
Proc. of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)
16-18 November 2022, Maldives

On the Feasibility of Remotely Triggered
Automotive Hardware Trojans

Athanasios Moschos
COEUS Center

Georgia Institute of Technology
Atlanta, GA, USA

amoschos@gatech.edu

Kevin Valakuzhy
COEUS Center

Georgia Institute of Technology
Atlanta, GA, USA

kvalakuzhy6@gatech.edu

Angelos D. Keromytis
COEUS Center

Georgia Institute of Technology
Atlanta, GA, USA
angelos@gatech.edu

Abstract—Modern vehicles are comprised of many separate
computer systems running on Electronic Control Units, or ECUs.
These ECUs allow for functionalities as diverse as advanced
computer-aided safety features to browsing the web. However, the
explosion of ECU-enabled capabilities has presented flaws that
allow adversaries to literally stop vehicles in their tracks without
physical access to said vehicles. Normally, causing of unintended
behavior would require physical access to the ECU and/or
exploitation of vulnerabilities present in the ECU’s software.

In this paper, we discuss how Hardware Trojans can act as the
physical access intermediates to allow the remote triggering of
malicious payloads embedded in ECUs, through seemingly benign
wireless communication. We demonstrate a proof of concept ECU
hardware trojan (HT) on a RISC-V based processor emulating
an ECU. The HT takes advantage of benign radio functionality,
emulated by TCP packet transmission, to provide a triggering
pathway for disabling the ECU and thus, the host vehicle. This
attack vector, enabled by deep and often opaque international
supply chains common in the automotive industry, provides a
stealthy way to conduct both targeted and fleet-wide remote
attacks against vehicles.

Index Terms—Automotive, Electronic Control Units, Fabrica-
tion, RISC-V, Hardware Trojans

I. INTRODUCTION

Electronic Control Units, or ECUs, constitute the corner-
stones of modern vehicles, controlling a myriad of vital and
leisure functionalities. Those functionalities range from the
control of the brakes, the steering wheel or safety features, to
the control of the vehicle’s infotainment system and the vari-
ous communication interfaces available (WiFi, 3G/4G cellular
network, radio, Bluetooth). ECUs are usually interconnected
through a CAN bus, providing a simple way of coordinating
between different subsystems. Nevertheless, the level of this
interconnection has also raised important security concerns.
For example, it has been shown that an adversary with physical
access to a vehicle’s CAN bus can fake speedometer readings,
unlock the doors, or even kill the engine [1]. However, the need
for direct physical access cannot act as the saving grace for
car manufacturers, as wireless communication channels have

This work was supported by the Office of Naval Research under Contract
#N00014-19-1-2287.

been also utilized to exploit software vulnerabilities on ECUs
and induce unintended behavior [2], [3]. On top of that, no
significant attention has been given to the consequences of
potentially compromised hardware being included in modern
automobiles, especially in the context of hardware trojans.

The introduction and increasing adoption of open Instruc-
tion Set Architectures (ISAs), like RISC-V, has lowered the
entry barrier to chip manufacturing. This has lead to commer-
cialization of automotive-grade RISC-V ECUs [4]–[6]. The
open nature of the architecture these systems are based on
enables a closer examination at the hardware level giving rise
to the potential of HT attacks against them. HTs represent
circuitry surreptitiously inserted into an ECU to implement
functionality that the attacker wishes to introduce to the sys-
tem, typically a means to remotely access or disable the target.
The two key elements of an HT are triggering and payload.
Triggering refers to the conditions and logic under which the
HT will be activated, ideally only under the attacker’s control;
while payload refers to the intended effect that the attacker
wishes to achieve (e.g., disabling the ECU).

II. OUR CONTRIBUTION

In this paper the following contributions are made:

• A conceptual threat to the automobiles’ industry is pre-
sented, which bridges the gap between the necessary
physical and/or remote access needed by an attacker to
tamper with an automobile’s functionality. More specif-
ically, the showcased scenario involves a HT that is
inserted inside the Telematics Control Unit of an auto-
mobile. The HT can be controlled through wireless trans-
mission of arbitrary TCP packets and can tamper with the
automobile’s functionality. The threat of hardware trojans
has only been superficially explored so far in the context
of ECUs [7]. Our trojan is implemented inside a RISC-V
64-bit CPU design that acts as the TCU.

