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We introduce the concept of atastic block ciphemwhich refers to stretching the
supported block size of a block cipher to any length up toéwtiee original block size
while incurring a computational workload that is propontd to the block size. Our
method uses the round function of an existing block ciphex Back box and inserts
it into a substitution- permutation network. Our method ésidned to enable us to
form a reduction between the elastic and the original vessaf the cipher. Using this
reduction, we prove that the elastic version of a cipher tsigeagainst key-recovery
attacks if the original cipher is secure against such astatle note that while reduction-
based proofs of security are a cornerstone of cryptogragiadysis, they are typical
when complete components are used as sub-components igea tlsign. We are
not aware of use of such techniques in the case of concret& bipher designs. We
demonstrate the general applicability of the elastic blkipker method by constructing
examples from existing block ciphers: AES, Camellia, MISTahd RC6. We compare
the performance of the elastic versions to that of the oaigiersions and evaluate the
elastic versions using statistical tests measuring théammess of the ciphertext. We
also use our examples to demonstrate the concept of a géegrachedule for block
ciphers.
key words: elastic block ciphers, variable-length block ciphersusigg analysis, re-
duction proof, key recovery attacks.

1 Introduction

Standard block ciphers are designed around one or a smalenwhblock sizes, with
most supporting 128-bit blocks. In applications, the léngftthe data to be encrypted
is often not a multiple of the supported block size. This lssa the use of plaintext-
padding schemes that impose computational and space adsrhg appending bits to
the data. When the data being encrypted is relatively sriadlpadding can become
a significant portion of the encrypted data. For examplerygning a database at the
field or row level to allow for efficient querying can easilystat in a substantial amount
of padding. When the plaintext is between one and two blaakslastic block cipher
allows all of the bits to be encrypted as a single block, angithe need to use a mode
of encryption and creating a stronger binding across theectpxt bits compared to the
ciphertext produced by a mode of encryption, such as ciploeklrhaining (CBC).



This work is an extended version of our previous work on &ddock ciphers, includ-
ing a more detailed explanation for the selection of thedssucture utilized when
creating elastic block ciphers, extended proofs of claint extended descriptions of
instantiations of the method from [11-13].

We introduce the concept of alastic block ciphenwhich allows us to "stretch”
the supported block size of a block cipher up to a length dotli# original block size,
while increasing the computational workload proportibnad the block size. This,
together with modes of encryption, permits block sizes tedtebased on an applica-
tion’s requirements, allowing, for example, a non-tradil block size to be used for
all blocks, or a traditional block size to be used for all e tast block in a given mode
of encryption. We propose a general method for creating astielblock cipher from
an existing block cipher. Our intent is not to design a raelshoccipher, but to system-
atically build upon existing block ciphers. Our method dstssof a network structure
that uses the round function from an existing block cipHwang us to treat the round
function of the original cipher as a black box and reuse itgpprties. This results in the
security of the elastic version of a cipher being directliated to that of the original
cipher.

Previous proposals for converting existing block ciphets variable-length ones
focused on treating a block cipher as a black box and comdpihimith other operations
[4,29] in what amounts to a mode of encryption. While such ppreach allows the
security of the variable-length block cipher to be definettims of the original block
cipher, the resulting constructions require multiple aggtions of the original block
cipher, making them computationally inefficient compamegadding. These methods
may be valuable in providing modes of encryption that pnesérne length of the data
but they do not address how to design block ciphers to suppaeble-length blocks.
There have also been ad-hoc attempts to design a variatgé&ilélock cipher from
scratch [31, 36]. Ciphertext stealing is another way of @nésg the length of the data
when using a mode of encryption. It involves padding the pdaintext block using
ciphertext from the previous block. However, it provides conputational savings,
requires altering how the mode is applied to the last twokd@nd requires decrypting
the last block before the next-to-last block.

