
1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2665620, IEEE
Transactions on Dependable and Secure Computing

MITROPOULOS ET AL. 1

Defending Against Web Application Attacks:
Approaches, Challenges and Implications
Dimitris Mitropoulos,∗ Panos Louridas,† Michalis Polychronakis,‡ and Angelos D. Keromytis∗∗ Department of Computer Scinence, Columbia University, {dimitro, angelos}@cs.columbia.edu

† Department of Management Science and Technology, Athens University of Economics and Business, louridas@aueb.gr
‡ Computer Science Department, Stony Brook University, mikepo@cs.stonybrook.edu

Abstract—Some of the most dangerous web attacks, such as Cross-Site Scripting and SQL injection, exploit vulnerabilities in web
applications that may accept and process data of uncertain origin without proper validation or filtering, allowing the injection and
execution of dynamic or domain-specific language code. These attacks have been constantly topping the lists of various security
bulletin providers despite the numerous countermeasures that have been proposed over the past 15 years. In this paper, we provide an
analysis on various defense mechanisms against web code injection attacks. We propose a model that highlights the key weaknesses
enabling these attacks, and that provides a common perspective for studying the available defenses. We then categorize and analyze a
set of 41 previously proposed defenses based on their accuracy, performance, deployment, security, and availability characteristics.
Detection accuracy is of particular importance, as our findings show that many defense mechanisms have been tested in a poor
manner. In addition, we observe that some mechanisms can be bypassed by attackers with knowledge of how the mechanisms work.
Finally, we discuss the results of our analysis, with emphasis on factors that may hinder the widespread adoption of defenses in
practice.

Index Terms—Web Application Security, Protection Mechanisms, Exploitation Models, Software Testing, SQL Injection, XSS.

F

1 INTRODUCTION

Web application attacks may involve security misconfigurations,
broken authentication and session management, or other issues.
Some of the most dangerous and prevalent web application at-
tacks, however, exploit vulnerabilities associated with improper
validation or filtering of untrusted inputs, resulting in the injection
of malicious script or domain-specific language code. Attacks of
this type include Cross-Site Scripting (XSS) [1], and SQL injection
attacks [2], among others.

For the past several years, these attacks have been topping the
lists of the most dangerous vulnerabilities published by OWASP,1

MITRE,2 and other organizations. For instance, consider the case of
OWASP’s popular Top Ten project,which aims to raise awareness
about web application security by identifying some of the most
critical risks organizations may face. In its three consecutive Top
Ten lists (2007, 2010, 2013), different injection attacks dominate
the top five positions.

At the same time, attackers find new ways [3, 4] to bypass
defense mechanisms using a variety of techniques, despite the
numerous countermeasures that are being introduced. As an exam-
ple, already by 2006, there were more than 20 proposed defenses
against SQL injection attacks [5]. Since then, the number has
doubled, while researchers have indicated that the number of SQL

injection attacks has been steadily increasing in recent years [6].
In this paper, we explore how different attacks associated

with the exploitation of untrusted input validation errors can be
modeled under a common perspective. To that end, we propose an
exploitation model which highlights that most of the steps needed
to mount different types of code injection attacks are common.3

This is validated by the fact that some protection mechanisms
defend against more than one of these types of attacks.

Then, we categorize a selection of representative protection
1. https://www.owasp.org/index.php/Top 10 2013-Top 10
2. http://cwe.mitre.org/top25/
3. Note that we do not consider lower-level attacks based on the exploitation of memory

corruption vulnerabilities and the injection of binary code—see Section 2.

mechanisms. In our selection we include protection mechanisms
that counter web attacks when they take place, while we do not
consider countermeasures that identify vulnerabilities using static
program analysis [7] (which takes place during the development
or testing phases). Similarly, dynamic analysis techniques that
examine applications to identify vulnerabilities that may lead to
the attacks that we described earlier are out of scope as well. Note
also, that we did not consider mechanisms that have not been
presented in research papers.

Furthermore, we analyze each mechanism across the following
dimensions:
• Accuracy: protection mechanisms are as good as their detection

capability; this requires low false positive and false negative
rates.

• Availability: whether the protection mechanism and its testbed
are publicly available.

• Performance overhead: the overhead imposed by the mecha-
nisms at their points of deployment.

• Ease of use: whether the mechanism is practical in terms of
deployment and can be easily adopted by security experts.

• Security: the robustness of the protection mechanism against
attackers with knowledge of its internals who attempt to cir-
cumvent it.

• Detection Point: the location where a mechanism detects an
attack based on our exploitation model.

All the above requirements are considered important when build-
ing mechanisms for the protection of applications [8, 9, 10]. Based
on this analysis, we identify the advantages and disadvantages of
the various mechanisms and enumerate some of their common
characteristics. We also draw useful conclusions about the various
protection categories and see how they compare to each other. In
addition, we attempt to shed light on the factors that may impede
the adoption of defenses in practice. Finally, we provide some
lessons and recommendations that developers of new defenses
may find helpful.

The main contributions of this paper are the following:

https://www.owasp.org/index.php/Top_10_2013-Top_10
http://cwe.mitre.org/top25/

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2665620, IEEE
Transactions on Dependable and Secure Computing

MITROPOULOS ET AL. 2

Fig. 1. A taxonomy of dynamic and domain-specific language code
injection attacks against web applications.

1) We provide a unified exploitation model for different types of
web application attacks based on code injection.

2) We categorize and analyze proposed defenses using a set of
criteria that are important for building protection mechanisms.

3) We provide insight based on the issues that arise from our analy-
sis. We put emphasis on factors that may hinder the widespread
deployment of protection mechanisms, and the transition of
tools from research to practice.
The rest of the paper is organized as follows: Section 2 pro-

vides some insights on web code injection attacks and Section 3
presents our proposed model. Section 4 introduces the dimensions
across which we analyze the various defenses. Our categorization
and analysis is presented in Section 5 and our observations are
provided in Section 6. Finally, Section 7 highlights some lessons
learned from our observations and Section 8 concludes the paper.

2 CODE INJECTION ATTACKS IN WEB APPLICA-
TIONS

Lack of input validation is a major vulnerability behind dangerous
web application attacks. By taking advantage of this, attackers
can inject their code into applications to perform malicious tasks.
Exploits of this kind can have different forms depending on
the execution context of the application and the location of the
programming flaw that leads to the attack.

Bratus et al. [11] portray the issue in a more generic way:
“unexpected (and unexpectedly powerful) computational models
inside targeted systems, which turn a part of the target into
a so-called ‘weird machine’ programmable by the attacker via
crafted inputs (a.k.a. ‘exploits’).” In particular, “every application
that copies untrusted input verbatim into an output program is
vulnerable to code injection.” Ray and Ligatti [2] have proved this
claim based on formal language theory.

Code injection attacks can be divided in two categories. The
first involves binary code and the second higher-level language
code. An extensive survey on binary code injection attacks was
conducted by Lhee and Chapin [12]. Advances in memory corrup-
tion vulnerability exploitation have been studied extensively [9]
and countermeasures to such attacks have already been ana-
lyzed [13]. In this work we do not consider binary code injection,
focusing instead on defenses that protect web applications against
attacks based on the injection of higher-level language code.

Figure 1 presents a taxonomy of source code injection attacks
against web applications. Such attacks may involve high-level
language code, written in either a Domain Specific Language
(DSL) or a Dynamic Language. To illustrate, we discuss examples
from both categories that will be used throughout the paper.

Injection attacks that involve DSLs constitute an important
subset of the code injection problem, as DSLs such as SQL and
XML play a significant role in the development of both web
and mobile applications. For example, many applications have
interfaces through which a user enters input to interact with the
application, thereby interacting with the underlying database. This
input can become part of an SQL query and gets executed on the
target database. Code injection attacks that exploit vulnerabilities

in database interfaces by taking advantage of input validation
issues, such as incorrectly passed parameters or incorrect type
handling, are called SQL injection attacks [1, 5]. Consider a
trivial exploit that takes advantage of incorrectly filtered quotation
characters in an application that shows the password of a forgetful
user by executing the following query:
SELECT password from userdata WHERE id = ’Alice’

Attackers that would input the string anything’ OR
’x’=’x could view every item in the table. Savvy pro-
grammers can use certain API functions, such as PHP’s
mysql_real_escape_string(), to detect malformed in-
put, or, better, use prepared SQL statements instead of statement
templates. Unfortunately, the increasing number of SQL injection
attacks suggests that programmers are not always that careful.
Using similar techniques, malicious users can mount other exploits
based on DSLs such as XPath [1], XML and JSON [14]. The
effects can be wide-ranging. A malicious user can view sensitive
information, destroy or modify protected data, or even crash the
entire application.

HTML is another DSL that can be used for malicious purposes
when an application does not properly handle user-supplied data.
Based on this vulnerability attackers can supply valid HTML,
typically via a parameter value, and inject their own content into
the application’s page. HTML injection is mainly associated with
XSS attacks [15]. However, HTML injection can also be used as a
vehicle for Cross-Site Request Forgery (CSRF) attacks [16] (even
though a common CSRF attack does not necessarily involve code
injection). Consider a bulletin board system where img tags are
allowed. A malicious user could embed a CSRF request within an
img tag in the following manner:
<img src=’http://www.vulnerable.com/admin.php?

edituserwithID=13&addgroup=admin’/>

When the page with this injected code is accessed by an adminis-
trator, the attacker (with ID 13) will gain administrative privileges
over the vulnerable.com web page, while the administrator of the
bulletin board system will have no immediate indication that there
has been an attack.

A recent class of code injection attacks involve dynamic
languages such as JavaScript and PHP [14]. JavaScript injection
attacks make up a large subset of dynamic language code injection
attacks and are considered a critical issue in web application
security mainly because they are associated with major vulner-
abilities such as XSS attacks and Cross-Channel Scripting (XCS)
attacks [17]. Such attacks are enabled when a web application
accepts and redisplays data of uncertain origin without proper
validation and filtering. Based on this flaw, an attacker can manage
to inject a script in the JavaScript engine of a browser and alter its
execution flow. For a typical XSS example that involves JavaScript
injection consider a web page that prints the value of a query
parameter (query) from the page’s URL as part of the page’s
content without escaping the value. Attackers can take advantage
of this and inject an iframe tag into the page to steal a user’s
cookie and send it via an image request to a web site under their
control (malicious.com). This could be achieved by including the
following link to the malicious web site (or sending it via phishing
email) and inducing the user to click on it:
http://example.com/vulnerable.html?query=<iframe src

="javascript:document.body.innerHTML=+’<img src
=\"http://malicious.com/?c=’+encodeURIComponent(
document.cookie)+’\">’"></iframe>

Note that in many cases XSS attacks involve the injection of both
HTML and JavaScript code.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2665620, IEEE
Transactions on Dependable and Secure Computing

MITROPOULOS ET AL. 3

A simple example of a PHP injection attack is an input string
that is fed into an eval() function call, e.g.:
$variable = $_GET[’var’];
$input = $_GET[’value’];
eval(’$variable = ’ . $input . ’;’)

The user may pass into the value parameter code that will be
executed on the server. Hence, if an attacker provides as input
the following string: 10 ; system("touch foo"); then a
file will be created on the server—it is easy to imagine more
detrimental scenarios.

