
Provable Network Activity for Protecting Users
against False Accusation

Panagiotis Papadopoulos1,2, Elias Athanasopoulos3, Eleni Kosta5, George
Siganos4, Angelos D. Keromytis6, and Evangelos P. Markatos1,2

1 FORTH - Institute of Computer Science, Greece
2 Computer Science Department, University of Crete, Greece

3 Vrije Universiteit Amsterdam, Netherlands
4 Qatar Computing Research Institute, HBKU, Qatar
5 Tilburg Law School, Tilburg University, Netherlands

6 Columbia University, New York, USA

Abstract. With the proliferation of the World Wide Web, data traces
that correspond to users’ network activity can be collected by several
Internet actors, including (i) web sites, (ii) smartphone apps, and even
(iii) Internet Service Providers. Given that the collection and storage
of these data are beyond the control of the end user, these data traces
can be easily manipulated, if not, tampered with. The result of such
manipulated digital traces can be severe: Innocent users can be shamed
or even wrongfully accused of carrying out illegal transactions.
To eliminate these potential accusations on innocent users, we introduce
Provable Network Activity (PNA): a framework with which the ISPs
can give the end users control of their stored traces. The framework
guarantees that the information collected for the end users is accurate
and will remain accurate for as long as it is stored. Our implementation
and preliminary evaluation suggest that PNA is fast, easy to deploy, and
introduces zero network latency to the end clients.

1 Introduction

Over the past few years the degree to which computers are involved in evidence
collection for crime and security investigations has profoundly changed. A couple
of decades ago there were few cases that could be associated with cyber crime.
Nowadays, there is hardly ever a case that does not involve a computer or a
smartphone. Data from such devices are so important that even the FBI [5] or
the government’s prosecutors [8] want to get access to them almost at any cost.

Unfortunately, despite their importance, data collected by our digital infras-
tructure today are not necessarily trustworthy. Indeed, malicious attackers or
even rogue insiders may tamper with the process of collecting and/or storing
data and may add fake data about individual users. Such fake data may later
be used to ridicule and slander users, or worse, accuse them of questionable or
even illegal activities. Although fake digital evidence usually does not stand in
a court of law, it is often enough to send people to jail [7].

In this paper we propose that data collection processes should actively involve
the users concerned. We advocate that the users should not only give their
consent in all data collections, but should also make sure that the collected data
are accurate and will always remain accurate for as long as they are stored. To
do so, we involve the user in every step of the process: (i) users collect, (ii) users
double check, (iii) users sign, and finally, (iv) users encrypt the collected data.

Our proposal is Provable Network Activity (PNA): an architecture that en-
ables both clients and ISPs to collaborate in the data collection process and
make sure that the collected data are accurate. PNA works as follows:

– A client who wants to gain control of her traffic and data, and ensure their
authenticity can simply register to the service by providing her ISP with her
public key. Then, she installs a software responsible for signing all outgoing
traffic, before it is sent to the ISP, with her private key7.

– If the ISP receives traffic from the client without receiving the corresponding
signature, the traffic is blocked8.

– If the ISP receives a valid signature, it keeps a record of the access in its log.

2 Threat Model

In this paper we focus on protecting innocent users from false accusations based
on fake network logs. We assume that the user’s access logs have been collected
by a local ISP (or similar service). We also assume that, at some point in time
(either during the collection process or later), the logs were tampered with,
maybe by intruders, or even by insiders.

More precisely, the setup is composed by three different entities: (i) the user
U , (ii) the last-mile ISP I, and (iii) an web site s hosting offensive or even illegal
content. We make the following assumptions:

– user U never accessed web site s (via ISP I).
– although ISP I is considered generally trusted, its data logs may be tampered

with to show that U has accessed s [10].

3 Provable Network Activity

Traditional data collection has been done by the ISPs without consulting the
users at all. That is, ISPs collected data about the users without the users being
able to verify that the collected data are correct and that the data will remain
correct for as long as they are stored.

We advocate that this approach should change. Data should not be collected
without the user being able to verify that the data are (and will remain) correct.
To bring the user back in the game, PNA proposes that the collected data (i)
should be reviewed by a user’s application (ii) should be signed by the user, and

7 The exact details of the key management process is beyond the scope of this paper.
8 Note that this service works on an opt-in basis.

Passive Traffic Monitor

Signature Server Connection Server

Logging Server

Client's traffic

Signatures
Network Flows

Fig. 1. High level overview of the PNA components and their interconnections on the
ISP side.

