. In summary, the bipartite connected component
and eigencentrality are meant to identify service providers,
associated infrastructure, and customers of the service.

4 Ethical and Legal Considerations

We take our ethical and legal responsibility seriously and
ensure our study does not violate widely accepted norms.
Our institute reviewed our request for an IRB and concluded
that we do not require an IRB review. We also presented our
study to the institute’s Office of Cybersecurity for compliance
and they did not have any concerns. This study uses data
collected by MalBeacon, which is a US-based commercial
company that operates and adheres to the Computer Fraud
and Abuse Act (CFAA). The collection technique does not
actively scan, exploit, or social engineer the malware operators
in any way, and an external legal review committee reviewed
MalBeacon ’s tracking method and deemed it compliant with
the Computer Fraud and Abuse Act (CFAA) and the Directive
on attacks against information systems. The approach relies

on honey tokens that are used in many studies [47]-[53] dating
back to 2004. Moreover, our analysis of the dataset follows
the precedence of prior works that study similar malware
operator activities [6], [11], [54].

Research of criminal activity often involves deception or
clandestine research activity [55], [56], so requests for waivers
of both informed consent and post-hoc debriefing may be
relatively common as compared with research studies of non-
criminal activity. Support for such waivers is recommended
when the research involves no more than minimal risk to the
subjects, and the research could not be carried out without
the waiver. For the Stealers dataset, deception is necessary
to obtain data that characterizes the Stealer ecosystem. Such
studies are considered permissible when (1) the research ad-
dresses important questions of public concern, (2) the research
cannot be conducted if the subjects must provide consent, and
(3) involving subjects in the research without their permission
does not significantly compromise their autonomy. This study
meets all three criteria and the scope follows well-established
Menlo guidelines. Furthermore, our study is an analysis of
a commercial dataset (passive observations) and does not di-
rectly implicate any malware operators or cause direct harm.

Finally, the data does not contain any personally identifi-
able information (PII). The IP address can be considered as
PII with additional auxiliary data, but not by itself. From a
law-enforcement perspective, an IP address can be subpoe-
naed from the ISP to get PII information about the person
leasing the IP address at a given time. We do not have legal
authority or access to auxiliary information to identify individ-
uals. Despite those well-established guidelines on deceptive
studies and issues regarding PII, we note that computer secu-
rity research is more like behavioral research in the sense that
the risks typically are not physical, and they can be difficult
to quantify. Although evidence indicates that harm resulting
from deceptive experiments is minimal and transient, it is
still incumbent upon us to identify and minimize potential
harm. We reiterate that we take our responsibility seriously
and ensure our study does not violate the ethical norms.

S Analysis Results

To answer our second research question (RQ2), we study how
Stealers use internet infrastructure and analyze how Stealer
operators administer their botnets by characterizing their de-
vices, networks, and activities.

5.1 Stealers on the Internet

Our analysis of the Stealers public code shows that Stealers
require minimal hosting infrastructure. We further seek to
characterize Stealer hosting on the internet. More specifi-
cally, we characterize the domains and hosting networks of
Stealers, quantify the detection delay between infrastructure
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ciated malware. and detection.

setup and blocklist detection, and assess the potential infec-
tions indirectly through the DNS dataset.

Internet Infrastructure. The Stealers dataset contains
2,187 registered domains, out of which 78 are DDNS and
web hosting domains, and 281 panel hosting IP addresses
for a total of 2,468 unique panel servers (hosts). This count
excludes the two bogon panel IP addresses and three popular
non-malicious domains in the Alexa top 100K [57]. Table 5
summarizes the top 10 top-level domains (TLD) count for
effective second-level domains (E2LD)s of the C&C panels.
For the panel domains, we find 41.4% use the COM TLD fol-
lowed by 19.0% that use free country code domains (ccTLDs)
like TK, ML, CF, and GA. Free ccTLDs are known to be heav-
ily abused by malware [58]. The right side of Table 5 summa-
rizes the top ten network names for the C&C panels, which
account for 70% of the hosts. About 30.9% use US-based
hosting (Cloudflare, Namecheap and Unified Layer), 15.8%
use Russian-based hosting (Reg.ru, SelecTel, Mail.Ru, The
First and IHOR-AS), and 12.2% use Chinese-based hosting
(Alibaba cloud and Tencent).

In Figure 5, we present the distribution of panels and asso-
ciated malware files per host and per panel, respectively. Note,
that we differentiate between the host and the panel since
a host can serve multiple panel instances. We observe that
64% of the hosts serve a single panel, 26% of the hosts serve
between two and four panels, and 9.8% of the hosts serve
five or more panels; the largest host has 71 panel instances.
We find 61.5% of the hosts have 10 or fewer malicious files
associated with them. The number of malware files per panel
and host has a maximum value of 43 and 249, respectively.

Table 5: Top 10 TLDs and hosting networks for panel hosting
server domains.