A recent attack called PHP Object Injection (POI) [4] does not
directly involve the injection of code, but still achieves arbitrary
code execution in the context of a PHP application through the
injection of specially crafted objects (e.g., as part of cookies).
When deserialized by the application, these objects result in
arbitrary code execution. Note that the exploitation model we
propose in the following Section also captures such attacks.

3 EXPLOITATION MODEL

We provide a step-by-step exploitation model to aid in understand-
ing the process of carrying out code injection attacks against web
applications. Figure 2 illustrates the required steps for different
classes of attacks, such as SQL injection, XSS, and CSRF. Links
between steps are labeled with the different attacks that use
that path, while the numbers next to attack labels denote the
sequence of steps for a particular attack. Most steps are common
in all attacks, as different attack types follow similar exploitation
paths, as mentioned in the previous section. Large ‘X’ marks
on transitions correspond to the points where the defenses we
consider in this work detect or prevent attacks.

An attacker can initiate an injection attack through two main
routes. One way is to use the browser of a victim as an attack
vehicle, through which the code will be injected in the application.
For example, the attacker could embed a malicious script into a
URL and then trick a user to click on it through social engineering,
e.g., by sending a phishing email (transition P-XSS 1.1, N-XSS

1.1, CSRF 1). Alternatively, the attacker may be able to inject
directly the malicious code on the server through an HTTP request
(DSL 1, P-XSS 1, N-XSS 1, I-CSRF 1). This would happen in
a web application that accepts and processes user input without
appropriate validation. An attacker could upload data containing a
specially crafted script to steal the cookies of the visiting users (P-
XSS 1, N-XSS 1), an img tag including a malicious HTTP request
(CSRF 1, I-CSRF 1), or embed malicious SQL code to retrieve
private data from a database (DSL 1). Note that XSS and CSRF

attacks can start from both routes. Once the injected code reaches
the vulnerable application, it becomes a part of a value represented
by a program variable. The target of the attack determines the route
from that point and on. In an SQL injection attack, the injected
code becomes part of a query that eventually reaches the database
where it is executed.

Cross-site scripting attacks fall into three categories, non-
persistent (also known as reflected) XSS, persistent (also known as
stored) XSS and Document Object Model (DOM) - based XSS [15].
Non-persistent XSS attacks take place when the data provided by
a user is processed on-the-fly by server-side application logic and
ends up without proper sanitization into a dynamically generated
response (P-XSS 7, N-XSS 2) that is eventually rendered by the
user’s browser. Thus, in a non-persistent XSS attack, the injected
code is not saved on the server, but immediately becomes part of
the content that is sent back to a user. In persistent XSS attacks, on

the other hand, malicious code is permanently stored on the server
(P-XSS 5). The injected code residing at server-side then re-enters
the application’s execution flow and becomes part of the content
that is eventually sent to the user as part of a future response.
DOM-based XSS attacks involve the modification of the DOM of a
webpage. The DOM treats an HTML document as a tree structure
where each node is an object representing a part of the document.
Each object can be accessed and manipulated programmatically
and any visible changes may then be reflected in the browser. In
a DOM-based XSS attack, the malicious payload (e.g., hidden in a
well-crafted URL that is sent to a user via phishing: N-XSS 1.1) is
executed as a result of the manipulation of the DOM environment
(e.g., when another flawed script accesses the modified DOM

object) and is not contained in the HTTP response. That is, the
malicious payload never reaches the server. Such an attack can be
performed purely client-side across HTML frames. Hence, server-
side defenses might not be effective in this case.

A Cross Frame Scripting (XFS) attack is a recent threat
that combines a malicious script with an iframe that loads a
legitimate page in an effort to steal data from a user. Consider
an attacker that lures via social engineering a user to navigate to
a web page the attacker controls. The attacker’s page then loads
JavaScript and an HTML iframe pointing to a legitimate site.
Once the user enters his or her credentials into the legitimate site,
the malicious script records all keystrokes.

CSRF attacks typically involve just a URL or page that contains
a malicious request towards a site vulnerable to CSRF. An attacker
can entice a victim to click on the URL or visit the page through
social engineering (CSRF 1), which will the result in a malicious
request towards the vulnerable site (CSRF 2). Note that this
scenario does not involve the injection of any code through the
exploitation of some server-side vulnerability (as is the case with
Server 1). On the other hand, CSRF is also possible through
injection (I-CSRF—recall our example in the previous section). In
this attack, an attacker manages to inject HTML code that contains
a malicious CSRF request in the way we described in Section 2.
This code will be stored in the database (I-CSRF 5) and then it
will re-enter the application when a user visits a page (I-CSRF 6).
When the content reaches the browser, a malicious request will be
generated towards the site that is vulnerable to CSRF.

4 ANALYSIS DIMENSIONS

Research on web application attack defense mechanisms has a
dual character. First, a defense mechanism may be important,
and therefore publishable, because it shows that an attack can
be detected or prevented in a reliable manner. Second, a defense
mechanism may be important not just as a research contribution,
but as a practical tool, if it can be used by administrators and users
to shield their applications against the supported attacks.

The detection and prevention of attacks in a reliable manner
can be analyzed using criteria common with other research fields:
• Statistical measurements that show how reliable the detection

really is.
• Research practices that promote replication and validation of

the findings.
Whether a reliable defense mechanism has value in a practical
setting rests on a different set of criteria:
• What are the overheads imposed by the mechanism?
• How easy is it to deploy and use the mechanism?
• How robust is it against ways to circumvent it?
• At which point throughout the system does it block an attack?

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2665620, IEEE
Transactions on Dependable and Secure Computing

MITROPOULOS ET AL. 4

Fig. 2. Attack model for dynamic and domain specific language code injection in web applications. Transitions are labeled with the different attacks
that use that path, while the numbers next to attack labels denote the sequence of steps for a particular attack. Points where different types of
defenses detect or prevent attacks are marked with an ‘X’ symbol: (1) UB (at the browser): [15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35], (2) StB (en route from the server to the browser): [36, 37, 38, 39, 40, 41, 42, 43], (3) DBAL (at the database abstraction
layer): [1, 14, 44, 45, 46, 47, 48, 49, 50], (4) DB (at the database): [35, 51, 52, 53, 54, 55].

The first two criteria correspond to Accuracy and Availability.
The other four criteria correspond to Runtime Performance, Ease
of Use, Security, and Point of Detection.

4.1 Accuracy
Web application defenses crucially have to capture the presence
of an attack. This, however, does not make a defense mechanism
immediately useful. A detection mechanism must also be reliable.
Detection accuracy is gauged with the following metrics [8, 56]:
• Sensitivity: the probability that an attack will be caught.
• Specificity: the probability that a normal interaction will not be

flagged.
• Positive Predictive Value (PPV): the probability that a reported

attack is a real attack. It is the conditional probability that an
event is an attack if the detection mechanism flags it as such.

• Negative Predictive Value (NPV): the probability that if noth-
ing is reported, no attack has taken place. It is the conditional
probability that an event is not an attack given that the detection
mechanism flags it as normal.

We will focus on sensitivity and specificity; we will come back
to PPV and NPV in Section 7. Sensitivity and specifity are defined
using the following [57]:
• True Positive (TP): an attack that raises an alarm.
• True Negative (TN): an event that is not an attack and that does

not raise an alarm.
• False Positive (FP): an event that although it is not an attack,

raises an alarm.
• False Negative (FN): an event that although is an attack, does

not raise an alarm.
So that we can calculate:

SE = Sensitivity =
TP

TP+ FN
(1) SP = Specificity =

TN

FP+ TN
(2)

Sensitivity and specificity can be calculated based on test data
alone. To calculate sensitivity, we run the test on a controlled
environment where we allow only attack events to reach the
system. The ratio of reported attacks over all attacks will give
us the sensitivity. Similarly, to calculate the specificity we can

run the test on a controlled environment where we allow only
innocuous events to reach the system. The ratio of non-reported
events over all events will give us the specificity. Note that the use
of sensitivity and specificity in this context has been advocated
before [58].

4.2 Availability
To ensure reproducibility of research results, the source code
implementing a detection mechanism should be available to re-
searchers. Ideally the code should be available under an open
source license, so that it is easy to modify and improve an
approach; even when this is not possible, for whatever reason,
it is important to make sure that all computer code and test data
is available, noting any restrictions on accessibility. Availability
of computer code has been recognized as an important issue
outside the computer science field: the journal Nature has adopted
a publication policy stressing access to code and data [10]. At a
time and date that the merits of open access to code are discussed
in non computer science journals [59], we should expect computer
scientists to lead the way.

4.3 Performance Overhead
Detection mechanisms may impose a cost due to their use, as
they typically introduce some amount of extra computation on
existing applications. The overhead depends on the specifics of
each mechanism. For example, it may be due to some form of
run-time checking, or some form of obfuscation. Also, depending
on the approach, the cost may be incurred on different places: it
may affect a server (e.g., its memory or CPU usage, processing
throughput, or response latency), it may affect the client, or
both. The usefulness of a mechanism depends therefore on the
computational cost it requires and on where it imposes it, as
different overheads may be acceptable at the server-side than the
client-side. What kind of numbers is reported matters as well.
Reporting absolute measurements gives little information on the
actual overhead, unless separate measurements are given for the
system under study with and without the proposed mechanism.
Percentage measurements are normally better.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2665620, IEEE
Transactions on Dependable and Secure Computing

MITROPOULOS ET AL. 5

Fig. 3. The basic categories of countermeasures against web appli-
cation attacks based on code injection. For each approach we pro-
vide the references that present corresponding mechanisms: Policy
Enforcement: [18, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 36, 37, 43],
ISR: [22, 38, 39, 51], Parse-Tree Validation: [1, 44], Taint Tracking: [15,
29, 40, 45, 46, 47, 48], Training: [41, 42, 49, 50, 52, 53, 62], Hy-
brid: [14, 19, 30, 32, 33, 34, 35, 54, 55].