• A HT triggering mechanism is demonstrated, that takes
advantage of Vehicle-to-Vehicle (V2V) systems (e.g.,
Dedicated Short-Range Communication (DSRC) radios,

U.S. Government work not protected by U.S. copyright

Cellular Vehicle-to-Everything (C-V2X) solutions) ex-
pected to be present in most autonomous vehicles in the
near future. In particular, our analysis focuses on the
DSRC technology, due to its similarity with the WiFi
technologies and for ease of experimentation. The QEMU
emulator targeting RISC-V 64-bit CPU implementations
is utilized, to unveil the instructions executed during the
processing of an arbitrary TCP packet. Such a TCP packet
may be received via a DSRC communication channel.

• The implemented HT monitors a specific General Purpose
Register (GPR) and listens for special sequences of bytes
processed by the RISC-V CPU. A special sequence of
bytes introduced in a TCP packet and received over
DSRC, enables the payload of the HT that asserts the
global reset signal of the CPU. This in turn leads to the
deactivation of the TCU.

III. RELATED WORK

Existing works in the literature exploit both hardware and
software to seize control of vehicles. Bozdal et al. use a HT
implementation to perform a Denial of Service (DoS) attack
on the CAN bus, a communication channel frequently used
by critically important devices [7]. The authors rely on the
CAN bus’ inherent weakness of unauthenticated broadcasting,
to impersonate different nodes on the bus and set them offline
through erroneous packet transmission. To that extent, the au-
thors hijack a node in a vehicle’s CAN bus to implement their
trojan. Their trojan masquerades as the node it wants to attack
and initiates erroneous communication on this node’s behalf.
Once a certain threshold of erroneous packet transmission is
reached, the node that the trojan is masquerading as, falls to a
bus-off state and no longer serves requests from other nodes.

Nie et al. investigate wireless attacks on Tesla cars that
lead to the compromise of in-vehicle systems [2]. Their work
shows how a chain of vulnerabilities, including those found
in the car’s web browser and the Linux kernel running on the
vehicle’s Central Information Display (CID), ultimately allow
an adversary to send arbitrary messages on the CAN bus. With
this level of control, they are able to open the trunk or disable
power steering and brakes, even while the car is moving.

Checkoway et al. contemplate the realism of threat models
requiring physical access to perform attacks on automobiles
[3]. In doing so, they investigate the susceptibility of automo-
biles to remote compromises, including through short-range
and long-range wireless access. The authors discovered a range
of threat vectors that permit malicious remote exploitation
(e.g., vehicle control) through ECUs possessing external inter-
faces (e.g., Bluetooth, cellular data links). One of the ECUs
possessing such interfaces is the TCU, or Telematic Control
Unit. The TCU is one of the most crucial ECUs included in
an automobile, as it is responsible for a plethora of safety and
diagnostics features. Furthermore, telematics systems are often
used to provide remote management services which require
connection to control systems for the door locks and even the
engine.

Koscher et al. use the telematics unit to bridge originally
separated CAN bus networks, allowing low priority compo-
nents (e.g., the radio) to compromise high-importance systems
controlling the engine or brakes [1]. With these details in mind,
it should be of no surprise that the TCU is a prime target for
an adversary.

IV. THREAT MODEL

Our conceptual threat scenario pertains to the recent ad-
vancements in autonomous driving and the potential risks
arising from it. Autonomous driving is becoming evident in
self-driving trucks [8] and a disruption in their mobility can
have damaging effects from local supply chains to country-
level economies. Moreover, the immobilization of such an
automobile fleet can prove damaging to the manufacturer’s
brand.

Nevertheless, to perform an attack that can immobilize a
fleet at a large scale, both a physical and a remote access
mechanism on the automobile itself are necessary. An HT
inserted in an automobile’s ECU at the foundry, can provide
such a physical access mechanism at a large scale. In addition,
an existing wireless communication channel can prove to be
useful as the triggering channel for an extensive attack.

Our threat model assumes an attacker with the ability to
insert a hardware trojan inside a TCU, during the TCU’s
fabrication. This special type of ECU possesses interfaces that
handle the vehicle’s wireless communications. Modern ECUs
implement a variety of wireless communication protocols, as
well as employ open-source software (e.g., the Linux kernel)
[3]. The attacker is assumed to have enough knowledge about
the OS that will be running inside the TCU, as well as the soft-
ware responsible for processing any wireless communications.
An aspiring attacker can gain enough knowledge about them
by reverse engineering the software/firmware used in previous
generations of a specific ECU attack target [3].