TLD Domain (%) Type Reg. Cost \ Network Domain (%)
COM 874 (41.5%) Commercial $8.38 | CLOUDFLARENET 308 (14.1%)
GA 107 (5.0%) Country Code $0 | NAMECHEAP-NET 263 (12.0%)
XYZ 105 (4.9%)  General $0.99 | CNNIC-ALIBABA-US-NET-AP 197 (9.0%)
ML 97 (4.6%) Country Code $0 | UNIFIEDLAYER-AS-1 105 (4.8%)
INFO 94 (4.4%)  Information $2.99 | SELECTEL OO0 86 (3.9%)
TK 79 (3.7%)  Country Code $0 | AS-REGRU 79 (3.6%)
ICU 73 (3.5%) Business $1.99 | TENCENT-NET-AP-CN 71 (3.2%)
CF 66 (3.1%)  Country Code $0 | Mail.Ru LLC 64 (2.9%)
TOP 61(2.9%) General $0.99 | THEFIRST-AS JSC The First 61 (2.8%)
GQ 56 (2.6%) Country Code $0 | THOR-AS Thor Hosting 57 (2.6%)

for events and detection.

Detection of Stealer Hosting. Next, we want to assess if
public blocklists detect Stealer infrastructure and if they do
what is the time difference between the domain setup and
detection. This will help us understand if current defenses
against Stealers are effective and identify limitations that
researchers can improve on. We find that 95% of the Stealer
hosts appear on VT historical blocklist. Surprisingly, 123
hosts do not appear on public blocklists. We investigated the
123 hosts and did not find any notable difference from the
detected domains. Figure 6 quantifies the detection timeline
for 52.58% of the newly registered Stealer domains that had
no prior DNS history (first-time registration). The plot shows
the distribution of the events for new DNS records (solid blue
line), malicious detection (dotted orange line), and the first
operator activities in the Stealers dataset (dashed green line).

The average and median time for the first observed DNS
record is 15 and two days, respectively. The pDNS data shows
that DNS records are set within the first week after registra-
tion for 77% of the domains. We find the average and median
time for detection is 74 and 11 days, respectively. Notably, the
operators continue to access the Stealer hosts even after de-
tection for an average of 74 days. On the other hand, 53.26%
and 69.03% of the Stealer hosts stop operating 14 and 30
days after appearing on blocklists, respectively. For 43% and
28% of the newly registered panel domains, we find that they
are detected within one week and after two months, respec-
tively. For the remaining Stealer domains go undetected for
an average of 64 days and a median of six days after their first
DNS resolution. Within the undetected domains, 33% remain
undetected for more than a month.

We observe, on average, 87 days between registration and
first appearance in the Stealers dataset, with a median of 20
days. MalBeacon integrates with VT to share samples, which
may correlate with the median time to detection (20 days).
Additionally, Figure 7 shows the time window distribution
for the first and last seen activity from the Stealers dataset
centered around the first malicious detection of a panel host
observed in VT. We find that almost 70% of the panel hosts
appear in the Stealers dataset within seven days or less after
their first detection. In summary, Stealer hosts are provisioned
within two weeks and they appear on blocklists within 74 days



on average and operators continue to access the Stealer hosts
for an average of 74 days after their detection.

Assessing Victim Targeting. To understand the impact of
Stealers, we estimate the number of targeted victims. To get
an accurate estimate, we would require direct access to the
C&C server, which we do not have. Instead, we use the pPDNS
dataset to estimate the number of potential infections by ana-
lyzing the DNS resolutions. We quantify the number of DNS
resolutions by network types and countries during the active
time frame of each domain in the Stealers dataset. We define
a network by the EDNS Client Subnet (ECS) [59], [60] found
in the DNS resource records for clients resolving domains
above the recursive, where the DNS recursive query the upper
DNS hierarchy (i.e., TLDs and authoritative name servers). It
is important to note that the results are associated with subnets
and not IP addresses, which can underestimate the number of
targeted victims. Moreover, the analysis is based on potential,
not confirmed, infections.

We observe a total of 255,925 unique networks, but we
were only able to label 167,989 (65.6%) networks. We
present the results in Table 6. The table has four parts, namely
the Client Networks, Residential Networks, Business Net-
works, and Government Networks. The Client Networks is a
breakdown of all 167,989 labeled networks. The Residential
Networks is a breakdown of the networks that belong to resi-
dential subnets grouped by country. The Business Networks
is a breakdown of the networks labeled business subnets
grouped by country. The Government Networks is a break-
down of the networks labeled government subnets grouped
by country. For each network label, we show the number of
networks (Count), lookup volume (Vol), days queried (Days),
and rate of lookup volume (Vol/Day).

We find that 40.5% of the resolutions originate from Host-
ing networks. These networks appear to be associated with
virtual private server (VPS) providers, cloud providers (i.e.
AWS, OVH, Azure), and content delivery networks (CDNs),
see Table 10 in Appendix A. The rDNS records show that
VPS and cloud networks account for virtual private network
(VPN) services. Moreover, a portion of cloud networks and
most of the CDN’s appear to be internet scanners or security
tools. These observations align with prior works on malicious
domain sinkhole analysis [61]. However, we believe many of
the hosting networks are very unlikely to be infected clients.