Performance evaluation rests on strong foundations [60] and is
a vibrant field as new technologies emerge [61]. Although it may
not be necessary to conduct a comprehensive performance evalua-
tion analysis for a defense mechanism, the more evaluation results
are provided for a mechanism, the more valuable it becomes as a
practical approach.

4.4 Ease of Use
The value of a detection mechanism as a practical tool depends
on how easy it is to deploy it in a production setting. This aspect
is orthogonal to the value of a detection mechanism as a research
finding. Devising a technique to detect a hitherto undetectable
class of attacks may be an excellent research contribution that
merits publication; it may also be heavily cited and open the road
to other, practical implementations in the future.

Ease of use depends on the deployment process required for
the mechanism. The detection mechanism may be deployed at
either or both the server and the client-side. Deployments on just
the server or the client are easier to handle than deployments on
both of them. The mechanism may be an add-on or plugin for
existing software, client or server, or it may be tightly integrated
with existing software, requiring rebuilding from source code.

No matter where it is installed, the means of installation
influences ease of use. A detection mechanism that is available
as a ready-to-install package will trump others that only exist in
the form of source code.

4.5 Security
Defenders and attackers are often caught in a cat-and-mouse game,
where countermeasures are bypassed by savvy attacks, which are
caught by more sophisticated countermeasures, yet again bypassed
by savvier attacks, and so on. We use security to refer to the ability
of a detection mechanism to resist circumvention.

A mechanism that has not been bypassed is not eternally
secure, as it is possible that a bypass method will be discovered
in the future. We examine the various approaches based on the
knowledge we have so far, that is, whether there are any known
ways to bypass the detection mechanism today.

4.6 Point of Detection
Detection mechanisms vary on the location where they detect an
attack. There are four different points where an attack can be
caught, as seen in Figure 2:

1) At the user’s browser (Point UB).
2) En route from the server to the user’s browser—in most cases

within a proxy (Point StB).
3) At the database abstraction layer, before it reaches the server’s

database (Point DBAL).
4) After the malicious code reaches the server’s database (Point

DB).

5 DEFENSES
We categorize and analyze a large set of defenses developed to
prevent the attacks described in Sections 2 and 3. We perform our
analysis across the dimensions discussed in the previous section,
except from availability, which we treat separately in Section 6.
Due to the immense number of published works in the area, we
only consider defenses that have been proposed in publications
cited more than 20 times according to Google Scholar. We also
include some recent works that have been presented in top security
conferences, even though they have been cited less than 20 times,
so that recent research is not penalized.

Figure 3 presents a taxonomy of web application defenses
against injection attacks. We can identify three broad categories:
etiological, symptomatic, and hybrid. The etiological category
involves mechanisms designed to block attacks based on their
causes and origins. The symptomatic category incorporates a
variety of schemes that inspect the behavior of applications and
detect attacks based on their undesirable symptoms [8, 63]. Hybrid
mechanisms borrow characteristics from both categories. Table 1
lists the specific mechanisms we consider in this work, grouped
according to the subcategories shown in Figure 3, and for each
mechanism provides the following information:

1) Number of citations of the corresponding publication(s).
2) Accuracy and computational overhead measurements.
3) Types of attacks handled.
Recall that the point of operation for each mechanism is provided
in the caption of Figure 2.

5.1 Etiological
There are three main categories of etiological approaches used to
protect web applications against injection attacks: Parse-Tree Val-
idation, Policy Enforcement, and Instruction Set Randomization.

5.1.1 Parse-Tree Validation
The key idea behind parse-tree validation is to compare the tree
representation of the abstract syntactic structure of the code that is
about to be executed with the one that was originally intended. If
the trees diverge, the application is probably under attack.

For DSL code injection attacks, mechanisms check the query
before the inclusion of user input with the one resulting after the
inclusion of user input. Two mechanisms that implement this ap-
proach for protection against SQL injection attacks, SQLGuard [44]
and SQLcheck [1], are quite similar and detect the attack before a
query reaches the database (Point DBAL). Contrary to SQLGuard,
SQLcheck has been extensively tested in terms of accuracy, as can
be seen in Table 1. A disadvantage of these mechanisms is that the
application must be modified in every code fragment that sends an
SQL query to the database for execution.

Parse-tree validation is an effective approach for the detec-
tion of DSL code injection attacks, especially as implemented
in SQLcheck. This is not however the case for mechanisms that
borrow elements from this approach and examine the syntax trees
of scripts to detect JavaScript-driven XSS attacks, as we will see
in Section 5.3.
5.1.2 Policy Enforcement
This approach is used to prevent XSS and CSRF attacks. When us-
ing a framework that implements policy enforcement, developers
must define specific security policies on the server-side. Policies
can be expressed through JavaScript extensions, pattern matching,
or syntax-specific settings. The policies are then enforced either
in the user’s browser at runtime, or on a server-side proxy that
intercepts server responses.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2665620, IEEE
Transactions on Dependable and Secure Computing

MITROPOULOS ET AL. 6

TABLE 1
Summary of mechanisms developed to counter application attacks based on code injection. The different results does not necessarily indicate that

one mechanism is more effective than the other. This is because most of them were evaluated under different assumptions and settings.
Approach Mechanism # of Citations Requirements1 Attack4

TP,TN,FP,FN2 Performance Overhead3

Parse-Tree Validation
SQLGuard [44] 368 (NA,NA,NA,NA) ? 3% (S) SQLi
SQLCheck [1] 547 (36848,7648,0,0) r 3ms per query (S) SQLi

Policy Enforcement

DSI [21] 188 (5268,NQ,NQ,85) r 1.85% (C) XSS

NoForge [37] 166 (7,NQ,NQ,0) r NA (S) CSRF

Noxes [18] 69 (3,NA,NA,0) r NA (C) XSS

BEEP [20] 362 (61,NA,NA,0) r 14.4% (C) XSS

BrowserShield [36] 273 (19,NQ,0,0,) r 8% (S) XSS

CoreScript [24] 212 (NQ,NQ,NQ,NA) s NQ (C) XSS

SOMA [27] 65 (5,NA,NA,0) s 5.58% (C) XSS, CSRF

Phung et al. [25] 124 (37,NA,NA,4) r 5.37% (C) XSS

ConScript [23] 152 (NA,NA,NA,NA) ? 7% (C) XSS

CsFire [28] 52 (419582,1141807,0,3) r5 NA (C) CSRF

CSP [31] 143 (NA,NA,NA,NA) ? NQ (C) XSS, CSRF

jCSRF [43] 4 (2,NA,NA,0) r 2ms (S) CSRF

WebJail [26] 53 (2,NA,NA,1) ? ∼6.89ms (C) XSS

ISR

SQLrand [51] 428 (3,NA,NA,0) a ≤6.5ms (S) SQLi
SMask [39] 31 (5,NQ,NQ,NQ) r NA (S) SQLi, XSS

Noncespaces [38] 146 (6,NA,NA,0) r 2% (S) XSS

xJS [22] 29 (1380,NA,NA,1) r 1.6–40ms (C) XSS

Taint Tracking

Haldar et al. [45] 234 (2,NA,NA,0) s NQ (S) SQLi, XSS

CSSE [47] 387 (7,NQ,NQ,NQ) r 2–10% (S) SQLi, XPathi, XSS

Xu et al. [46] 368 (9,NQ,0,NQ) r average 76% (S) SQLi, XSS

WASC [40] 37 (NQ,NQ,NQ,NQ) r up to 30% (S) SQLi, XSS

Vogt et al. [29] 490 (NQ,NQ,NQ,NA) r NQ (C) XSS

PHP Aspis [48] 26 (12,NQ,NQ,2) r 2.2× (S) SQLi and PHPi, XSS

Stock et al. [15] 23 (1169,NA,NA,0) r 7–17% (C) DOM-based XSS

Training

DIDAFIT [52] 208 (NA,NA,NA,NA) ? NA (S) SQLi
AMNESIA [50] 551 (1470,NQ,0,0) a NQ (S) SQLi

libAnomaly [53] 310 (9,15987,60,0) r 0.20–1ms per query (S) SQLi
XSSDS [42] 96 (NQ,NQ,NQ,0) r NQ (S) XSS

SWAP [41] 83 (NQ,NQ,NQ,NQ) r up to 261ms (S) XSS

SDriver [49, 62] 36 (241,NQ,0,0) a 39% (S) SQLi and XPathi

Hybrid

XSS-GUARD [30] 153 (8,NQ,NQ,NQ) r 5–24% (C) XSS

Blueprint [19] 187 (94,NA,NA,0) r 13.6% (C) XSS

Diglossia [14] 23 (25,NQ,NQ,NQ) r 13% (S) SQLi and JSONi
JSFlow [32] 72 (NQ,NQ,NQ,NQ) r 2× (C) XSS

COWL [33] 41 (NQ,NQ,NQ,NQ) r 16% (C) XSS

Bauer et al. [34] 10 (NA,NA,NA,NA) ? average 55% (C) XSS

SIF [54] 155 (NA,NA,NA,NA) ? 26% (S) SQLi, XSS

Hails [35] 92 (NQ,NQ,NQ,NQ) r 28% (S,C) SQLi, XSS

Aeolus [55] 58 (NA,NA,NA,NA) ? 323.5ms per request (S) SQLi, XSS
1 NA (Not Available) indicates that a requirement is not mentioned in the paper. NQ (Not Quantified) indicates that a requirement is mentioned in the publication but is not quantified.
2 Tuples contain numbers given for True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN). For every tuple

there is a corresponding suffix that indicates whether the testbed was based on: real-world applications known to be vulnerable (r), synthetic benchmarks (s), or both (a). A question
mark (?) denotes that no test results are reported.

3 Whether the overhead is incurred on the server (S) or the client (C).
4 i stands for injection.
5 The numbers in this particular case involve requests.

Noxes [18] is the only framework that partially allows users
to specify policies for the prevention of XSS attacks. The key
idea behind Noxes is to parse the HTML response that reaches
the browser and find static URL references. Then, based on a set
of policies, Noxes allows or blocks any generated requests (Point
UB). Such policies can also be provided by the server (i.e., “never
follow a link that leads to the malicious.com web site”). The main
issue with Noxes is that URLs can be dynamically assembled by
scripts, which may lead to false alarms.