In our scenario the attacker is exploiting the DSRC tech-
nology, that is used for V2V communication and is based on
the 802.11p extension [9] of the 802.11 standard for wireless
local area networks. Moreover, the data plane of the WAVE
protocol stack includes support for the TCP [10], [11]. It is
assumed that an attacker in the proximity of a target vehicle
can wirelessly transmit a TCP packet that will be captured by
the TCU of the target vehicle via the DSRC route. This TCP
packet will include a malicious sequence of bytes, responsible
for triggering the HT. The are no hard constraints in terms of
what values this sequence of bytes can take, as even a TCP
packet that will eventually be discarded will first be processed
by the CPU.

While our threat scenario simulates an attack triggered via
the WiFi-like DSRC interface of a TCU running the Linux
kernel, neither the methodology nor the attack are protocol-
specific. This type of attack can be conducted on any of the
TCU’s wireless network protocols, thus enabling the potential
for attacks through longer-range communication channels,
such as the cellular or satellite communication channels. As an
example, attack coverage of a large geographical area can be

achieved through a satellite that will emit the triggering TCP
packet(s) without a requirement for a bidirectional channel.

V. ATTACK DESIGN METHODOLOGY

With the need for a wireless trigger in mind, locations
in the CPU (e.g., GPRs) that are influenced by the data
bytes of TCP packets are identified. Next, a HT circuit is
created that is activated by the reception of a TCP packet
containing a specially crafted data byte sequence. Finally,
the implemented HT is evaluated to have negligible chances
of being triggered by random appearances of the chosen
triggering data sequences included in the TCP packet.

VI. IDENTIFYING TRIGGER CANDIDATES

In order to model a CPU design that will closely resemble
that of a RISC-V based ECU and to inspect its behavior, the
QEMU open-source CPU emulator [12] is utilized. QEMU not
only allows for emulation of different architectures but also
permits fine-grained inspection of values stored in the CPU
registers. Our analysis focuses on the registers responsible for
the handling of an arbitrary TCP packet.

A RISC-V based virtual machine (VM) running Debian
Linux is emulated in QEMU. The operating system under test
is Linux, as present-day TCUs are known to employ Unix-
like operating systems [3]. Utilizing QEMU’s capabilities,
execution traces are generated. These traces include the CPU’s
registers and their values after each executed instruction. While
tracing the VM’s execution, we transmit a TCP packet from
the host system to the emulated system. The transmitted TCP
packet contains an identifiable payload that can be used to
pinpoint CPU registers used for loading data bytes of the TCP
packet.

Using the above method, the assembly code responsible for
processing the main body of the TCP packet is extracted. The
registers shown in Listing 1 are the ones whose values are
influenced by the parsing of a TCP packet, regardless if it
is accepted or rejected. Registers a4 and a6 hold the starting
and ending memory addresses in between which the TCP data
bytes are stored. Register a3 is used to hold the consecutive
data bytes of the TCP packet. The provided assembly code
loops until the last TCP data byte is processed and both a4
and a6 registers become equal.

The above examination revealed that the data from a TCP
packet are continuously placed within the lower 32-bits of the
a3 GPR. This information can be exploited by the attacker
to place specific sequences of values in this part of the a3
GPR using a specially crafted TCP packet. Those sequences
of values can then act as inputs to the triggering circuit to
enable the generation of the triggering signal.

Listing 1: Assembly code run by the emulated 64-bit RISC-V
CPU for the processing of arbitrary TCP packets.

Mnemonic Operands
lw a3 , 0 (a4)
addw a5 , a5 , a2
a d d i a4 , a4 , 4
addw a5 , a5 , a3

s l t u a2 , a5 , a3
bg tu a6 , a4 , −12

VII. HARDWARE TROJAN DESIGN

A HT is a purposeful modification by an attacker of a chip’s
original functionality to perform in an out-of-specification
way. This induced behavior can be leveraged at the time of the
chip’s deployment by the attacker, to serve malicious purposes.
The most common ways of implementing malicious circuitry
modifications include either the modification of the chip’s
Register-Transfer-Level code at the design stage inside the
design house or the direct modification of the chips’ finalized
layout at the fabrication stage inside the foundry. Of the two
methods, the latter is the most difficult to implement but pro-
vides also the stealthiest results, as the induced modifications
can only be traced through post-fabrication testing. Yet, testing
for HT detection is considered to be very time consuming,
expensive and even destructive in some cases [13].