We consider the security of elastic block ciphers againattiral attacks. These
attacks typically attempt to recover the keys or the roungskaf the block cipher;
differential [7, 18], linear [20] and exhaustive search noets are instances of such
attacks (but other attacks exist [6, 38]). The fact that thend function of the original
block cipher is used as a black box in the elastic versiorctings to relate the security
of the elastic version of a block cipher directly to the séguof the original cipher.
This is motivated by reduction-oriented proofs of secui@ych proof techniques are
not typical in symmetric-key cryptography, especially ancrete designs (for a survey
of proof techniques in this area, see [37]:Chapter 4) andrame common in generic
designs based on strong assumptions on the comporeeptacomponentis a random
or pseudorandom function [19]).

We prove that the elastic version of a block cipher is secgarst attacks that

attempt to recover key bits if the original, fixed-lengthsien of the cipher is secure
against such attack®ur method is unique in that we show how to convert such an



attack on the elastic version directly into an attack on thigioal version. As a result
of our proof, if the original cipher is proven to be immune tspecific key-recovery
attack then the elastic version is also immune to the attack.

We illustrate the method for creating elastic block cipheith four constructions.
We construct elastic block ciphers from AES [27], CamelR$ MISTY1 [21] and
RC6 [33] to serve as examples of the general applicabilitthefmethod. We analyze
the randomness of each cipher’s output using standardtstatitests and evaluate the
performance of the elastic versions. We also use our cariins to illustrate the use
of a generic key schedule for block ciphers.

The remainder of the paper is organized as follows. Sectisun2marizes related
work. Section 3 describes our method for constructing ielédck ciphers. Section 4
defines the relationship between the security of the elastision of a cipher against
key recovery attacks to the security original cipher agasnsh attacks. Section 5 de-
scribes four instances of elastic block ciphers. Sectiocorludes the paper.

2 Related Work

Block ciphers are, ideally, pseudorandom permutation®@}Rwhich are a subset of
pseudorandom functions (PRFs). Previous work on varilgigth PRFs and PRPs
includes support for variable-length inputs with fixeddémoutputs as applicable to
MACs and hash functions [1, 3, 5, 8] and on multiples of thgioal block length [15,
16,19, 28] (although the same goal is accomplished by madasooyption, for which
there are numerous examples used in practige,CBC, OFB, CFB, CTR). There has
also been work on using PRPs to create PRFs [17].

Three previous approaches for creating variable-lengtbidatiphers are designing
a cipher from scratch, using an existing block cipher as eki®mx and adding opera-
tions around it, and altering existing modes of encryptiime Hasty Pudding Cipher
(HPC) [36], a submission to the AES competition that was dmkimsecure in the first
round [25], is an example of designing a variable-lengttckloipher from scratch.
While creating a new block cipher from scratch allows theigieso incorporate new
features, such as support for a range of block sizes, it atpaires analyzing the cipher
against all known attacks.

A proposal by Bellare and Rogaway uses any existing blodkegips a black box to
create a variable-length block cipher [4]. Their methodhisven in Figure 1. Pateét al.,
proposed a modification to their method [29]. Bellare and @&y do not modify the
original block cipher, butinstead add operations arourithiey treat the original cipher
as a black box and analyze the construction independenthedapecific block cipher.
The security of their variable-length block cipher is defirie terms of the original
cipher. Given gmb—+y)-bit segment of plaintext andabit block cipher, fol) < y < b
andm > 1, b — y bits of padding are added before the last (rightmb4iit block to
producem + 1 b-bit blocks. The data is then encrypted in CBC mode. The leastkb
output from the CBC mode is encrypted again and the resultiigoutput,«, is used
as input to the block cipher in CTR mode. CTR mode is run yntil— 1)b + y bits
are output. These bits are XORed with the leftm@st— 1)b + y bits of input, to
produceu & v. The ciphertext is the concatentation@fand andu & v. Encrypting
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Fig. 1. Bellare and Rogaway'’s Variable-Length Block Cipher

one plus a fractional blocl, + y bits, involves four applications of the block cipher
(two applications in CBC mode, one more application to abtaand one application
in CTR mode) plus additional operations, thus requiringertban four times the work
of the original block cipher to encrypt one plus a fractiobldck regardless of the
number of extra bits actually encryptesld.,even if the data is one bit longer than the
original block length). Therefore, while their approacks®rves the length of the data,
it requires at least twice the work of padding to encrypt olus p fractional block.