Some frameworks define policies based on information and
features provided by the DOM of a web page. Specifically, de-
velopers must place all legitimate scripts inside HTML elements
like div. The web browser (Point UB) parses the DOM tree and
executes scripts only when they are contained in such elements.
All other scripts are treated according to the policies defined
on the server. Frameworks that support this functionality include
BEEP [20] and DSI [21]. The main problem with these mechanisms
is that they do not examine the script’s location inside the web
document. Attackers can take advantage of this fact to perform
mimicry attacks [64]. Specifically, they can execute legitimate
scripts, but not as intended by the original design of the developers.

This is extensively described by Athanasopoulos et al. [22],
who also describe another recent variation of JavaScript injection
attacks, known as return-to-JavaScript attacks, which can be used
to bypass the above mechanisms.

A policy enforcement technique developed by Mozilla, called
CSP (Content Security Policy)4 [31] is currently supported by
many browsers to prevent XSS and CSRF attacks. To eliminate
such attacks, web site administrators can specify which domains
the browser should treat as valid sources of script and which not.
These policies are communicated via the HTTP headers. Then,
the browser (Point UB) will only execute scripts that exist in
source files from white-listed domains. Note that, if an application
involves embedded scripts, developers must utilize the CSP’s
nonce concept. This is an unpredictable, random value indicated
in the script-src directive, which in turn is applied as a nonce
attribute to <script> elements. As a result, only those elements
that have the correct nonce will execute. Even if an attacker is
able to inject markup into the page, the attack will be prevented
by the attacker’s inability to guess the nonce value. However,
attackers may still bypass this feature and invoke a script from

4. https://developer.mozilla.org/en-US/docs/Web/Security/CSP

https://developer.mozilla.org/en-US/docs/Web/Security/CSP

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2665620, IEEE
Transactions on Dependable and Secure Computing

MITROPOULOS ET AL. 7

a non-whitelisted source. To do so, their injected code must be
crafted in a way that the nonce is handled by the browser as an
attribute of the payload [65].

Another policy enforcement approach introduces policies di-
rectly either in HTML or JavaScript code to confine their behavior.
BrowserShield [36] acts as a proxy on the server-side (Point StB)
to parse the HTML of server responses and identify scripts. Then,
it rewrites them into safe equivalents and protects the web user
from exploits that are based on reported browser vulnerabilities.
ConScript [23], CoreScript [24], and the framework by Phung
et al. [25] extend JavaScript with new primitive functions that
provide safe methods to protect potentially vulnerable JavaScript
functions. In both cases, policy enforcement takes place at client-
side, in the JavaScript engine of the browser (Point UB). In this
way, XSS attacks that take advantage of functions such as write
and eval, which are used to assemble innocuous-looking parts
into harmful strings,5 would fail.

An issue regarding the above frameworks involves features
like script inclusion and iframe tags. Even though they allow
developers to decide if they will disable them or not, this is
impractical because such features are quite popular and widely
used. If developers choose to use them, these frameworks cannot
define policies that restrict the behavior of third-party scripts
introduced by such features. Thus, they would be vulnerable to
attacks that use iframes in the way described in Section 2.
WebJail [26], and SOMA [27] are two frameworks that can actually
detect such attacks (Point UB). To achieve this, SOMA requires site
administrators to specify legitimate, external domains for sending
or receiving information in order to approve interactions between
them and the protected web site. As a result, SOMA can also detect
CSRF attacks. WebJail contains the functionality of third-party
scripts by introducing a web component integrator that restricts
the access that these scripts may have to either the data or the
functionality of other components.

Policy enforcement mechanisms that detect CSRF attacks are
usually implemented in the form of a server-side proxy (Point StB)
interposed at the client-server communication path. NoForge [37]
parses the HTML server responses and adds a token to every URL

referring to that particular server. Then, it associates the token with
the cookie representing the session ID for the application. When a
request is received, the mechanism checks if the request contains
the token related to the session ID. A disadvantage of NoForge is
that dynamically created HTML within the browser will not include
the token. Thus, sites that create part of their HTML code at client-
side will remain vulnerable. In addition, it does not support cross-
origin requests. The above problems are addressed by jCSRF [43],
which shares similar functionality. Finally, CsFire [28] examines
cross-domain interactions to design a cross-domain policy at the
client-side (Point UB). The policy is based on the concept of a
relaxed same-origin policy that allows communication between
sub-domains of the same registered domain. Most of the above
frameworks involve several deployment hurdles, as they require
significant source code modifications by the developers on the
server-side to introduce and enforce the applied policies.

5.1.3 Instruction Set Randomization (ISR)
ISR is a method that has been applied to counter different kinds
of application attacks [66], and was originally applied for the
prevention of binary code injection attacks [67]. The main idea
behind ISR is to change the representation of code based on a

5. The infamous Sammy worm that infected MySpace in 2005 utilized the eval
function to assemble a malicious script.

randomly chosen transformation, and randomize the execution
environment accordingly. In this way, any malicious code injected
as part of untrusted input data, by attackers who do not know the
randomization algorithm, will not be executed.

SQLrand [51] applies the concept of ISR for the prevention
of SQL injection attacks. It allows programmers to create SQL

statements using randomized instructions instead of standard key-
words. The modified queries are reconstructed at runtime using
the same key used for randomization, which is inaccessible to a
malicious user. SQLrand is one of the few mechanisms that prevent
SQL injection attacks at the database level (Point DB).

The same concept can be applied for protection against XSS

attacks that inject JavaScript or HTML code. Initially, the trusted
code of a web page can be transformed to a random representation
using a simple function such as XOR. Before being sent to the
client (Point StB), or being processed by the browser (Point UB),
the legitimate code is transformed back to its original form, while
any additional injected code will be transformed into junk code.
Variations of this approach include Noncespaces [38] and xJS [22],
which randomize the instruction set of HTML and JavaScript,
respectively. Contrary to xJS, in Noncespaces administrators must
set specific policies in a manner similar to a firewall configuration
language. SMask [39] is another framework that was inspired by
ISR. To detect XSS attacks, it searches for HTML and JavaScript
keywords within the application’s legitimate code. This is done
before the processing of any HTTP request. When a keyword is
found, it adds a token to it, resulting in a “code mask.” Then,
before sending the resulting HTML data to the user, the framework
searches the data for illegal code using the same keywords (Point
StB). Since all legitimate code has been “masked,” the injected
code can be identified. The need for pre-processing and post-
processing the code, however, may add a significant overhead
to the application. Unfortunately, the authors of SMask did not
provide measurements regarding the runtime overhead of the tool
(see Table 1).

ISR is a deterministic approach that can be applied to prevent
different attacks in an effective manner. However, Sovarel et
al. [68] have investigated thoroughly the effectiveness of ISR and
showed that a malicious user may be able to circumvent it by deter-
mining the randomization key. Their results indicate that applying
ISR in a way that provides a certain degree of security against
a motivated attacker is more difficult than previously thought.
Furthermore, developers who wish to use such mechanisms must
follow good coding practices and make sure that randomized code
statements are never leaked (e.g., as part of an exception error), as
this may be used to reveal the encoding key.

Even though the above implementations impose a low com-
putational overhead, they require significant deployment effort.
In particular, SQLrand [51] requires the integration of a proxy
within the database server, while Noncespaces and xJS [22] require
modifications on both the server and the client.

5.2 Symptomatic
Symptomatic techniques follow two main approaches. They either
track untrusted input and ban certain operations on it, or they first
learn what code to trust and then approve for execution code that
they recognize as safe.

5.2.1 Taint Tracking
A taint tracking scheme marks untrusted (“tainted”) data, such as
a variable set by a field in a web form, and traces its propagation
throughout the program. If the variable is used in an expression

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2665620, IEEE
Transactions on Dependable and Secure Computing

MITROPOULOS ET AL. 8

that sets another variable, that variable is also marked as untrusted
and so on. If any of these variables is used in a potentially risky
operation (e.g., sending the data to a vulnerable “sink,” such as a
database, a file, or the network), the scheme may act accordingly.

Taint tracking is provided as a feature in some programming
languages, such as Perl and Ruby. By enabling this feature, Perl
would refuse to run code vulnerable to an SQL injection attack
(consider a tainted variable being used in a query) and would exit
with an error message.

There are different implementations of this approach in terms
of how the tainted data is marked and tracked, and how attacks are
detected. For example, Haldar et al. [45] have implemented their
scheme for the Java Virtual Machine (JVM), where they instrument
various classes. When a tainted string is used as an argument to a
sink method an exception is raised (Point DBAL).

It is possible to apply further checks when it is established that
tainted data have reached a sink (Point DBAL). Xu et al. [46] track
taint information at the level of bytes in memory. To distinguish
between legitimate and malicious uses of untrusted data that
reach a sink, they search the data for suspicious symbols using
regular expressions. CSSE [47] associates tainted data with specific
metadata. Such metadata include the origins of tainted data, its
propagation within the application, and others. When tainted data
reaches a sink, CSSE performs syntactic checks based on its
metadata (Point DBAL). PHP Aspis [48] works in a similar way. To
obtain metadata, it takes advantage of the PHP array data structure.
Finally, WASC [40] analyzes HTML responses to check if there is
any tainted data that contains scripts (Point StB).

A recent study [69] showed that there are ways to circumvent
the majority of the above schemes. Furthermore, most of them are
not easy to deploy since the majority of input vectors, string oper-
ations, and output vectors of the application must be instrumented.

Vogt et al. [29] have developed a tainting scheme that follows
a different approach. In contrast to the above schemes, which
operate on the server-side, their technique tracks sensitive infor-
mation at the client-side (Point UB). This is a form of positive data
flow tracking, where tagged data is considered to be legitimate.
Their scheme detects JavaScript-driven XSS attacks by ensuring
that a script can send sensitive user data only to the site from
which it came from. Stock et al. [15] propose a scheme that also
operates in the browser (Point UB). The scheme focuses on the
detection of DOM-based XSS attacks. This scheme is different
from the previous one because it marks and observes data that
are considered harmful. Specifically, it employs a taint-enhanced
JavaScript engine that tracks the flow of attacker-controlled data.
To detect potential attacks, the scheme uses HTML and JavaScript
parsers that can identify the generation of code coming from
tainted data.

An issue that involves all taint tracking schemes involves
the difficulty of maintaining accurate taints [70] (e.g., implicit
flows [71]). In such cases, certain, tainted inputs can escape
the tracking mechanism. Keeping track of such input may be
impractical not only because of the various technical difficulties,
but also because it would raise false alarms.

5.2.2 Training
Training techniques are based on the ideas of Denning’s original
intrusion detection framework [72]. In particular, a training mech-
anism learns all valid legitimate code statements during a training
phase (mostly in the form of signatures). This can be done in
various ways depending on the implementation. Then, only those

statements will be recognized and approved for execution during
production.