We observe ISP/Telco and Residential networks as the
second and third most popular networks, respectively. The
residential networks are more likely to be victims since ISPs
designate the space for home users. For the Residential Net-
works, we observe that Chinese clients make up 14.1% of
the potential infections followed by Morocco (11.2%), India
(8.6%), and the United States (7.7%). Notably, we find 207
government networks resolving Stealer domains. We took a
closer look at the 113 U.S. government networks and found a
mix of federal (24), state (32), and local (58) government net-
works. At the federal level, we found high-profile government

networks like the U.S. Social Security Administration (4), the
U.S. House of Representatives (2), and the U.S. Senate (2).

Investigating further, we found a total of 107 DNS re-
sponses for 27 different Stealer domains from August 2019
to November 2020. More specifically for the U.S. Senate
network, we observe a total of 12 distinct resolutions for
nine domains from January 2020 to July 2020. These DNS
resolutions originate from what appears to be the DNS recur-
sive servers for the U.S. Senate network. This suggests that
there may be more infections because the DNS resolutions
are typically cached. Nevertheless, the sensitivity of these
government networks, including the U.S. Social Security Ad-
ministration, demonstrate the far reach and impact of Stealers.
Finally, the infection period for all 28 domains appears to ex-
tend over a year, giving operators ample time to execute other
capabilities (keylogging, drop malware, reverse shell, etc.).

Takeaway-2: We find Stealer infrastructure to require min-
imal hosting resources and abuse services such as free ccTLDs
and cloud-fronting. Moreover, public blocklists detect Stealer
domains on average 74 days after initial registration with a
median of 11 days. This detection gap gives Stealers ample
time to infect and harvest credentials from a wide range of net-
works. Their long-lived activities may be problematic, as they
allow operators time to exercise other malware capabilities
(i.e., install ransomware [17]).

5.2 Characterization of Operators

The Stealers dataset provides a unique vantage point to char-
acterize how Stealer operators manage their botnet using the
C&C panels. We take a closer look at how operators interact
with the C&C panels through their devices and shed light on
their tactics.

Device and Network Characteristics. Characterization of
the device and network association can inform researchers
about common patterns used by cybercriminals. These char-
acteristics can help build heuristic-based defenses that profile
device and network properties to flag suspicious and unau-
thorized access. On average, operator devices access panels
using 6.66 IP addresses that belong to 1.95 autonomous sys-
tems (ASNs). The largest number of IP addresses associated
with an operator device is 230 and they belong to nine ASNs.
Moreover, the standard deviation for operator device IP ad-
dresses is almost double the average (12.7). When looking
at how operators access their C&C panels, we find, on av-
erage, operator devices access 1.62 unique panel instances,
1.51 unique domains, and manage 1.04 malware families.
The operator device with the most panel instances accesses 57
unique panels hosted on 42 distinct domains. We took a closer
look at this particular example and found that the 42 distinct
domains use algorithmically generated domains (DGA).
After applying the cookie merging algorithm (Algorithm 1),
we find operator devices to be associated with 1.17 cookie IDs
on average. The operator device with the most cookies has



Table 6: Networks resolving stealer domains by country for residential, business, and government networks.

Client Networks Residential Networks

Business Networks

Government Networks

Type Count (%) Countries Count (%) Vol. Days Vol/Day ‘ Countries Count (%) Vol. Days Vol/Day ‘ Countries Count (%) Vol. Days Vol/Day
Hosting 67,958 (40.5) | China 4,187 (14.1) 607,282 473 1,283 | United States 25,315(92.8) 1,441,020 500 2,882 | United States 113 (54.6) 40,161 328 122
ISP/Telco 37,463 (22.3) | Morocco 3,313 (11.2) 47,854 351 136 | Vietnam 619 (2.2) 2,004,091 348 5,758 | Canada 14 .(6.7) 405 25 16
Residential 29,595 (17.6) | India 2,556 (8.6) 135,815 466 291 | United Kingdom 309 (1.1) 1,652,777 420 3,935 | China 8(3.8) 604 139 4
Business 27,269 (16.1) | United States 2,293 (7.7) 195,714 481 406 | S. Korea 152 (0.5) 18,798 276 68 | Italy 6(2.9) 265 60 4
Education 5,143 (3.0) | Iran 1,479 (5.0) 16,929 429 39 | India 117 (0.4) 5,399 287 19 | Indonesia 52.4) 7 6 1
Government 207 (0.1) | Mexico 1,410 (4.7) 75,469 403 187 | Nigeria 108 (0.4) 7,615 212 36 | Israel 4(1.9) 235 57 4
Health 188 (0.1) | Indonesia 1,360 (4.6) 48,557 352 137 | China 69 (0.2) 182,895 361 506 | India 4(19) 4,264 80 53
w \LNeDekflJay\Bluma“ty Operator Device Count and find 882 (4.04%) mobile proxy records that match against
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e O D O X > 2 > y United States 1,936 161 (8.32%) 36 (1.86%) 15 (0.77%)
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Figure 8: The diurnality for the top 20 countries of operator Netherlands 418 33 (7.90%) 31(7.41%) 5 (1.20%)
K L. K . i Turkey 291 19 (6.52%) 16 (5.50%) 0(0%)
device activity (dark more active and light less active). Canada 279 23 (8.24%) 24 (8.60%) 3(107%)
France 231 28 (12.12%) 21 (9.09%) 2 (0.86%)
Norway 222 4(1.80%) 4(1.80%) 0(0%)