The proposal by Pateét al, is a modification of Bellare and Rogaway’s method
[29]. The CBC portion is replaced by a hash function, posdiytreducing the amount
of computation in this component of the algorithm. Now bleikes between one and
two times the original block length require one applicatiéra hash function and two
applications of the cipher instead of four applicationsh&f tipher. This modified ver-
sion also treats the original block cipher as a black box wjtérations added around it
and is computationally less efficient than padding.

Finally, existing modes of encryption can be used to enaigpd without expand-
ing the length of the plaintext by using what is called cipbetr stealing. This method
does not provide any computational savings over paddirsgead, it adds minor com-
putational overhead. Ciphertext stealing pads the lagttpbe block using some of the
ciphertext from the previous block, and does not output thieertext bits used for the
padding in order to maintain the length of the plaintext.leigext stealing generally
works as follows: For a block size éthits, when encryptingb + y bits, for an integer
n > 1 and integery where0 < y < b, the mode of encryption proceeds as normal



through the last full blockb — y bits of the last full ciphertext block are prepended to
the remainingy bits of plaintext to form thén + 1)*¢ block. The ciphertext consists of
the output from the mode of encryption on the first- 1 blocks, they bits from the
n*" block of output that were not prepended to the remainjirits of plaintext and
the entireb bits of output from then + 1)** block. When decrypting, the last block is
decrypted before the next to last block, and bits from thegksntext block appended
to the next to last (the partial) ciphertext block. This riegsi switching the order of the
last two blocks when decrypting and computing the lengthelast block to determine
how many bits from the plaintext must be appended to the ndast ciphertext block.
The need to switch the order of the last two blocks when déitry s a disadvantage of
ciphertext stealing because changing the block order itsfitae performance of high-
speed hardware encryptors. Ciphertext stealing works arnithblock cipher without
requiring modification to the block cipher, the only impacté how a mode of encryp-
tion is applied to the last one plus fractional block of détawever, ciphertext stealing
is a mode of encryption and not a block cipher design. Unlikeay)-bit block cipher,
there is no diffusion across ab ¢ y) bits and the output can easily be distinguished
from random bits. For example, encrypting twio{ y)-bit plaintext blocks of data in
which the leftmosb bits are identical will result in the firgt bits of the ciphertext being
identical.

3 Elastic Block Cipher Construction

3.1 Overview

We describe our algorithm for creating elastic block cighend the underlying struc-
ture, the elastic network, that serves as the basis for guritim. The algorithm con-
verts the encryption and decryption functions of existifark ciphers to accept blocks
of sizeb to 2b bits, whereb is the block size of the original block cipher. Our method
uses a network structure, the elastic network, into whielrétund function of the orig-
inal block cipher is inserted. This allows the propertieshaf original block cipher’s
round function to be reused. The elastic network creategraytation onb + y bits
from a round function that processebits, whered < y < b. We neither modify the
round function of the block cipher nor decrease the numbeowfds applied to each
bit; instead, the method allows bits beyond the supportedkbsize to be combined
with bits in the supported block size.

Our approach in designing elastic block ciphers falls betwibe design from scratch
and black box approaches. We treat the round function ofriigénal block cipher as a
black box instead of using the entire cipher as a black bois iBlthe major method-
ological difference between our work and the proposals HlaBeand Rogaway, and
Patel.et al. However, we are still able to use the security propertigs@briginal cipher
to avoid having to analyze the elastic version of a cipheiragall attacks. Our method
results in the computational workload of elastic block &ghbeing proportional to the
block size, in contrast to the black box approaches.