Training methods that detect DSL-driven injection attacks gen-
erate and store valid code statements (e.g., SQL or XPath queries)
in various forms, and detect attacks as outliers from the set of valid
code statements. An early approach, DIDAFIT [52], detects SQL

injection attacks (Point DBAL) by recording all database transac-
tions stripped from user input. Subsequent refinements by Valeur
et al. [53] tag each transaction with the corresponding application
as an extension of their anomaly detection framework called
libAnomaly. SDriver [49, 62] is a signature-based mechanism that
prevents SQL and XPath injection attacks. The signatures generated
during a training phase are based on features that can depend
either on code statements or on their execution environment (e.g.,
the stack trace). Then, at runtime, the mechanism checks all state-
ments for compliance and can block code statements containing
injected elements (Point DBAL). AMNESIA [50] is a tool that also
detects SQL injection attacks (Point DBAL) by associating a query
model with the location of every SQL statement within the appli-
cation. Then, at runtime, it monitors the application’s execution to
detect when SQL statements diverge from the expected model.

Various countermeasures against XSS attacks follow a similar
pattern. SWAP [41] creates a unique identifier (script ID) for
every legitimate script on the server. Then, a JavaScript detection
component placed in a web proxy (Point StB) searches for injected
scripts with no corresponding ID in the server’s responses. If no
injected scripts are found, the proxy forwards the response to the
client. This mechanism is relatively inflexible since it does not
support dynamic scripts. In addition, it imposes a significant over-
head (see Table 1). The authors of XSSDS [42] have implemented a
similar mechanism that also supports dynamic and external scripts.
Specifically, during the training phase, they build a list of all
benign scripts. For external scripts, they keep a whitelist of all the
valid domain names that contain scripts used by the application.

Defenses based on training include some mechanisms that
can be easily circumvented. For example, DIDAFIT [52] and
libAnomaly [53] do not tag transactions with their corresponding
call sites. This can lead easily to false negatives. For instance,
recall the application mentioned in Section 2, which will show the
password for a forgetful user by executing the following query:
SELECT password from userdata WHERE id = ’Alice’

This same application could allow users to login to the site using
just their password via a custom login form (like the “Password
only login” plugin of Wordpress6) but allow the login either
with the user’s password or with the administrator password. The
corresponding query to verify the password on the login form
would be as follows:
SELECT password from userdata WHERE id = ’Alice’ OR

id = ’admin’

Even if the application’s administrators have chosen to use either
DIDAFIT [52] or libAnomaly [53] as protection, an attacker could
bypass them and obtain the administrator’s password via email,
by entering on the form the standard string: nosuchuser’ OR
id = ’admin. The infected query matches the signature of the
second one above and is therefore accepted. The problem lies with
the call location of the query, not the query alone.

Mechanisms based on signatures that involve elements not
only associated with code statements (e.g., AMNESIA [50] and
SDriver [49]) could detect such attacks. Specifically, SDriver asso-
ciates a complete stack trace with the root of an SQL statement,

6. wordpress.org/plugins/password-only-login/

wordpress.org/plugins/password-only-login/

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2665620, IEEE
Transactions on Dependable and Secure Computing

MITROPOULOS ET AL. 9

thus it can correlate queries with their call sites and detect attacks
like the above. Furthermore, training tools that detect XSS attacks
based on JavaScript injection would fail to detect mimicry attacks
where legitimate scripts can be executed by attackers, but not in
the way intended by the developers [22].

In general, the detection accuracy of training approaches is
heavily influenced by the coverage that is achieved during the
training phase. If the coverage is insufficient, false alarms are very
likely. In addition, when a code statement is altered, a new training
phase is necessary.

Most of the training approaches are relatively easy to deploy.
DSL injection attack countermeasures can be retrofitted to a system
typically by changing some configuration files (i.e., SDriver).
This does not apply to AMNESIA though, since significant source
code modifications are required for every query that exists in the
application. Finally, SWAP and XSSDS are implemented within a
proxy on the server-side.

5.3 Hybrid
This category includes mechanisms that borrow characteristics
from both etiological and symptomatic approaches. Five of them
focus on the detection of XSS attacks and one focuses on DSL code
injection attacks.

XSS-GUARD [30] is a training scheme that employs parse-tree
validation. During training, the scheme maps legitimate scripts
to HTTP responses. During production XSS-GUARD retrieves for
every script included in a response its parsed tree and checks if
it is one of those previously mapped to this response. Apart from
the comparison of the parsed trees, XSS-GUARD checks also for
an exact match of lexical entities. To achieve this, the scheme
utilizes that data structures of Firefox’s JavaScript engine (Point
UB). However, string literals are not compared literally, which can
lead to false negatives. For instance, consider a banner rotator that
every time it runs it creates a value that depends on the current
date and the length of the array that contains the references of the
various images to be displayed. Then, based on this value, it shows
a specific image to a user. In a vulnerable web site that allows users
to post data and contains this banner rotator, a malicious user could
create and store a script that has the same code structure, with
the same JavaScript keywords contained in the rotator script. In
this script, attackers could also include references to tiny images
hosted on a web server that is maintained by them in order to
retrieve the IP addresses of the users that visit the vulnerable site.

Blueprint [19] is a policy enforcement framework that uses
parsed trees to detect XSS attacks. To guarantee that untrusted
content is not executed, Blueprint generates at the server-side a
parsed tree from untrusted HTML to ensure that it does not contain
any dynamic content. Then, the parsed tree is transfered to the
document generator of the browser (Point UB), where untrusted
browser parsing behavior is ruled out. Blueprint is an efficient
countermeasure but imposes non-negligible overhead due to its
extensive parsing (see Table 1).

Diglossia [14] combines positive taint tracking together with
parse-tree validation. Diglossia was based on the theory of Ray
and Ligatti [2] (which we saw in Section 2) to detect DSL code
injection attacks. In addition, it is actually the first, and so far
the only framework that detects JSON injection attacks. When an
application computes an output string (query), Diglossia computes
a “shadow” of that string. Specifically, it maps all characters
introduced by the application to a shadow character set. This set
does not contain any characters coming from the tainted input.

Fig. 4. Most common sources of real-world vulnerabilities used for test-
ing of web attack defenses. Specifically, the publications that used a par-
ticular source are as follows: CVE [14, 30, 37, 39, 40, 41, 43, 46, 48, 51],
Bugtraq [18, 42, 47], XSSed.com [21, 22], ha.ckers.org [19, 20, 25],
Microsoft [36].

Then, the scheme creates the tree of the query that is about to
be executed and compares it with the parsed tree of the “shadow”
(Point DBAL). If the trees do not match, the application is probably
under attack. Note that Diglossia can be bypassed in the same way
as other taint tracking approaches [69].

Information Flow Control (IFC) mechanisms combine positive
taint tracking and policy enforcement to prevent XSS attacks on
the client-side (Point UB). Representative implementations such
as JSFlow [32], COWL [33] and the framework by Bauer et al. [34]
allow developers to express information flow policies by extending
the type system of JavaScript. Then, the policies are enforced by
the JavaScript interpreter through dynamic checks. IFC frame-
works do not focus explicitly on JavaScript and they have a
broader scope. They can be used to build secure applications, thus
preventing different attacks. Policies can be provided either as
compile-time program annotations, or as run-time requirements
defined by the user. Such frameworks include SIF (Servlet Infor-
mation Flow) [54], Hails [35], and Aeolus [55].

6 OBSERVATIONS
We group our key observations on the 41 publications that we
consider in this work along the dimensions we identified in
Section 4.
6.1 Accuracy
Table 1 indicates that the authors of 3 out of 41 (7.3%) publications
provided a complete tuple of TP, TN, FP, and FN. On the other
hand, we see that 7 out of 41 (17%) were not tested at all.
In these cases, all four elements of the tuple are not available
(NA). An interesting observation is that in 10 out of the 41
(24.3%) publications, the evaluation focused on only on attack
detection, and there was no test focusing on false positives. The
corresponding tuples contain TP and FN results, but TN and FP

results are not available (NA). This stresses the fact that authors
may be more interested in making sure that their mechanisms can
detect known attacks rather than seeing how they respond under
normal conditions. In some cases, where the number of TP results
are not quantified, authors did not mention how many or which
attacks they performed. Moreover, in some cases we observe that
even if the authors report the existence of possible false positive
and negative results, they have not quantified them (NQ).

Even when some numbers are given, they may not be adequate.
Sensitivity and specificity are statistical measures, and as such,
they should be interpreted with suitable confidence intervals.
There are various methods to calculate confidence intervals, even
without the need to have large sets of samples in order to be able
to use the central limit theorem [73]. However, sample sizes in the
single digits are not enough to produce good intervals.

Regarding the subjects of tests, we see that 30 out of 41
(73.1%) mechanisms were tested with real-world applications
known to be vulnerable. The vulnerabilities associated with these

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2665620, IEEE
Transactions on Dependable and Secure Computing

MITROPOULOS ET AL. 10

TABLE 2
Availability of the studied defenses.

Approach Mechanism Availability1

Source Code Executable Testbed

Parse-Tree Validation
SQLGuard [44] AO AO NA

SQLCheck [1] NA NA NA

Policy Enforcement

DSI [21] NA NA NA

NoForge [37] AO AO NA

Noxes [18] NA NA NA

BEEP [20] 4 4 4

BrowserShield [36] NA NA NA

CoreScript [24] AO NA NA

SOMA [27] NA NA NA

Phung et al. [25] 4 4 4

ConScript [23] AO NA NA

CsFire [28] 4 NA NA

CSP [31] AO AO NA

jCSRF [43] NA NA NA

WebJail [26] NA NA NA

ISR

SQLrand [51] NA NA NA

SMask [39] NA NA NA

Noncespaces [38] NA NA NA

xJS [22] NA NA NA

Taint Tracking

Haldar et al. [45] NA NA NA

CSSE [47] NA NA NA

Xu et al. [46] NA NA NA

WASC [40] NA NA NA

Vogt et al. [29] NA NA NA

PHP Aspis [48] AO NA AO
Stock et al. [15] NA NA NA

Training

DIDAFIT [52] NA NA NA

AMNESIA [50] NA AO NA

libAnomaly [53] ? ? ?
XSSDS [42] NA NA NA

SWAP [41] NA NA NA

SDriver [49, 62] 4 4 NA

Hybrid

XSS-GUARD [30] NA NA NA

Blueprint [19] ? ? ?
Diglossia [14] NA NA NA

JSFlow [32] 4 4 NA

COWL [33] NA NA NA

Bauer et al. [34] NA NA NA

SIF [54] AO NA NA

Hails [35] AO NA AO
Aeolus [55] 4 4 NA

1
A check mark (4) indicates that the publication includes a link to a page where the software

is available. AO (Available On-line) indicates that the software is available on-line but the
address is not mentioned in the paper, which probably means that the it was made available
after the publication. A question mark (?) indicates that a link to the software was included in the
publication but is now inaccessible.

applications are enlisted in the following providers: the Common
Vulnerabilities and Exposures (CVE) database,7 the Bugtraq8

security mailing list, the XSSed.com security bulletin provider,9

Microsoft’s security bulletin10 and the ha.ckers.org11 security
bulletin provider. Figure 4 presents how many, and which pub-
lications referred to which source. In numerous occasions authors
performed tests based on the same applications. For example, 12
mechanisms were tested on a vulnerable version of the PHPBB

bulletin board software.12

There are also authors that took a different approach. For
instance, during their initial tests, Stock et al. [15] managed to
bypass the browser-based XSS filters of 73% out of 1,602 real-
world DOM-based XSS vulnerabilities. These vulnerabilities were
actually found as part of their previous research [74]. Finally,
in the AMNESIA [50] and SDriver [49] publications, the authors
managed to break existing application suites and then test the
accuracy of their tools on them.