55 unique cookie IDs. This device used the same operating
system, browser and browser version for over a month to ac-
cess the same panel with 55 unique non-overlapping cookies,
suggesting cookie churn.

In the entire Stealers dataset, there were 465 (10.14%) op-
erator devices that have more than one cookie ID. We find on
average 5.7 more IP address associations for these devices.
Cookie merging (Algorithm 1) helped us build a complete
profile for these operator devices and uncover related IP ad-
dresses and ASN associations that otherwise we would have
missed. Cookie churn fragments access patterns and should
be addressed to build a more complete device profile. Addi-
tionally, operator device profiles appear to be diverse and can
distinguish between different operators.

Networks Access Patterns. We analyze the network types,
the use of proxies, and the localized diurnal access times to in-
vestigate the access patterns. In total, operator networks origi-
nate from 135 different countries with different network classi-
fications. The networks classifications include ISP (11.55%),
ISP-Mobile (55.14%), and hosting networks (31.71%). In-
terestingly, we find over half of the operator networks are
classified as ISP-Mobile. The bar graph in Figure 8 presents
the top 20 countries for operator device networks. We find that
most of ISP (80.32%) and ISP-Mobile (84.72%) networks are
located in Nigeria. Revealingly, 99% of the internet broad-
band in Nigeria relies on mobile wireless connections [62].
Using the residential and mobile proxy dataset [40], [41], we
intersect the timestamp and IP address of each operator device

Furthermore, we analyze the number of Tor exit nodes
associated with the operator networks and present the over-
lap per country in Table 7. Nigerian IP addresses make up
about 53.73% of the operator networks and 42.55% of those
were observed as proxy networks. Additionally, the top net-
works classified as hosting appear to be strongly associated
with VPN services. For example, we find most hosting net-
works to be located in the US, Great Britain, Germany, and
the Netherlands, and the top 3 ASNs are: AS9009 M247
Ltd, AS198605 AVAST Software s.r.o. and AS205016 HERN
Labs belong to VPN services [63]-[65]. We crosschecked
the hosting networks with IP intelligence feeds and found
that IPRegistry [36] labels them as VPN networks. These
findings suggest that Stealer operators make use of different
proxy networks like residential, mobile, Tor, and traditional
VPN services when accessing the management panel. These
findings demonstrate that operator profiling can be involved
and naively using the operator networks to attribute cyber-
criminals can be inaccurate.

Operator Device Diurnality. Diurnal analysis can provide
another perspective into the nature of operator device access
and can be used as an additional confluence signal for the
geographical location. We quantify the access frequency for
only ISP-based 1P addresses that are not found on the proxy
lists. The time zones for the diurnal analysis are localized
to the geographical region associated with the operator’s IP
address. Figure 8 presents the diurnal access patterns for
ISP-based (Mobile and Landline) operators. We present the



top 20 countries, which account for 95.60% of the ISP-based
operator device IP addresses in the dataset, and make up
63.70% of the IP addresses of the entire dataset. The time
zone localization shows higher activity on the weekdays than
the weekends for most countries. For example, the Nigeria
diurnal profiles have double the activity on the weekday in
comparison with the weekends.

The results suggest that most operator devices are more
active on weekdays regardless of the potential victim con-
nections. Those diurnal activities can imply that operators
manage Stealer as a full-time job as they are mostly con-
necting during weekdays. The higher activities observed on
the weekend for some regions (Russia, Spain, Nambia) can
suggest these operators use proxy networks and do not neces-
sarily reside there. More importantly, these observations can
provide higher confidence in the operator device profiles when
combined with other signals (device fingerprint, network, and
access profiles).

Takeaway-3: Operators use proxy services ranging from
traditional VPNs to mobile and residential proxies, to Tor
networks. In particular, the mobile and residential proxies
can cause misdirection when characterizing operator profiles.
We find that the cookie IDs are fairly persistent with the
majority of the devices in the dataset, but for some operators,
private browsing results in ephemeral cookie IDs. The diurnal
analysis suggests that operators administer their botnet as a
full-time job.

5.3 Operator Affiliations

We extend our analysis to understand operators’ affiliations
based on shared C&C panel access, i.e., distinct operator de-
vices accessing the same C&C panel. Specifically, we apply
the bipartite graph analysis from Section 3.3 and construct a
global graph for the entire dataset. We extract connected com-
ponents and study each component as an individual affiliation,
which we define as an independent Stealer service provider.