(iii) should be encrypted by the user. Any attempts to tamper with the data
will stumble upon the signing and encryption process which becomes impossible
(or obviously detectable) without the user’s cryptographic keys.

3.1 Client side

Key Management. The client is responsible for generating a public-private
key pair, and is responsible for the security of her private key9. The client at
any time can replace her public-private key pair, but it is her responsibility to
store the old private key and update the public key provided to the provider.

Daemon. A daemon runs in the client’s computer and passively monitors all
outgoing traffic. For each outgoing flow a signature is computed. The signature
is computed on the tuple (destination IP address, port number, protocol, times-
tamp) by first using SHA and then encrypting with the user’s private key. The
daemon then sends the tuple plus the signature of the tuple to the ISP’s server10.
This signature is a proof generated by the client that the client did make this
network connection. If the ISP does not receive such a proof, it will not allow
the connection to be established.

9 For simplicity, we describe our approach as if the user has one device, but it can be
easily generalized to include several devices and users, as well

10 Note, that we do not use the source IP/port, since usually NAT/Proxies overwrite
the source part [4].

3.2 ISP side

For each client connection (e.g. network flow), the ISP expects to receive a
signature from the client. If the signature is received, the connection is allowed
to proceed and a log record is generated. If the signature is not received, or is
not valid, the connection is not allowed to proceed.

The infrastructure on the ISP side consists of the following entities: (i) a
Passive Traffic Monitor, (ii) a Signature Server that is interacting with the
client-side, (iii) a Connection Server that maintains the connections and enforces
policy, and (iv) a Logging Server that provides persistence in a privacy-preserving
way.

– Passive Traffic Monitor. The ISP passively monitors all traffic to identify
new flows. For each new flow identified, the monitor creates a new record
to characterize the flow, and sends the record to the Connection Server that
handles the policy.

– Signature Server. The Signature Server acts as a gateway to the system. It
receives signatures from the client side and forwards them to the Connection
Server.

– Connection Server. The Connection Server collects information (i) from
the Passive Traffic Monitor and (ii) from the Signature Server, and makes
sure that for each flow received by the Passive Traffic Monitor a correspond-
ing signature is received from the Signature Server. If a signature is not
received (or is not valid) for a given flow, the flow is blocked/terminated.

– Logging Server. The Logging Server is responsible for storing all signatures
for each subscriber.

3.3 Privacy-preserving logging

The approach described so far keeps a record only of the IP addresses really
accessed by the client:

– If an attacker tries to add a record to the log, this record will just not have
the client’s signature, and therefore it will be easily singled out as fake.

– If the client tries to access an IP address without providing a signed record
for this access, the ISP will clock/reset the access.

Therefore, the log will be an always accurate record of the user’s activity. Un-
fortunately, keeping the log as described so far may seriously violate the user’s
privacy. Indeed, if the log is leaked, then all the user’s accesses will be easily
visible. Encrypting the log with an ISP’s key does not help either. A malicious
attacker may accuse the client of illegal activity just to force the client to reveal
the entire log in order to prove that the illegal activity is not there. Such an ap-
proach will help the user demonstrate her innocence, at the price of her privacy.
It seems therefore that there is a dilemma the user needs to choose from: either
demonstrate her innocence or protect her privacy. In this paper we believe that
this is a false dilemma. We believe we can do both: i.e. both demonstrate the
client’s innocence and protect the client’s privacy at the same time. To do so,
instead of keeping each signed record, we keep a hash of it. We use bcrypt [9]
in order to hash all network signatures.

4 Implementation

4.1 PNA Prototype

We implemented PNA in Linux using libpcap a building block for capturing
network traffic, and OpenSSL a module that provides all cryptographic opera-
tions. The implementation was rather straightforward: all software is written in
C++ totalling around 2,000 lines of code.

Client-side implementation A Linux-based host runs the code for the client:
a DSL subscriber. This host runs the daemon software as we described in Sec-
tion 3.1. The daemon initially connects to a predefined port of a Linux-based
server, which is run by the ISP. In parallel, the daemon monitors all TCP/UDP
traffic and captures (i) all TCP packets having the TCP-SYN flag on and (ii) all
UDP packets. For each TCP-SYN packet and for each UDP packet that starts
a new flow, the client daemon generates a signature of the packet with the user’s
private key and sends it to the server using the established connection.