6.2 Availability
Table 2 presents our findings regarding the availability of each
mechanism in terms of source code and corresponding executa-
bles. We also examined the availability of the testbeds mentioned

7. https://cve.mitre.org/
8. http://seclists.org/bugtraq/
9. www.xssed.com
10. https://technet.microsoft.com/en-us/security/bulletin
11. http://ha.ckers.org/
12. https://www.phpbb.com/

in each paper. We see that only 8 out of 41 (19.5%) of the
publications provided a link to their mechanism and, 2 from these
6 web pages are currently not available. In 7 cases the authors
made either the source code or their executables available after
their paper got published. In one case (CSP [31]), the source was
available before the publication through the Mozilla community.
Regarding the availability of test materials, we see that only 4 out
of 41 (9.7%) publications have currently their testbeds available.

6.3 Performance Overhead
Table 1 shows the performance overhead of each mechanism. In
addition, it indicates if the overhead is incurred at the server (S) or
at the client-side (C). In almost half of the approaches, 20 out of 41
(48.7%), the overhead is provided as a percentage, while in other
cases, 8 our of 41 (19.5%), the authors provide the latency (in
ms) that their mechanisms add to the normal execution time of the
protected application. Note that in some cases, the times of normal
executions are not provided so it is not possible to convert absolute
time measurements to percentage overheads. In 10 cases (24.3%),
the overhead was either not available (NA) or not quantified (NQ).
For PHP Aspis [48] and JSFlow [32] the authors indicate that with
their mechanisms the execution time is doubled.

6.4 Ease of Use
Mechanisms in different categories face different deployment
issues. Consider the majority of mechanisms in the policy enforce-
ment subcategory. In most cases, developers should modify multi-
ple components to use each mechanism. Specifically, mechanisms
like BrowserShield [36] and BEEP [20] require modifications both
on the server and at the client. Thus, it would be difficult to be
adopted by both browser vendors and application developers. On
the other hand, there are cases where the policies introduced at
the server are enforced at the client-side, via a library embedded
in the server’s response (i.e., Blueprint [19]). Such an approach is
convenient as no modifications are needed at the client.

Extensive modifications in the application’s source code can
also be a reason that can make a mechanism difficult to use.
SQLrand [51], AMNESIA [50], mechanisms of the parse-tree vali-
dation subcategory, and mechanisms of the taint tracking subcat-
egory are such examples. In the first three cases, programmers
should modify every code fragment that involves the execution of
a query. In the latter case they should also change all the code
fragments that involve user input handling.

By design, IFC frameworks provide limited support for secur-
ing legacy applications and they are not always easy to adopt
because developers need to learn new constructs to use them.
However, there are attempts to overcome such issues. For instance,
the authors of Aeolus [55] provide a simple security model that
tries to match the way programmers understand authorization and
access control with the tracking of information flow.

Finally, even though many of the mechanisms that involve
training are easy to deploy, they have a distinct disadvantage.
When the application is altered, mechanisms like SDriver [49]
and XSS-GUARD [30] require a new training phase. However,
with the increased adoption of automated testing and continuous
integration frameworks, this phase could be easily repeated.

6.5 Security
In our discussion of the various mechanisms in Section 5, we
observed that some of them can be bypassed by attackers that
know the internals of their operation. Still, the design of some
mechanisms allows them to be extended and become immune to
the circumvention attacks they are currently vulnerable to. For

https://cve.mitre.org/
http://seclists.org/bugtraq/
www.xssed.com
https://technet.microsoft.com/en-us/security/bulletin
http://ha.ckers.org/
https://www.phpbb.com/

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2665620, IEEE
Transactions on Dependable and Secure Computing

MITROPOULOS ET AL. 11

example, policy enforcement frameworks based on JavaScript or
HTML rewriting can be extended to detect attacks that leverage
iframe tags. This does not apply to all mechanisms though.
In particular, training mechanisms like DIDAFIT [52] and XSS-
GUARD [30] must be redesigned to detect the atacks we described
in the related sections.

Taking the attackers’ point of view, mimicry attacks can affect
a range of different mechanisms: they can be used to bypass mech-
anisms in the hybrid category, as well as the policy enforcement
and training subcategories.

6.6 Point of Detection
Given the fact that the final steps of DSL injection and CSRF attacks
take place at the server-side, all mechanisms that detect such at-
tacks are placed at some point within the server-side infrastructure.
From the mechanisms that detect DSL code injection attacks, 3 out
of 16 (18.7%) do so at the level of the RDBMS (Point DB). The
other 13 are based on interposing on API calls related to output
vectors (Point DBAL).

For frameworks that deal with XSS attacks, we see that attack
prevention may take place either at the server or the client-side. In
the first case, a proxy is typically placed in front of the server to
examine the server’s responses before they reach a user’s browser.
In the second case, a modified browser or a library that is securely
downloaded from the server checks the responses for potential
attacks. We find that the tendency so far is to create frameworks
that perform detection on the client-side: in particular, 18 out of
30 frameworks (60%) detect XSS attacks at the client-side. Note
that the majority of the mechanisms that detect such attacks on the
server can also detect DSL code injection (9 out of 13).

7 RECOMMENDATIONS AND LESSONS LEARNED
Our observations lead to some lessons and recommendations that
developers of new mechanisms may find helpful. In particular,
our observations call for improvements in the accuracy of ex-
perimental testing and code availability, while aiming to reduce
performance overheads and deployment hurdles.

7.1 Improving Testing Accuracy
One of our key findings indicates that many proposed defenses
are tested in a poor manner. In many cases, researchers tend to
not provide results on false positives or false negatives for their
mechanisms (where applicable). Mere discussion on the existence
of such results without quantifying them also blurs the picture.

A reasonable argument would be that many defenses (e.g.,
many mechanisms coming from the etiological category, or the
IFC frameworks), do not need to be validated purely through
testing, since they provide systematic arguments as to why their
design is secure against attacks. In order for this to hold, however,
their implementation should be flawless and precisely follow its
specification, which may not be the case in practice. Moreover,
even mechanisms that detect attacks based on their root cause,
instead of their observed behavior, may still be circumvented by
evasive attacks.

When we introduced specificity and sensitivity in Section 4.1,
we deferred discussion of PPV and NPV to this point. These two
relate to the effectiveness of a detection mechanism in an actual
production setting, instead of a testbed. If an attack is detected in
a production environment, how much should we be worried? The
answer is provided by PPV. If no attack is detected in a production
environment, how relaxed should we be that no attack has indeed
taken place? The answer is provided by NPV. We can calculate
PPV and NPV with the following equations:

PPV =
TP

TP+ FP
(3) NPV =

TN

FN+ TN
(4)

Equations 5 and 6 use true and false positives and negatives,
like equations 1 and 2. However, TP, TN, FP, and FN are not
qualitatively the same in these two cases: whereas sensitivity and
specificity are measured on a testing environment, PPV and NPV

are measured on a real, production environment. In fact, if PR is
the probability of a particular class of attacks in the real world,
i.e., its prevalence, then we have [57]:

PPV =
SE× PR

SE× PR+(1− SP)× (1− PR)
(5)

NPV =
SP× (1− PR)

(1− SE)× PR+ SP× (1− PR)
(6)

Prevalence is the prior probability that an event might be an attack,
based on our understanding of the volume and frequency of a
particular class of attacks; PPV and NPV are the revised estimates
of that probability based on the results of the detection mechanism.
The lower the prevalence of an attack, the more confident we can
be that a negative test result indicates that no attack has taken place
and the less sure we can be that a positive test result indicates a
real attack.

Of course it is not easy, and it may not even be possible, to
know how prevalent an attack class is. Also, attacks against a
system may depend on factors such as its visibility and popularity,
and thus the same software may be subject to varying attack
intensity depending on where it is actually deployed. With this
in mind, it may be unfair to ask researchers to provide PPV and
NPV values for their mechanisms.

This does not mean though that deriving PPV and NPV is
altogether impossible. One could deploy a system armoured with
an attack detection mechanism on a honeypot to study what
happens over a time period. This could give an indication about the
performance of the mechanism in a realistic setting. Alternatively,
one could deploy a target, unarmoured system, on a honeypot to
study the prevalence of the class of attacks to be detected. Studying
the prevalence of classes of attacks is an interesting area of study
on its own, and could feed directly on the evaluation of attack
detection mechanisms as practical tools.

Apart from demonstrating the value of a mechanism, good
accuracy tests may be beneficial per se, leading to more well-
designed and robust defenses. Mechanisms that can be circum-
vented were not extensively tested in terms of accuracy. For
instance, DIDAFIT [52] was not tested at all and XSS-GUARD’s [30]
testing involved 6 known attacks. This also applies to some
frameworks coming from the taint tracking subcategory. It is
possible that more tests during development would have led the
authors to larger design improvements [75].

The accuracy of a tool may be related to the scope of the
attacks it aims to detect. A more limited scope may allow the
development of more accurate tools. In this vein, the system by
Stock et al [15] is the only one that targets exclusively DOM-based
XSS attacks and detects them in an accurate manner, as seen in
Table 1. It is also extensively tested with real-world attacks.