Affiliations. The bipartite analysis found 2,449 connected
components (clusters). Figure 9 shows the distribution for all
nodes, operator device nodes, and panel nodes for the clusters.
The cluster size ranges from two to 449 nodes. We find 98%
of clusters have less than 15 nodes. The top 0.4% of clusters
have 50 or more nodes. We summarize the top five largest
clusters in Table 8. The Table presents the attributes for days
seen, operator device nodes, and panel nodes (infrastructure).
For example, the largest cluster has 285 total nodes, 127 op-
erator device nodes, and 157 panel nodes that were observed
over 689 days. The 127 operators are associated with 1,382
distinct IP addresses and 911 of the IP addresses are potential
proxies. The 157 panels are associated with 92 domains and
three Stealer families. Note that these affiliations are made
up of several distinct operator devices and C&C panels. We
find that the majority of the Stealer services are small and
sparse; however, the top 1% appears to be more connected

and active.

Influential Operators. Next, we examine the node degree
to quantify the panel-to-operator ratio. Figure 10 presents the
distribution of the node degree in the clusters. We observe a
maximum of 57 distinct panel nodes connected to one opera-
tor node. On the other hand, we find 37 distinct operator nodes
connected to a single panel node. Among all operators, we
want to identify the most influential operator for each cluster
by using graph centrality analysis. Figure 11 presents a box-
plot for the top 25 largest clusters. Each boxplot represents
one cluster sorted from largest (leftmost) to smallest (right-
most). We find most clusters have one or two outliers with
high centrality values (>0.4). On the other hand, the majority
of operators in each cluster have a centrality value of less than
0.4. This suggests that operators with high centrality values
play an administrator role for the cluster (service provider).
Furthermore, this suggest that influential operators may be the
service providers and the remaining operators are customers.
We base this assumption on the fact that an operator device
with access to many C&C panels has more credentials than
an operator device with access to a few C&C panels in the
same cluster.

Takeaway-4: The affiliation analysis suggests that the
largest 1% Stealer service providers account for most of the
activities. Moreover, each service provider appears to have
one or two influential operators that have more privileged
access, which suggests those operators play an administrative
role. Our analysis shows a stratified organization per cluster
with different privileges, which supports our operator model
role in Figure 1.

6 Analysis of Top Clusters: Services & Profits

Expanding on the top service providers from the previous
section, we dive into the top five clusters and characterize their
growth, operational cost, revenue, and potential infections.

6.1 Cluster Lifespan and Growth

Recall, that Table 8 presents the attributes for the five largest
clusters. The Table presents the number of days seen for each
cluster based on the activities in the Stealers dataset. The
most active clusters are C1 followed by C2 and C3, respec-
tively. We quantified the growth of each service provider by
analyzing the number of new operators joining each cluster
and found that, on average, one new operator joins the cluster
per week. We visualize the growth in Figure 12. The growth
is not uniform, and we do find some weeks with zero opera-
tors joining and some weeks with up to seven new operator
devices joining. This signifies a consistent growth, in partic-
ular for C1, which suggests that it is the most stable service
provider.

Next, we look at the operator access networks. Operators
per cluster exhibit a similar access trend as the overall analysis
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Table 8: Coarse estimates for Stealer services for the top five components. Estimates are in US Dollar (USD).

Name  Size Days Operators Infrastructure Infected Networks ~ One-Off Ongoing Monthly Estimates
Seen | Count IPs  Proxy | Panels Domains DDNS Hosts ASNs | All  Residential | Cost | Hosting Revenue Profit Margin
Cl 285 689 127 1,382 911 157 92 3 155 34 14,247 6,795 $5481.15 $923.45 $11,834 $10,910.55 92.2%
C2 84 468 15 99 69 68 38 1 88 76 3,931 1,076 $595.25  $199.88 $5,440  $5240.12  96.33%
C3 72 418 37 346 257 34 19 0 35 11 1,997 1,051 $963.3  $37.45 $2,579  $2,541.55  98.55%
C4 68 332 24 167 91 43 22 0 158 47 29 4 $121.61 $638.05 $3,440  $2,801.95 81.45%
Cs 57 415 26 227 139 30 21 0 65 25 23,013 8,153  $2,591.97 $88.94 $1,930  $1,841.06  95.39%
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Figure 12: Operator growth per cluster over one year.

from the previous section, where operators rely on proxies as
shown in Table 8. In particular, 66%, 70%, 72%, 54%, and
61% of observed operator IP addresses for clusters 1-5 are
proxies, respectively. Interestingly, the influential operators
in each cluster have distinct proxy access patterns. For exam-
ple, in C1, the operator uses only US-based proxy networks,
whereas in C2 the operator uses proxies in three different
countries (US, NL, UK). On the other hand, for C3 the op-
erator uses mobile proxies based in Nigeria, and C4 and C5
operators use network proxies based in Switzerland. Notably,
for C2, the operator’s proxy IP addresses appear to be static
because they are reused by the operator for 200 days.