Beside the insertion method of the HT, of major concern
is the functionality of the HT itself. Depending on the HT’s
purpose, the attacker would need to devise an appropriate HT
design that will evade unintended activation and provide a
significant amount of attack controlability. Especially when
it comes to the insertion of a HT inside an automobile, an
attacker is not only interested in triggering the HT selectively
for specific automobiles but also to be able to perform that
at a large scale. For that reason the implemented triggering
mechanism takes advantage of the wireless interfaces imple-
mented on the TCU and the ability of the attacker to send
specially crafted packets through them to the TCU hosting
the HT. As for the HT’s payload, it interferes with the state
of the TCU’s reset signal to keep the TCU in a constant reset
mode and practically disable it. This in turn can lead to the
immobilization of the autonomous vehicle/fleet of vehicles.

Our hardware trojan consists of two circuits, the triggering
and the payload. The triggering circuit consists of a combi-
nation of synchronous and asynchronous logic, that monitors
the sequence of bytes on a specific GPR, in order to raise the
triggering signal. The payload circuit is simple and consists
of only one MUX gate, that uses the triggering signal as the
select signal to output either the correct value of the global
reset signal or an ”asserted” one that will disable the RISC-V
CPU.

The triggering circuit consists of two parts, one imple-
menting an asynchronous counter and the other implementing
a reset logic for the counter. More specifically, the strategy
described in [14] is utilized, in order to create a combinatorial
logic that monitors the values loaded in GPR a3. This combi-
natorial logic consists of NAND and NOR gates, attached on
the flip-flops of the a3 GPR, that create low transition prob-
ability signals. Three such low transition probability signals
(SEQ1, SEQ2, SEQ3 in Figure 1) are created, that take the
logic value ’1’ only when a respective sequence value is loaded
in GPR a3. For the generation of each signal 33 digital gates
are required (15 AND, 16 OR and 2 NOT gates). The total

number of gates required for all three generated signals is 99
gates.

The generated sequence signals are fed to three distinct edge
detectors (each consisting of 1 flip-flop, 1 AND and 1 NOT
gate), as shown in Figure 1. The outputs of the three edge
detectors pass through an OR and the outcome is sampled
by a flip-flop. The output of this flip-flop is then fed in a
2-bit asynchronous edge counter, consisting of two flip-flops
(blue dashed frame in Figure 1). The first flip flop takes as
clock input the sampled signal of the edge detectors and has
as input an inverted feedback of its output QCNT1. In turn
this inverted feedback is connected to the clock input of the
second flip-flop, while the input of the second flip-flop is
again an inverted feedback of its output QCNT2. Both of the
inverted feedbacks feeding the DCNT1 and DCNT2 inputs
of the counter flip-flops, pass through a combinatorial logic
(pink and yellow dashed frames in Figure 1). This ensures
that the triggering sequences are only counted when seen in
the correct order inside the a3 GPR. The two flip-flop outputs
QCNT1 and QCNT2, pass through an AND gate to produce
the final triggering signal that will act as the select signal of
the payload MUX gate. This asynchronous counter can count
up to the binary value of ’11’, which equals the number of
sequence values inserted inside the triggering TCP packet.

The above described logic is used to monitor the loading
of three consecutive 4-byte sequences inside GPR a3. This
provides our HT with a security of 96 bits. In the event of
a HT detection testing, an evaluator would have to guess
correctly the sequence values with a probability of 1

232 for
each sequence, giving a total probability of 1

296 to guess all
of them correctly and trigger the HT. Thus, this number of
bits is high enough to be considered secure against intended
activation attempts, as well as unintended activation events
(e.g., random occurrences of the triggering sequences inside
the monitored GPR). Furthermore, due to our HT’s scalable
design, it is possible for the attacker to increase the total num-
ber of sequence values necessary for the HT triggering. Each
new sequence added requires the generation of an additional
SEQ# signal, through the addition of 33 extra digital gates.
Depending on the total number of sequences used, the flip-
flops in the asynchronous counter should increase accordingly.