ISP-side implementation At ISP side, the server runs the passive traffic
monitor, as we described in Section 3.2, for capturing all incoming traffic and
infer (i) new TCP flows (by inspecting the TCP-SYN flag), and (ii) new UDP
flows. The monitor uses Redis, an open source in-memory key-value store for
maintaining all identified UDP flows. In addition, it also runs the signature
module, which listens to a predefined port for incoming signatures by the client.
The server verifies each incoming signature, by decrypting it using the user’s
public key. If the signature is valid, it is forwarded to the logging server and it is
stored using bcrypt [9]. Otherwise, (i) if the signature is not valid, or (ii) if the
signature is not sent by the client, or (iii) if the signature arrives too late, the
connection is terminated. TCP/IP connections area terminated by an explicit
TCP-RST to the user’s host. For UDP connections, the flow is just blocked.

For the asymmetric encryption/decryption, the RSA algorithm is used with
PKCS1 padding as provided by OpenSSL). The length of the keys is 2048 bits. For
hashing before encrypting we use SHA512 as provided by OpenSSL. For bcrypt
we use the implementation as provided by the original paper [9].

5 Evaluation
5.1 Client Side

The cryptographic overhead is the only computational overhead we impose on
the client side. More specifically, the client needs to sign every new flow and
send this signature to the ISP in time no more than T. To quantify the latency
imposed by this required cryptographic operations, we perform 10,000 private-
key encryptions for a testing tuple and we measure the average latency. In this
experiment we use OpenSSL’s RSA implementation with keys of length of 2048
bits in two devices: a Linux desktop and a Mac OS laptop. In both cases, the
overhead per encryption was less than 10 ms. This means that a typical computer
can handle more than a hundred of new flows (i.e. new signatures) per second.

 0

 200

 400

 600

 800

 1000

0.1M 1M 2M 5M
 0

40k

50k

M
e
m

o
ry

 C
o
n
s
u
m

p
ti
o
n
 (

M
B

)

R
e
q
u
e
s
ts

 p
e
r

s
e
c
o
n
d

Number of UDP Flows in Memory (Millions)

Memory Consumption
Requests per second

Fig. 2. Passive Monitor Performance. We see that even for 5 million flows, the server
requires less that 1 GB of memory.

5.2 ISP side

Passive Traffic Monitor (PTM). As we described in previous section, PTM
is responsible for identifying new network flows. While this operation is straight-
forward when the flows are TCP, in the case of UDP flows it is not that trivial.
For each UDP packet, a query needs to be sent to the key-value store to check if
this UDP flow has been encountered in the past. Given this complexity, we focus
on the UDP flows identification, which evidently is the most expensive part of
this component.

To measure the performance of PTM, we simulate traffic sent from client
to ISP, containing various number UDP flows (ranging from 100K to 5M). The
UDP packets of these flows are distributed using a long-tail distribution (80%
of the packets are distributed to 20% of the flows). In Figure 2, we can see the
results, where it seems that our server is able to process more than 40K reqs/sec.

In the same experiment, we measure the memory requirements of our system.
In Figure 2, we can see that, as expected, the memory consumption demands
grow linearly with the number of UDP flows. Indeed, we see that even if we have
as many as 5M UDP flows we probably need less than 1 GB of memory to store
all data. Of course, this is a trivial amount of memory for contemporary servers.

Logging Server. This is the component responsible for securely storing the
signatures in a privacy-preserving fashion. The main bottleneck in the logging
server is the computation of the hash key using bcrypt. To measure this compu-
tation overhead we stress a desktop equipped with one Quad-core Intel processor
at 2.4G to identify how many bcrypt operations per second can achieve and in
Figure 3 we plot the results. As we see, we can have more than 2000 bcrypt
operations per second, and consequently, we can process more than 2000 new
flows per second. Additionally, recall that it is an off-line operation, and thus
does not increase the typical packet routing operation of the ISP.

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8 9 10

B
C

ry
p
t

o
p
er

at
io

n
s

p
er

 s
ec

Cost

Fig. 3. Bcrypt performance as a function of the value of cost. Up to cost=4, the single
CPU can perform more than 2, 000 operations per second.