6.2 Analysis of Operational Cost and Impact

The growth results for the top clusters motivated us to investi-
gate each cluster’s cost, revenue, and potential victims. Recall,
the scope of our revenue estimate is to quantify Stealer ser-
vices monetization and we emphasisize that the sale proceeds

of harvested credentials is out of scope.

Cost and Revenue Modeling. Our cost estimate model as-
sumes service providers operate independently and incur two
distinct costs, namely one-off and ongoing costs. One-off
costs (annually) include the domain purchase and the Stealer
kit license, whereas ongoing costs include hosting. To be con-
servative, we assume zero cost if the Stealer kit is leaked
or available as open-source. Moreover, we assume multiple
licenses of Stealer kits are required per FQDN because devel-
opers license per domain. Using IP intelligence, we map the
panel IP address to a hosting provider. We then manually col-
lect the hosting prices for shared hosting, virtual private server
(VPS), and dedicated server. We exclude cloud-fronted hosts
because we cannot identify their hosting provider. We use the
prices per Stealer family in Table 1 to estimate the revenue
for hosted Stealer panels (service offering). We assume the
revenue for the cluster is generated by offering hosted Stealer
services. For example, C1 has three malware families, namely
LokiBot, AgentTesla, and Formbook. We multiply the lowest
license cost from Table | by the number of panel instances
and sum them up for a revenue of $11,834 per month.

Comparing Cost, Revenue, and Profits. Table 8 summa-
rizes the cost (one-off and ongoing), revenue, and profit mar-
gin. We find the range of the one-off cost between $121.61
and $5,481.15 per year. Notably, C4 has a relatively smaller
one-off cost because C4 only hosts LokiBot malware fam-
ily, which does not have a license cost (leaked source). We
find the range for the ongoing cost per month to be between
$37.45 and $923.45. C3 has the lowest ongoing cost because
the majority of the domains are cloud-fronted and we could
not identify their hosting providers. The most expensive op-
eration is C1, where operators use 155 distinct hosts to serve
157 panel instances, which also supports our observation for
being the most stable service from the growth analysis. We



find the revenue to range between $1,930.0 and $11,834 per
month. C1 has the largest operational revenue but a relatively
lower profit margin. C1 offers three different malware family
panel hosting, including LokiBot, Formbook, and AgentTesla,
while the rest of the clusters only offer LokiBot and Formbook
panel hosting. This suggests that Stealer service providers
can be highly profitable with margins that range between
81.45% and 98.55%.

Surprisingly, C2 has half of the number of hosts but their
monthly cost is about 10% of C1. C2’s low hosting cost can
be attributed to the fact that 56 out of the 88 hosts appear
to be compromised residential and business devices. These
networks appear to be compromised since their rDNS records
map to ISP customers (business and residential) but do not
appear in the proxy dataset. Most of these networks (54 out
of 76 ASNs) point to one domain . This domain was active
for two months from Nov’19 to Jan’20 and was associated
with 59 IP addresses that belong to 54 distinct ASNs in 21
countries. These results suggest that C2 uses globally infected
hosts to offer panel hosting services and is relatively less
stable in growth than C1. Conversely, C4 has 71% of its
infrastructure geographically hosted in Russia with higher
infrastructure costs than C2.

Potential Infected Hosts. To further compare the service
providers, we take a closer look at their potential victims using
pDNS dataset. In Table 8 under Infected Networks, we present
the number of unique subnets from ECS [59], [60]. Recall,
our earlier analysis suggested that hosting networks are less
likely to be infected victims; therefore, we only quantify the
residential networks. The residential IP addresses provide a
lower bound for the number of potentially infected machines.
We find CS5 to have the largest number of potential infections
with 8,153 unique residential networks followed by C1 with
6,795 networks. Although C4 appears to have a lower number
of potential infections, we attribute it to the lack of coverage
in the pDNS.

Takeaway-5: The top service providers appear to operate
for over a year, have consistent growth, and enjoy over 90%
profit margins ranging from $2000 to $11,000 per month.
Stealer service providers use varying tactics for hosting and
it is reflected in their service stability based on the growth
and lifespan analysis. The hosting infrastructure varies from
infected hosts to geographically concentrated to geograph-
ically distributed hosting. These observations show that no
two Stealer service providers are the same.

7 Summary and Discussion

We set out to investigate the Stealers ecosystem by answering
following three research questions:

RQ1: How do Stealers contribute to cybercrime?
Stealers play a significant role in the credential theft lifecy-
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cle and contribute to the credential harvesting phase. Stealers
have a mature and competitive market that lowers the financial
and technical barrier for cybercriminals. Hosted Stealer ser-
vices appear to require little upfront cost and can potentially
offer a large return on investment from the sale of credentials.