7.2 Code Availability
Apart from testing practices, another area that merits improvement
is the availability of prototypes and testbeds. We are not aware of
specific reasons why authors of detection mechanisms seem to
be wary of publicly releasing their code and tests. Our finding
may reflect the status in the current point in time, when authors
are urged to publish their code and tests, and may start, or may

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2665620, IEEE
Transactions on Dependable and Secure Computing

MITROPOULOS ET AL. 12

have already started doing so, but this does not show yet in
the research we examined, which goes several years back. We
also saw instances where material was published, but does not
seem to be available any more. That points to the importance
of reproducibility of research materials, an issue arising in all
scientific fields. It is not enough to publish the underlying code and
data, but to make sure that it remains accessible, and to provide
the means to test it even as technology advances and operating
systems, file formats, and software libraries change. That may be
too much to ask right now; what seems reasonable, though, is to
ask of researchers working on defenses not to buck the trend and
to take steps to increase the availability of their research.

7.3 Performance Overhead, Deployment and Security
Remarks

Performance overhead comes up as a non-trivial issue. We observe
that there are some mechanisms that introduce an overhead that is
more than 10%. Relative research on protection mechanisms [9]
indicates that mechanisms that introduce an overhead larger than
10% do not tend to gain wide adoption in production environ-
ments. Hence, the computational overhead of some mechanisms
could be a reason why they have not been adopted.

The deployment difficulties we have found with many mech-
anisms are not a reason not to adopt them, but they may hinder
their widespread use. Since code injection attacks are complex, it
may be logical to expect that mechanisms to detect them would be
complex too. The effort to install and use a tool should be weighed
against the expected benefits. That is one more reason why it is
important to report tool accuracy, as this provides an immediate
indicator to the expected benefits.

The issue is more acute when the point of detection is at
the client. We saw that many policy enforcement mechanisms
that detect attacks at the browser are not easy to deploy because
modifications are needed both on the server and the client-side.
Conversely, it may be possible to deliver the tools to the user
unobtrusively; for example, we saw that Blueprint [19] enforces
policies at the client-side by embedding a library in the server’s
response to the client. In general, when developing a new counter-
measure, researchers should consider where it will detect attacks,
observe the corresponding deployment challenges, and try to
mitigate them.

From a security perspective, we saw that there are cases where
mechanisms coming from the same category can be bypassed
by similar attack patterns. This denotes that there are issues
found in the design of each approach. Recall, for instance, that
implicit flows can be used against many taint tracking solutions,
and mimicry attacks can be launched to bypass training and
policy enforcement defenses. IFC mechanisms though, can deal
with such attacks. This indicates that when solutions borrow
elements from other categories (IFC mechanisms belong to the
hybrid category) could be more effective. Also, we could say that
different mechanisms could be used together to defend different
attacks. For instance, developers could employ both CSP [31] and
SQLrand [51] to deal with XSS and SQL injection respectively.

8 CONCLUSION
Despite many approaches that have been developed, attacks based
on code injection against web applications have been consistently
present for the last 15 years, and it appears that they will
continue to be. Attackers seem to find new ways to introduce
malicious code to applications using a variety of languages and
techniques [3, 4]. Meanwhile, during the last decade, there have

been numerous mechanisms designed to detect one or more of
types of such attacks. Although some deployed and widely used
frameworks, such as CSP [31], share characteristics (for instance,
HTML sanitization and eval handling) with previous proposals,
most research works are still not used in practice.

In order for a security tool to be used in practice, it must
provide some value to the user. In particular, the value should
outweigh the cost of its use. The cost is not necessarily monetary,
but may be incurred from the time required to use the tool, any in-
convenience caused, false alarms that may raise, and so on. These
costs are related to the issues we have been investigating here:
poor testing, high overhead, lack of publicly available prototypes,
deployment difficulties, compromised security.

Improving any of these aspects would not just increase the
value of a research work as a practical tool, but it would also
increase its research value as well. Accurate detection reporting
would help in evaluating different approaches. Extensive perfor-
mance measurements can reveal impractical designs and focus
effort elsewhere. Availability of source code enhances basic scien-
tific tasks like verification and reproducibility. Ease of deployment
brings ease of experimentation. Secure methods can form the basis
for developing methods with more extensive coverage.

On the positive side, some defenses have been extensively
tested in terms of accuracy (SQLCheck [1], AMNESIA [50],
libAnomaly [53]), solve specific problems in an effective way
(Blueprint [19] and the system by Stock et al. [15]), or have a
low computational overhead (DSI [21] and the system by Phung et
al. [25]). There are also cases where researchers have made their
code available (BEEP [20] and SDriver [49]), which can promote
the development of better mechanisms. This argument has been
raised by others researchers too [9]. Furthermore, testing defenses
in a production setting could also propel their adoption.

We hope that the exploitation model, analysis, and observa-
tions that emerged from our research can be a reference point for
researchers who aim to develop new, practical countermeasures
against web application attacks.

ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their sugges-
tions and comments. This work was supported by NSF Grant No.
CNS-13-18415.

BIBLIOGRAPHY

[1] Z. Su and G. Wassermann, “The essence of command injec-
tion attacks in web applications,” in Proceedings of the 33rd
ACM Symposium on Principles of Programming Languages,
2006, pp. 372–382.

[2] D. Ray and J. Ligatti, “Defining code-injection attacks,” in
POPL ’12. ACM, 2012, pp. 179–190.

[3] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and
J. Schwenk, “Scriptless attacks: stealing the pie without
touching the sill,” in Proceedings of the 19th conference on
Computer and communications security, 2012, pp. 760–771.

[4] J. Dahse, N. Krein, and T. Holz, “Code reuse attacks in PHP:
Automated POP chain generation,” in Proceedings of the
21st ACM Conference on Computer and Communications
Security, 2014, pp. 42–53.

[5] W. G. Halfond, J. Viegas, and A. Orso, “A classification of
SQL-injection attacks and countermeasures,” in Proceedings
of the International Symposium on Secure Software Engi-
neering, Mar. 2006.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2665620, IEEE
Transactions on Dependable and Secure Computing

MITROPOULOS ET AL. 13

[6] M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A large scale
exploratory analysis of software vulnerability life cycles,” in
ICSE ’12. IEEE Press, 2012, pp. 771–781.

[7] H. Shahriar and M. Zulkernine, “Mitigating program security
vulnerabilities: Approaches and challenges,” ACM Comput.
Surv., vol. 44, no. 3, pp. 11:1–11:46, Jun. 2012.

[8] S. Axelsson, “The base-rate fallacy and the difficulty of
intrusion detection,” ACM Trans. Inf. Syst. Secur., vol. 3,
no. 3, pp. 186–205, Aug. 2000.

[9] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal
war in memory,” in Oakland ’13, 2013, pp. 48–62.

[10] “Code share,” Nature, vol. 514, pp. 536–537, 2014.
[11] S. Bratus, M. E. Locasto, L. S. M. L. Patterson, and

A. Shubina, “Exploit programming: From buffer overflows
to ‘Weird Machines’ and theory of computation,” ;login,
vol. 36, no. 6, pp. 13–21, Dec. 2011.

[12] K.-S. Lhee and S. J. Chapin, “Buffer overflow and format
string overflow vulnerabilities,” Software: Practice and Ex-
perience, vol. 33, no. 5, pp. 423–460, 2003.

[13] Y. Younan, W. Joosen, and F. Piessens, “Runtime coun-
termeasures for code injection attacks against C and C++
programs,” ACM Comput. Surv., vol. 44, no. 3, pp. 17:1–
17:28, Jun. 2012.

[14] S. Son, K. S. McKinley, and V. Shmatikov, “Diglossia: de-
tecting code injection attacks with precision and efficiency,”
in CCS ’13’, 2013, pp. 1181–1192.

[15] B. Stock, S. Lekies, T. Mueller, P. Spiegel, and M. Johns,
“Precise client-side protection against DOM-based cross-site
scripting,” in 23rd USENIX Security, 2014, pp. 655–670.

[16] X. Lin, P. Zavarsky, R. Ruhl, and D. Lindskog, “Threat
modeling for CSRF attacks,” in Proceedings of the 2009
International Conference on Computational Science and
Engineering, 2009, pp. 486–491.

[17] H. Bojinov, E. Bursztein, and D. Boneh, “XCS: cross channel
scripting and its impact on web applications,” in CCS ’09’,
2009, pp. 420–431.

[18] E. Kirda, N. Jovanovic, C. Kruegel, and G. Vigna, “Client-
side cross-site scripting protection,” Computers & Security,
vol. 28, no. 7, pp. 592–604, 2009.

[19] M. T. Louw and V. N. Venkatakrishnan, “Blueprint: Ro-
bust prevention of cross-site scripting attacks for existing
browsers,” in Oakland ’09, 2009, pp. 331–346.

[20] T. Jim, N. Swamy, and M. Hicks, “Defeating script injection
attacks with browser-enforced embedded policies,” in Pro-
ceedings of the 16th international conference on World Wide
Web, 2007, pp. 601–610.

[21] Y. Nadji, P. Saxena, and D. Song, “Document structure
integrity: A robust basis for cross-site scripting defense,” in
NDSS ’06, 2006, pp. 463–472.

[22] E. Athanasopoulos, V. Pappas, A. Krithinakis, S. Ligouras,
E. P. Markatos, and T. Karagiannis, “xJS: practical XSS

prevention for web application development,” in Proceed-
ings of the 2010 USENIX conference on Web application
development, 2010, pp. 13–13.

[23] L. A. Meyerovich and B. Livshits, “ConScript: Specifying
and enforcing fine-grained security policies for JavaScript in
the browser,” in Oakland ’10, 2010, pp. 481–496.

[24] D. Yu, A. Chander, N. Islam, and I. Serikov, “JavaScript
instrumentation for browser security,” in POPL ’07. ACM,
2007, pp. 237–249.

[25] P. H. Phung, D. Sands, and A. Chudnov, “Lightweight self-

protecting JavaScript,” in ASIACCS ’09, 2009, pp. 47–60.
[26] S. Van Acker, P. De Ryck, L. Desmet, F. Piessens, and

W. Joosen, “WebJail: Least-privilege integration of third-
party components in web mashups,” in ACSAC ’11, 2011,
pp. 307–316.

[27] T. Oda, G. Wurster, P. C. van Oorschot, and A. Somayaji,
“SOMA: Mutual approval for included content in web pages,”
in CCS ’08. ACM, 2008, pp. 89–98.