The second part of the triggering circuit consists of the reset
mechanism for the flip-flops of the asynchronous counter. The
reason behind the separate reset mechanism is twofold:

• The triggering sequence values might appear randomly
outside of our triggering TCP packet as part of other
executed programs. Thus, the counter should not consider
these occurrences in the count.

• In addition, the QCNT1 and QCNT2 outputs should keep
their values when the global reset is asserted, resetting
all the rest of the memory elements.

As the malicious TCP packet is being processed by the
CPU, the a3 GPR takes in succession the triggering sequence
values as shown in the Assembly code in Listing 1. The flip-
flop that is sampling the sequence signals, should sample a
logic ”0” value at most for one clock cycle (while the sequence

values are interchanged in the a3 register and until they settle).
This is expected as the added flip-flop might not be perfectly
timed with the changes on the values of the a3 register, since
the trojan is inserted at the fabrication stage.

The reset mechanism consists of two flip-flops and a combi-
natorial logic. The first flip-flop of the reset mechanism takes
as inputs the OR of the SEQ# signals and acts as an edge
detector, to alert for the start of a potential triggering sequence
(preReset signal in Figure 1). If the sampled value remains
at ’0’ for two or more consecutive clock cycles, then the
triggering sequence is not being processed by the CPU and
the two counter flip-flops should remain at reset. Thus, the
postReset signal takes the value ’1’ and the preReset signal
remains at ’0’. These signals are then coupled with the global
reset signal of the CPU (negative-logic global reset, constantly
at logic value ’1’), in order to produce the Counter Reset signal
that keeps the counter’s flip-flops at reset.

As described previously, the payload of the trojan is a simple
MUX gate that has as inputs the CPU’s original global reset
signal and a modified one (a constant ’0’ as the global reset
has negative polarity). The generated triggering signal serves
as the select signal of the MUX. If the triggering signal is
low, the MUX outputs the original CPU global reset to the
CPUs modules. Once the triggering signal goes high, the MUX
outputs the modified reset signal, thus resetting the CPU.

TABLE I: Gate count of trojan’s circuits in ASIC implemen-
tations.

Number Of Digital Gates Per Module
Module Logic Gates FFs Total

Trigger Circuit 121 8 129
Payload Circuit 1 0 1

Total 122 8 130

The total number of digital gates needed for the implemen-
tation of the trojan is 130, with only 8 of them being flip-
flops, as seen in Table I. The implemented mechanism allows
for scalability as the triggering circuit can be adjusted to host
larger or smaller sequences. This can be decided during the
time of the HT insertion, according to the attacker’s spatial or
stealthiness needs. A larger sequence provides more run-time
stealthiness as it makes it harder to trigger the trojan either
accidentally or on purpose during testing. On the other hand,
a smaller trojan facilitates insertion, as it requires less spatial
resources on an ASIC layout and is harder to detect upon
visual inspection of the finalized layout.

VIII. HARDWARE TROJAN IMPLEMENTATION AND
TESTING

We utilize the Genesys 2 FPGA board from Digilent to
implement our HT on the Kintex-7 FPGA on board. Our RISC-
V CPU target is Ariane [15], a modern, Linux capable 64-bit
CPU design. Ariane’s CPU clock runs at 50 MHz and boots a
BusyBox implementation of the Linux kernel from a micro-SD
card on board. The insertion of the HT is done by modifying
Ariane’s RTL code and the design is synthesized using Xilinx’s

Fig. 1: Schematic of the triggering circuit.

Vivado tool. The FPGA utilization of the overall CPU design
and the HT circuit can be seen in Table II.

TABLE II: Resource utilization of RISC-V CPU’s and HT
circuits’ implementation.

Utilization Percentages In FPGA
Module Name LUTs FFs LUT Utilization FF Utilization

Ariane1 66123 51875 32.4% 12.7%
Trigger Circuit2 32 8 0.00048% 0.00015%
Payload Circuit2 1 0 0.000015% 0%
1Utilization with respect to the total FPGA resources.
2Utilization with respect to Ariane’s total implementation resources.