First, we describe the elastic network and explain why wdcdtnat use an existing
structure, specifically, an unbalanced Feistel networl.[Sécond, we describe the



steps for converting any fixed-length block cipher to a J@ddength block cipher.
Four instantiations of elastic block ciphers are describhe®kection 5.

3.2 Elastic Network

Before introducing the elastic network, we define the follagvterms used in the de-
scriptions of the elastic network and the elastic block eiptonstruction. To assist in
understanding the need for these definitions, we point @ttethound of a fixed-length
b-bit block cipher takes many forms in practice and a singlgliagtion of the round
function often does not operate on the entieit block. The most common example
of a round function processing a subset of the bits is foural lock cipher built on
a balanced Feistel network, where the round function operang bits. DES [24],
MISTY1 and Camellia are examples of such block ciphers. Aangxle other than a
balanced Feistel network is RC6, where the block is prockasejuarters, with two
quarters being updated, although differently, per eacliegon of the round function.

Definition 1. Bit Influence: Letc1 be thei** bit of input to ab-bit block cipher. Let:2

be thej*" bit of output from round; of the block cipherz1 influences:2 if changing

x1 while holding all otherb — 1 input bits to the block cipher constant causesto
change with probability> 0 when the probability is taken over all possible values of
other input bits and the key bits are held constant.

Definition 2. Rate of Diffusion: Letr be one bit of input to &-bit block cipher. The
rate of diffusion is defined in terms of the number of bit pos# influenced by in
some number of rounds.

For example, if there are 4 rounds in a particular 128-bitblcipher and bit 1 of the
input impacts 32 bits of output from the first round, 64 frora #econd round, 96 from
the third round and all 128 bits of output from the fourth rduthis indicates the rate
of diffusion for bit 1.

Definition 3. Complete Diffusion: If every input bit to @bit block cipher influences
the value in allb bits afterg rounds, then the block cipher is said to have complete
diffusion ing rounds.

Complete diffusion does not imply security and is not thesamdiffusion in an ideal
block cipher where changing a single bit of input will causeleindividual bit of output
to change wittb0% probability. In complete diffusion, the probability eactdividual
bit of output changes must only be0% and may b& 00%.

Definition 4. Active Bit: A bit position input to a block cipher is calledta® in round
j if the bit in that position is input to the round function inwmad ;. For example, if the
third bit of the block is input to the second application of thund function, it is active
in the second round.

Definition 5. Cycle: A cycle in a fixed-lengthsbit block cipher is the sequence of steps
in which all b bits have been processed by the round function. A cycle {ixgld key
bits, if any) is a bijection.



Another way of phrasing this definition is from Schneier argld€y: "A cycle is the
number of rounds necessary for each bit in the block to hage part of both the source
and target blocks at least once”, meaning each obthiés has been in the input and
output of the round function [34, 35]. For example, in AES: tbund function is a cy-
cle. In a balanced Feistel network, a sequence of two apiglicof the round function,
which processeg bits in each application, is a cycle [34]. In RC6, the seqeaidour
applications of the round function is a cycle.

Definition 6. Cycle Key: The expanded key bits used within a cycle will fened to
as the cycle key.

Definition 7. Round Function for an Elastic Block Cipher: A round functionthe
elastic version of a fixed-lengthsbit block cipher is a cycle of thi-bit block cipher.
The round function of an elastic block cipher (with a fixedlkiéy, if any) is a bijection.