RQ2: How do Stealers operate on the Internet? Stealers
require minimal hosting resources and abuse services such as
free ccTLDs and cloud-fronting. Stealer service providers use
varying tactics for hosting and it is reflected by their service
stability, i.e., growth. The hosting infrastructure varies from
infected hosts to geographically concentrated and distributed
hosting. Public blocklist detect Stealer domains on average
74 days after initial domain registration. This detection gap
gives Stealers ample time to infect and harvest credentials
from a wide range of networks. Their long-lived activities
may be problematic, as they allow operators time to exercise
other malware capabilities (i.e., install ransomware).

RQ3: What are the nature and tactics of Stealer opera-
tors and their service offerings? Operators use proxy ser-
vices ranging from traditional VPNs to mobile and residential
proxies, to Tor networks. The mobile and residential proxies
can cause misdirection when characterizing operator profiles.
The diurnal analysis suggests that operators administer their
botnet as a full-time job. The affiliation analysis suggests that
the largest 1% Stealer service providers account for most of
the activities. Each service provider appears to have one or
two influential operators that have more privileged access,
suggesting those operators are administrators. Our analysis
shows a stratified organization per cluster. These observations
show that no two Stealer service providers are the same and
they appear to operate independently (compete).

Actionable Insights. How can researchers and law enforce-
ment act on these insights? For researchers, we empirically
document that Stealers have defensive tactics to prevent ac-
tive scanning and identification of C&C panels. Researchers
can incorporate this information to build a tailored internet-
wide scanning system to find C&C panels. For example, a
scanner can scan a target host twice, once to trigger a block
and a second time to check if the connection is blocked. This
approach turns the Stealer defense system against itself and
allows researchers to detect possible C&C panel hosts. Ad-
ditional insights, such as geographical distribution of infras-
tructure, ASN association, and infrastructure characteristics
can inform researchers to design and evaluate effective active
Stealer infrastructure detectors.

Law enforcement can apply our operator device profil-
ing techniques to accurately characterize cybercriminals. We
show that operators use private browsing and diverse proxy
services to masquerade their fingerprint. However, using our
cookie churn merging algorithm and diurnal analysis, law
enforcement can build a more accurate timeline of device and
C&C panel access as forensic evidence. Moreover, the affilia-
tion analysis can identify cybercriminal groups and pinpoint



their top active participants, which can help law enforcement
efficiently go after influential operators. Similarly, our find-
ings can help researchers to identify active Stealer infrastruc-
ture and prioritize their cleanup. For example, researchers
and law enforcement can collaborate to takedown domains
with large clusters of operator activities. Lastly, our infection
analysis can provide a lead to law enforcement to investigate
sensitive networks with potential Stealer infections.

Operator Attribution Attribution can be of two types,
namely virtual or physical. Physical attribution requires juris-
diction and legal access to private information. Additionally,
there is an ethical aspect to physical attribution that must
adhere to some acceptable policies and norms. This work
focuses on virtual attribution to identify operator affiliation,
albeit these techniques are meant to complement and enhance
existing methods instead of being used on their own. Virtual
attribution deals with identification and tracking of different
threat groups based on indicators of compromise (IoC). How-
ever, we caution the reader that attribution to a specific group
is complex, and we avoid making any speculative judgments.
For instance, the majority of indicators in our dataset point
to large clusters of activities originating from Nigeria. Al-
though this observation is suggestive, we observe that many
Nigerian operator networks are mobile or residential proxies.
Enigmatically, these proxies appear to be part of anonymity
networks (similar to Tor), where participants may be willingly
or unknowingly tunneling traffic [40], [41]. Nevertheless, law
enforcement could incorporate our techniques to improve
virtual and physical attribution.

7.1 Limitations and Threats to Validity

The operational nature of the Stealer dataset can affect the
accuracy of our results. The tracking pixel may only appear
on some panel pages and therefore miss activities from op-
erator devices. Additionally, since the data collection relies
on running malware in a sandbox, the malware binary collec-
tion and analysis can create a skewed view of the malware
families. However, since our dataset is large (hundreds of
thousands of records), we can assume the data is statistically
representative of the overall population. The data validation
analysis shows that operators may spoof their UA, use private
browsing, or use multiple devices. It is difficult, if not impos-
sible, to associate a virtual entity with a physical entity based
on the current dataset. Nevertheless, we make conservative
assumptions about the operators by framing the analysis as
operator devices and extensively validating the dataset.
Another possible limitation is the effect of network ad-
dress translated (NAT) traffic and aggregated pDNS data from
recursive servers. These artifacts can impact our infection
estimation and operator count. Additionally, operator network
proxy use can create ambiguities about the geographical re-
gions of the operators. For the cost and revenue estimates,
the prices for hosting and service offerings are based on the

time this paper was written; therefore, the prices might have
changed over the past years. Nevertheless, our profits estimate
should serve as a lower bound for Stealer services.