The low FPGA utilization numbers of the trojan circuit
compared to the overall RISC-V CPU design is an indicator
that the total gate overhead of our HT implementation can
indeed be considered small compared to modern CPU designs.
This can prove to be beneficial against methods that try to trace
the existence of malicious trojan insertions in chips, using side-
channel information [16].

To test the correct functionality of the HT, the code shown
in Listing 2 is used in conjunction with an Integrated Logic
Analyzer (ILA) core, to monitor the values of specific internal
CPU signals. The code in Listing 2 integrates the TCP
packet-processing assembly code (Listing 1) that was extracted
using QEMU. The adjustments in the registers a7 (ILA core
triggering) and a4/a6 (registers that store the memory locations

of the TCP packet’s data bytes) at the start of the code, do
not alter the general principles encountered in a real scenario
with a TCP packet being processed inside a RISC-V based
ECU. Modified code versions of Listing 2 are also employed
to validate that the HT is triggered only when the correct
sequence of values appear in proper order inside GPR a3.

Listing 2: The user process testing the hardware trojan.
i n c l u d e <u n i s t d . h>
i n c l u d e <s y s / t y p e s . h>
i n c l u d e <s t d i o . h>

i n t main (){
u i n t 3 2 t t e s t [3] = {X, Y, Z} ;

asm (” l u i a7 , 0 x f f f f f \n\ t ” \
” s l l a7 , a7 , 0 x14\n\ t ” \) ;

asm (”mv a4 , %0\n\ t ” : : ” r ” (t e s t) : ” a4 ”) ;
asm (” a d d i a6 , a4 , 0\n\ t ” \

” a d d i a6 , a6 , 12\n\ t ” \) ;
/ / Assembly t h a t t r i g g e r s t r o j a n
asm (” loop :\ n\ t ”

” lw a3 , 0 (a4)\ n\ t ” \
”addw a5 , a5 , a2\n\ t ” \
” a d d i a4 , a4 , 4\ n\ t ” \
”addw a5 , a5 , a3\n\ t ” \
” s l t u a2 , a5 , a3\n\ t ” \
” bg tu a6 , a4 , l oop \n\ t ” \) ;

r e t u r n 0 ;
}

IX. DISCUSSION

A. Trigger Stability

Our triggering circuit relies on a specific GPR to store
the TCP packet data, causing the HT’s triggering mechanism
to be vulnerable to changes in register allocation. Register
allocations in the targeted software, the Linux kernel in this
case, could change with updates to the software, compiler
tool-chain, or even compiler options. The stability of register
allocation is especially important due to the delay between the
time when the HT is designed, to when it is integrated into a
manufactured ECU, and finally when it is operational inside
a vehicle. Additional work needs to be done to measure how
stable controllable registers are over the natural evolution of
software to better understand the real-world practicality of our
proposed trigger design process.

B. Defenses

There are different approaches to limit the potential damage
caused by HTs. On the automobile level, the resulting damage
caused by the triggering of an HT can be limited through strict
segmentation of the automobile’s internal systems, regulation
of their inter-communication and redundancy. Ideally a HT
should be detected and stopped in its track through the means
of an HT detection method before it is ever incorporated inside
a vehicle. This requires validation at multiple points in the
ECUs supply chain. Utilizing testing and design techniques
such as those discussed by Xiao et al. can provide more
confidence in the integrity of vehicle hardware [16].

X. CONCLUSIONS

Previous attacks against automotive systems required either
physical access to ECUs of the target vehicle or a remotely
exploitable vulnerability on the software running on one of the
vehicle’s ECUs. Our proof of concept implementation shows
how a hardware trojan can be used to overcome the need for
physical access during the attack stage, taking advantage of
a vehicle’s wireless connectivity interfaces. We demonstrate
how knowledge of open-source software, run on CPU-alike
ECUs, can be used to pinpoint remotely controllable registers
in them.

Furthermore, this information is used to design a HT that
monitors the values placed in such a register, awaiting for a
triggering sequence provided by a malicious TCP packet. Once
enabled, the payload of the trojan asserts the reset signal of
the ECU to disable it. The insertion of such a HT in the TCU,
which includes wireless interfaces with the outside world and
is responsible for various vehicle’s safety and communication
features, can potentially lead to the immobilization of the
vehicle, especially of an autonomous one.

REFERENCES

[1] K. Koscher et al., “Experimental Security Analysis of a Modern Auto-
mobile,” Jan. 2010, pp. 447–462. doi: 10.1109/SP.2010.34.