[28] P. De Ryck, L. Desmet, T. Heyman, F. Piessens, and
W. Joosen, “CsFire: Transparent client-side mitigation of
malicious cross-domain requests,” in Proceedings of the 2nd
International Conference on Engineering Secure Software
and Systems, 2010, pp. 18–34.

[29] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,
and G. Vigna, “Cross-site scripting prevention with dynamic
data tainting and static analysis,” in NDSS ’07, 2007.

[30] P. Bisht and V. N. Venkatakrishnan, “XSS-GUARD: Pre-
cise dynamic prevention of cross-site scripting attacks,” in
DIMVA ’08, 2008, pp. 23–43.

[31] S. Stamm, B. Sterne, and G. Markham, “Reining in the
web with content security policy,” in Proceedings of the
19th International Conference on World Wide Web, 2010,
pp. 921–930.

[32] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld, “JSFlow:
Tracking information flow in javascript and its APIs,” in
Proceedings of the 29th Annual ACM Symposium on Applied
Computing, 2014, pp. 1663–1671.

[33] D. Stefan, E. Z. Yang, P. Marchenko, A. Russo, D. Herman,
B. Karp, and D. Mazières, “Protecting users by confining
javascript with COWL,” in OSDI ’14, 2014, pp. 131–146.

[34] L. Bauer, S. Cai, L. Jia, P. Timothy, S. Michael, and T. Yuan,
“Run-time monitoring and formal analysis of information
flows in Chromium,” in NDSS ’15, 2015.

[35] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières, J. C.
Mitchell, and A. Russo, “Hails: Protecting data privacy in
untrusted web applications,” in OSDI 12’, 2012, pp. 47–60.

[36] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and
S. Esmeir, “BrowserShield: Vulnerability-driven filtering of
dynamic HTML,” ACM Trans. Web, vol. 1, September 2007.

[37] N. Jovanovic, E. Kirda, and C. Kruegel, “Preventing cross
site request forgery attacks,” in Proceedings of the Second
International Conference on Security and Privacy in Com-
munication Networks. IEEE Computer Society, 2006.

[38] M. V. Gundy and H. Chen, “Noncespaces: Using randomiza-
tion to enforce information flow tracking and thwart cross-
site scripting attacks,” in Proceedings of the 16th Annual
Network and Distributed System Security Symposium, 2009.

[39] M. Johns and C. Beyerlein, “SMask: preventing injection
attacks in web applications by approximating automatic
data/code separation,” in Proceedings of the 2007 ACM
symposium on Applied computing, 2007, pp. 284–291.

[40] S. Nanda, L.-C. Lam, and T.-c. Chiueh, “Dynamic multi-
process information flow tracking for web application secu-
rity,” in Proceedings of the 2007 International Conference
on Middleware Companion. ACM, 2007, pp. 19:1–19:20.

[41] P. Wurzinger, C. Platzer, C. Ludl, E. Kirda, and C. Kruegel,
“SWAP: Mitigating XSS attacks using a reverse proxy,” in
Proceedings of the 2009 ICSE Workshop on Software Engi-
neering for Secure Systems, 2009, pp. 33–39.

[42] M. Johns, B. Engelmann, and J. Posegga, “XSSDS: Server-
side detection of cross-site scripting attacks,” in ACSAC ’08,

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2665620, IEEE
Transactions on Dependable and Secure Computing

MITROPOULOS ET AL. 14

2008, pp. 335–344.
[43] R. Pelizzi and R. Sekar, “A server- and browser-transparent

CSRF defense for web 2.0 applications,” in ACSAC ’11. New
York, NY: ACM, 2011, pp. 257–266.

[44] G. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using
parse tree validation to prevent SQL injection attacks,” in
Proceedings of the 5th International Workshop on Software
Engineering and Middleware. ACM, 2005, pp. 106–113.

[45] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint prop-
agation for Java,” in ACSAC ’05, 2005, pp. 303–311.

[46] W. Xu, S. Bhatkar, and R. Sekar, “Taint-enhanced policy
enforcement: A practical approach to defeat a wide range
of attacks,” in Proceedings of the 15th USENIX Security
Symposium, Aug. 2006, pp. 121–136.

[47] T. Pietraszek and C. V. Berghe, “Defending against injection
attacks through context-sensitive string evaluation,” in RAID
’06, 2006, pp. 124–145.

[48] I. Papagiannis, M. Migliavacca, and P. Pietzuch, “PHP As-
pis: Using partial taint tracking to protect against injection
attacks,” in Proceedings of the 2Nd USENIX Conference on
Web Application Development, 2011, pp. 2–2.

[49] D. Mitropoulos and D. Spinellis, “SDriver: Location-specific
signatures prevent SQL injection attacks,” Computers and
Security, vol. 28, pp. 121–129, May/June 2009.

[50] W. G. Halfond and A. Orso, “AMNESIA: analysis and moni-
toring for neutralizing SQL-injection attacks,” in Proceedings
of the 20th International Conference on Automated Software
Engineering. ACM Press, Nov 2005, pp. 174–183.

[51] S. Boyd and A. Keromytis, “SQLrand: Preventing SQL injec-
tion attacks,” in Proceedings of the 2nd Applied Cryptogra-
phy and Network Security Conference, 2004, pp. 292–304.

[52] S. Y. Lee, W. L. Low, and P. Y. Wong, “Learning fingerprints
for a database intrusion detection system,” in Proceedings
of the 7th European Symposium on Research in Computer
Security. Springer-Verlag, 2002, pp. 264–280.

[53] F. Valeur, D. Mutz, and G. Vigna, “A learning-based ap-
proach to the detection of SQL attacks,” in DIMVA ’05, 2005,
pp. 123–140.

[54] S. Chong, K. Vikram, and A. C. Myers, “SIF: Enforcing con-
fidentiality and integrity in web applications,” in Proceedings
of 16th USENIX Security Symposium, 2007, pp. 1:1–1:16.

[55] W. Cheng, D. R. K. Ports, D. Schultz, V. Popic,
A. Blankstein, J. Cowling, D. Curtis, L. Shrira, and
B. Liskov, “Abstractions for usable information flow control
in Aeolus,” in USENIX ATC 12’, 2012, pp. 12–12.

[56] G. Gu, P. Fogla, D. Dagon, W. Lee, and B. Skorić, “Measur-
ing intrusion detection capability: An information-theoretic
approach,” in ASIACCS 06’, pp. 90–101.

[57] S. Linn, “A new conceptual approach to teaching the inter-
pretation of clinical tests,” Journal of Statistics Education,
vol. 12, no. 3, 2004.

[58] C. Pfleeger and S. Pfleeger, Analyzing Computer Security:
A Threat/vulnerability/countermeasure Approach. Prentice
Hall, 2012.

[59] S. M. Easterbrook, “Open code for open science,” Nature
Geoscience, vol. 7, pp. 779–781, 2014.

[60] R. Jain, The Art of Computer Systems Performance Analysis.
John Wiley & Sons, Inc., 1991.

[61] G. Brendan, Systems Performance: Enterprise and the Cloud.
Prentice Hall, 2014.

[62] D. Mitropoulos, V. Karakoidas, P. Louridas, and D. Spinellis,

“Countering code injection attacks: A unified approach,”
Information Management and Computer Security, vol. 19,
no. 3, pp. 177–194, 2011.

[63] D. E. Denning, “A lattice model of secure information flow,”
Commun. ACM, vol. 19, no. 5, pp. 236–243, May 1976.

[64] D. Wagner and P. Soto, “Mimicry attacks on host-based
intrusion detection systems,” in CCS ’02, 2002, pp. 255–264.

[65] “CSP, XSS Jigsaw,” http://blog.innerht.ml/csp-2015/, 2015.
[66] A. D. Keromytis, “Randomized instruction sets and runtime

environments: Past research and future directions,” IEEE
Security and Privacy, vol. 7, no. 1, pp. 18–25, Jan. 2009.

[67] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering
code-injection attacks with instruction-set randomization,” in
CCS ’03. ACM, 2003, pp. 272–280.

[68] A. N. Sovarel, D. Evans, and N. Paul, “Where’s the FEEB?
the effectiveness of instruction set randomization,” in Pro-
ceedings of the 14th USENIX Security, 2005, pp. 10–10.

[69] A. Naderi, M. Bagheri, and S. Ramezany, “Taintless: De-
feating taint-powered protection tachniques.” Presented at
Black Hat USA 2014, August 2014.

[70] M. G. Kang, S. McCamant, P. Poosankam, and D. Song,
“DTA++: dynamic taint analysis with targeted control-flow
propagation,” in NDSS ’11, 2011.

[71] S. McCamant and M. D. Ernst, “A simulation-based proof
technique for dynamic information flow,” in Proceedings
of the 2007 Workshop on Programming Languages and
Analysis for Security. ACM, 2007, pp. 41–46.

[72] D. E. R. Denning, “An intrusion detection model,” IEEE
Trans. on Soft. Eng., vol. 13, no. 2, pp. 222–232, Feb. 1987.

[73] L. D. Brown, T. T. Cai, and A. DasGupta, “Interval estima-
tion for a binomial proportion,” Statistical Science, vol. 16,
no. 2, pp. 101–133, 2001.

[74] S. Lekies, B. Stock, and M. Johns, “25 million flows later:
Large-scale detection of DOM-based XSS,” in Proceedings of
the 2013 ACM Conference on Computer & Communications
Security. ACM, 2013, pp. 1193–1204.

[75] S. Vance, Quality code: Software Testing Principles, Prac-
tices, and Patterns. Addison-Wesley, 2014.

AUTHOR BIOGRAPHIES
Dimitris Mitropoulos is a Postdoctoral Researcher in the Com-
puter Science Department at Columbia University. He holds a PhD
(’14) in Cyber Security from the Athens University of Economics
and Business. His research interests include application security,
systems security and software engineering.
Panos Louridas is an Associate Professor at the Athens Univer-
sity of Economics and Business. He has published in many areas
of software engineering and is actively involved in the application
of security research for the development of high-stakes production
systems, such as e-voting.
Michalis Polychronakis is an Assistant Professor at Stony Brook
University. He received a Ph.D. (’09) degree in Computer Science
from the University of Crete, Greece. Before joining Stony Brook,
he was an Associate Research Scientist at Columbia University.
His research interests include network and system security and
network monitoring and measurement.
Angelos D. Keromytis is an Associate Professor of Computer
Science at Columbia University, and the director of the Network
Security Lab. He is currently serving as Program Manager with
the Information Innovation Office (I2O) at the Defense Advanced
Research Projects Agency (DARPA). His research interests are in
systems and network security, and cryptography.

http://blog.innerht.ml/csp-2015/