It is worth mentioning at this point, that bcrypt wastes computational re-
sources on purpose for prohibiting massive in-parallel cracking of the generated
hash products and resist dictionary attacks. To achieve that, bcrypt uses cost
parameter. In our experiment, we explore how this parameter affects the overall
calculation performance by testing various values of cost. As we can see, up to
cost=4, the single CPU can still perform more than 2, 000 operations per second.
As a result, even when using a cost value able to sky-rocket the amount of work
required by an attacker to reveal the network logs, it is not capable of degrading
the system’s performance.

6 Related Work

Pretty Good Packet Authentication (PGPA) [6]) is a system that hashes all user’s
outgoing traffic and stores it to a device. The device must be placed between
client and ISP: either towards the user’s side, i.e. in her household, or it can
be hosted by the ISP. Packet Attestation (PA) [2] suggests installing special
monitors, independent of the current Internet’s routing infrastructure, in every
Autonomous System (AS). These monitors hash and collect all user traffic, and
they can attest if the traffic is authentic under a particular case, where a user is
accused for receiving offensive traffic. Clue [1] attempts to bring the notion of
physical evidence, such as DNA, in the digital world. More precisely, Clue uses
Group Signatures [3] for delivering a scheme, where each Internet packet can be
attributed to its original source.

All these systems propose major reconstruction of fundamental parts of to-
day’s Internet. We agree with a large fraction of these proposals and we believe
that a clean-slate design will terminate a rich collection of problems that we
exhibit today. However, deployment is not always trivial. Changing fundamen-
tal Internet-core concepts, such as, for example, routing or addressing, is really
hard.

7 Conclusion

In this paper we designed, implemented, and evaluated Provable Network Activ-
ity (PNA), a framework which gives end users control of their own traces as they
recorded by their last-mile ISP. PNA empowers users with the ability to double
check the data collected about them and to make sure that these collected data
are correct and will remain correct for as long as they are stored in the ISP’s logs.
To do so, users explicitly sign each network flow. The ISP makes sure that each
network flow is accompanied by the associated signature. If a signature is not
received, the ISP blocks the flow. To ensure the correctness of the log, the ISP
stores both the network flow records end their associated signatures. In this way,
tampering with the stored data is extremely difficult: even if attackers manage
to add records to the log, they will not be able to add the corresponding sig-
natures. Our preliminary implementation and evaluation shows that our system
does not impose any extra latency to the end user and has low computational
requirements.

8 Acknowledgments

This work was supported in part by the project GCC, funded by the Preven-
tion of and Fight against Crime Programme of the European Commission –
Directorate-General Home Affairs under Grant Agreement HOME/2011/ISEC/
AG/INT/4000002166. This project has received funding from the European
Unions Horizon 2020 research and innovation programme under the Marie Skodowska-
Curie grant agreement No 690972. This publication reflects the views only of the
authors, and the European Commission cannot be held responsible for any use
which may be made of the information contained therein.

References

1. Afanasyev, M., Kohno, T., Ma, J., Murphy, N., Savage, S., Snoeren, A. C., and Voelker, G. M.
Privacy-preserving network forensics. Communications of the ACM 54 (May 2011), 78–87.

2. Andreas Haeberlen, Pedro Fonseca, Rodrigo Rodrigues, and Peter Druschel. Fighting Cy-
bercrime with Packet Attestation.

3. Chaum, D., and Van Heyst, E. Group signatures. In Proceedings of the 10th Annual Interna-
tional Conference on Theory and Application of Cryptographic Techniques (1991), EURO-
CRYPT’91.

4. Clayton, R. Mobile internet access data retention (not!).

5. Digital Trends Staff. Apple vs. the FBI: A complete timeline of the war over tech encryption.
http://www.digitaltrends.com/mobile/apple-encryption-court-order-news/, 2016.

6. Haeberlen, A., Rodrigues, R., Gummadi, K., and Druschel, P. Pretty good packet authen-
tication. In Proceedings of the Fourth Workshop on Hot Topics in System Dependability
(HotDep’08) (Dec 2008).

7. India News. Techie jailed due to Airtel mistake. http://twocircles.net/node/25440, 2012.

8. Kravets, D. Twitter reluctantly coughs up occupy protesters data. https://www.wired.com/
2012/09/twitter-occupy-data/, 2012.

9. Provos, N., and Mazières, D. A future-adaptive password scheme. ATEC 1999.

10. Stolfo, S. J., Bellovin, S. M., Keromytis, A. D., Hershkop, S., Smith, S. W., and Sinclair,
S., Eds. Insider Attack and Cyber Security - Beyond the Hacker, vol. 39 of Advances in
Information Security. Springer, 2008.