7.2 Related Work

Several studies have analyzed different cybercrime operations
in an effort to understand their incentives. These cybercrimes
include pharmaceutical spam [54], [66], spam botnets [9],
spam life-cycle [5], targeted attacks [67], click-fraud bots [68],
ransomware [69], and RATs [70]. Moreover, prior work [71]
has explored the cybercrime business relationships and their
collaboration. Franklin et al [12] investigated the financial as-
pect of cybercrime by analyzing transactions on IRC servers.
Studying cybercrime operators requires various techniques
that include honeypots [72], internet-wide scanning [61], [73],
seizing malware infrastructure [9], [11], [74], tracking un-
derground activities [2], [13], analyzing recovered creden-
tials [6], and a combination of diverse data sources [71], [75].
Other works relied on honey tokens to study URL shortening
services [47], email typosquatting [48], social media manip-
ulation [53], detect intrusions [50], [51], and vet malicious
browser extensions [52]. These works provide a valuable
perspective into cybercrime tactics.

In contrast, our work examines a large commodity Stealers
dataset from the operator’s interface. Our work provides the
first unique perspective into the inner workings of Stealer
services and their operators through pixel-tracking embedded
in artificial stolen credentials. Pixel-tracking allows us to
quantify and distill important insights about the activities of
Stealer operators that were not possible before. Our work
leverages this dataset to analyze the nature, trends, tactics,
and revenue of Stealers and their operators. In comparison to
prior work [76] on Stealer panels, our work provides a more
holistic and in-depth analysis of the Stealer ecosystem.

8 Conclusion

Our empirical analysis of Stealers provides a unique per-
spective on the nature of their ecosystem. Our research ques-
tions explored several aspects of the Stealer ecosystem, in-
cluding how they are used for cybercrime, how they oper-
ate on the internet, and what are the tactics of their oper-
ators. We find much of the Stealers infrastructure to be
long undetected, which gives operators time to infect the
compromised networks with more serious threats like ran-
somware [17]. The threat posed by Stealers is amplified by
the low barrier to entry that Stealer service providers en-
able. The Stealer service providers enjoy healthy profits,
which financially drives additional competition further fu-
eling this ecosystem. We believe additional work is needed
to disincentive and curb the use of Stealers. Finally, in the
spirit of scientific reproducibility, we make 6 months of the



Stealers dataset along with the cookie merging code available
at: https://github.com/Astrolavos/stealer-sec23
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Table 11: Top panel operator device types and operating sys-

Table 9: Summary of panel installation, encryption functions, tems.

admin authentication, and supported admin commands based

on source code analysis. Desktop Mobile

0S Ver. Count (%) 0S Ver. Count (%)
Malware Install Encryp Panel Bot ) 10 2,148 (46.84) 9 22 (0.48)
Family Type Algo. Auth. Commands Windows 7 1,112 (24.25) 8.1 18 (0.39)
8.1 893 (19.47) . 7 17 (0.37)
. . DDosS, shell, keyl 2

Neutrino Scripted user/passwd DN; Spgo:ﬂ up?; t(;gger 10.14 47 (1.02) Android 8 9(0.19)

LokiBot Guided AES256-ECB, user/passwd, load/drop exec, keylogger, MacOS 10.15 29 (0.63) 10 9(0.19)
ORIEO uide RC4 UA, Captcha  screenshot, update, uninstall 10.13 26 (0.56) 6 6(0.13)

AZORult Manual  1-Byte XOR only passwd Linux All 50 (1.10) iOS 12 8(0.17)

Amadey Manual user/passwd  drop/load exec., RAT
user/passwd,  DDoS, upload, msg, visit page,
Captcha, 2FA  mail, keylogger, shell, uninstall

BlackNet Guided

Table 10: Top 10 hosting networks querying stealer domains.

Hosting AS Networks
AMAZON-AES 30,705
AMAZON-02 12,515
CLOUDFLARENET 5,890
MICROSOFT-CORP-MSN-AS-BLOCK 4,708
OVH OVH SAS 1,623
DIGITALOCEAN-ASN 728
MAXIHOST 543
M247 M247 Ltd 536
SOFTLAYER 461

UK2NET-AS UK-2 Limited 332




Table 12: Top 10 user agents and related statistics.

User Agent oS Browser Cookie IDs C&C Update (Days)
Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36 Windows 7 Chrome 75.0.3770.100 116 119 22.50
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36  Windows 10  Chrome 79.0.3945.130 112 110 24.15
Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:68.0) Gecko/20100101 Firefox/68.0 Windows 10 Firefox 68.0 112 140 36.32
Moxzilla/5.0 (Windows NT 10.0; Win64; x64; rv:69.0) Gecko/20100101 Firefox/69.0 Windows 10 Firefox 69.0 111 113 47.23
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36  Windows 10  Chrome 75.0.3770.142 109 120 53.54
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36  Windows 10  Chrome 75.0.3770.100 108 122 21.74
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Safari/537.36  Windows 10 Chrome 73.0.3683.103 95 88 28.57
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.169 Safari/537.36  Windows 10  Chrome 74.0.3729.169 88 109 22.31
Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:70.0) Gecko/20100101 Firefox/70.0 Windows 10 Firefox 70.0 82 96 24.95
Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36 Windows 7 Chrome 75.0.3770.142 80 72 17.46
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