[2] S. Nie, L. Liu, and Y. Du, “Free-fall: Hacking Tesla From Wireless To
CAN Bus,” Black Hat USA, p. 16, 2017.

[3] S. Checkoway et al., “Comprehensive Experimental Analyses of Auto-
motive Attack Surfaces,” p. 16.

[4] Renesas, ”RH850/U2B Zone/Domain and Vehicle Motion
Microcontroller”, Accessed June 21, 2022 [Online]. Available:
https://www.renesas.com/sg/en/products/microcontrollers-
microprocessors/rh850-automotive-mcus/rh850u2b-zonedomain-and-
vehicle-motion-microcontroller

[5] NSI-TEXE, ”RISC-V processor with vector extension certified for ISO
26262 ASIL D ready”, Accessed June 21, 2022 [Online]. Available:
https://www.nsitexe.com/en/ip-solutions/data-flow-processor/dr1000c/

[6] ”RISC-V crypto core is qualified to ASIL-D for automotive
designs ”, Accessed June 21, 2022 [Online]. Available:
https://www.eenewseurope.com/en/risc-v-crypto-core-is-qualified-
to-asil-d-for-automotive-designs-2/

[7] M. Bozdal, M. Randa, M. Samie, and I. Jennions, “Hardware Trojan En-
abled Denial of Service Attack on CAN Bus,” Procedia Manufacturing,
vol. 16, pp. 47–52, 2018, doi: 10.1016/j.promfg.2018.10.158.

[8] ”Autonomous trucks lead the way”, Accessed June 21, 2022 [On-
line]. Available: https://www2.deloitte.com/us/en/insights/focus/future-
of-mobility/autonomous-trucks-lead-the-way.html

[9] ”IEEE Standard for Information technology– Local and metropoli-
tan area networks– Specific requirements– Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifi-
cations Amendment 6: Wireless Access in Vehicular Environments,”
in IEEE Std 802.11p-2010 (Amendment to IEEE Std 802.11-2007 as
amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std
802.11y-2008, IEEE Std 802.11n-2009, and IEEE Std 802.11w-2009) ,
vol., no., pp.1-51, 15 July 2010, doi: 10.1109/IEEESTD.2010.5514475.

[10] ”IEEE Standard for Wireless Access in Vehicular Environments (WAVE)
– Networking Services,” in IEEE Std 1609.3-2016 (Revision of
IEEE Std 1609.3-2010) , vol., no., pp.1-160, 29 April 2016, doi:
10.1109/IEEESTD.2016.7458115.

[11] Jiang, R., Zhu, Y. (2019). ”Wireless Access in Vehicular Environment.”
In: Shen, X., Lin, X., Zhang, K. (eds) Encyclopedia of Wireless Net-
works. Springer, Cham. https://doi.org/10.1007/978-3-319-32903- 309-
1

[12] F. Bellard ”QEMU, a fast and portable dynamic translator,” 2005
Proceedings of the USENIX Annual Technical Conference, pp. 41–46.

[13] Sugawara, T., Suzuki, D., Fujii, R. et al. Reversing stealthy
dopant-level circuits. J Cryptogr Eng 5, 85–94 (2015).
https://doi.org/10.1007/s13389-015-0102-5

[14] Y. Su, H. Shen, R. Lu and Y. Ye, ”A Stealthy Hardware Trojan
Design and Corresponding Detection Method,” 2021 IEEE International
Symposium on Circuits and Systems (ISCAS), 2021, pp. 1-6, doi:
10.1109/ISCAS51556.2021.9401770.

[15] F. Zaruba and L. Benini, ”The Cost of Application-Class Processing:
Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit
RISC-V Core in 22-nm FDSOI Technology,” in IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 27, no. 11, pp. 2629-
2640, Nov. 2019, doi: 10.1109/TVLSI.2019.2926114.

[16] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor. 2016.
Hardware Trojans: Lessons Learned after One Decade of Research.
ACM Trans. Des. Autom. Electron. Syst. 22, 1, Article 6 (January 2017),
23 pages. https://doi.org/10.1145/2906147
Department of Defense, “About the Department of Defense
(DOD).” Accessed April 18, 2017 [Online]. Available:
https://www.defense.gov/About/