Definition 8. Round Key: The expanded key bits used within a round (of tigénaf
or elastic version of a cipher) will be referred to as the rougey.

| bbits |y bits |
'

Round
Function

Round
Function

C | \
l l
[ bbis [y bits |

Fig. 2. Two-Round Elastic Network

The purpose for creating the elastic network is to have aire that enables ex-
isting fixed-length block ciphers to be converted to vaealeingth block ciphers by
adding steps between cycles of the block cipher. While wendtdvant to use an exist-
ing block cipher as a black box in order to gain computati@fitiency compared to
padding data to an integral number of blocks, we did want &this round function of
the block cipher in order to leverage its properties. Thaesfone of our goals was to



create a structure in which operations can be inserted leeteycles of a block cipher
that are independent of the cycle (and thus round functiéhe block cipher. The
properties we require of the structure are:

1. It provides a permutation dn+ y bits for any0 < y < b whereb is the block size
of the fixed-length block cipher.

2. ltis a single, generic, construction that can be used avithblock cipher.

3. The round function of any existirigbit block cipher becomes a component of the
structure without any modifcation required to the roundchion.

4. The number of rounds is not set by the structure, but rédfigeround function can
be applied as many times as needed by a specific cipher.

5. The operations involved in the structure allow for effitiémplementations in
terms of time and memory requirements.

6. The rate of diffusion fob + y bits is defined in terms of the rate of diffusion fior
bits in the fixed-length block cipher.

The elastic network satisfies these properties. A two-raension of the network is
shown in Figure 2. It works by inserting the unmodified cydighe original,b-bit block
cipher into the network. To create a permutatiob ey bits, b bits are input to the round
function, as would normally occur in the original block cgzhandy bits (letY denote
these hits) are omitted from the round function. After thena function is applied, but
before its output is given as input to the next applicatiorthaf round functiony of
the b bits output from the round function (let X denote thesbits) are XORed with
Y, allowing Y to become part of thé bits input to the next application of the round
function. X becomes thg bits omitted from the next application of the round function
Therefore, the first, second and third properties are sadisfhiny number of rounds of
the elastic network can be applied, satisfying the fourtpprty. The operations added
around the round function are simple, involving only the X6fbits and swapping of
bit segments, thus satifying the fifth property. Finallye tfate of diffusion is defined
in terms of the rate of diffusion of the original cipher. Cdete diffusion refers to the
point at which every bit of the input to the block cipher haffuenced every other bit.
The elastic network requires at most one more cycle thantig&al block cipher to
obtain complete diffusion. Therefore, the last propertyrfrour list is satisfied.

Claim 1: If complete diffusion occurs after cycles in the original, fixed-length
version of a block cipher, it occurs after at mgst 1 rounds in the elastic version of
the block cipher.

Proof. A round in the elastic version of the block cipher uses a cirdm the original
version of the cipher followed by the swapping of bits. By #ral of the first round,
they bits left out of the round function have not impacted any othits. The rate of
diffusion for theb bits input to the first round function is the same as in the &yl

the original cipher. The inputs to the second through thedpplication of the round
function are influenced by all+ y bits because of the XOR in the swap step after each
round. Thus beginning at the second roundp ally bits influence the input to the round
function and complete diffusion will occur withiprounds, which are cycles of the
original cipher. The bits output from thégq+1)** round function have been influenced
by all b + y bits; therefore, after the swap of bits that follows thet 1)% application



of the round function, ab + y bits have influenced the leftmdsbits and the rightmost
y bits resulting from the swap step. Therefore, completaudifin occurs by the end of
the (¢ + 1)* round in the elastic version.

3.3 Comparison of the Elastic Network to an Unbalanced Feisi Network

The elastic network is similar to an unbalanced Feistel akwOne question that arises
is why an unbalanced Feistel network cannot be used insteta @lastic network?

An unbalanced Feistel provides the benefit of being its owerse, with the round

keys used in reverse so the round function does not have to/beible; whereas this

is not true of the elastic network. We compare the elastizvolt to an unbalanced
Feistel network and explain why an unbalanced Feistel m&hd@oes not possess all
the properties required to create a variable-length blgaker from any existing block

cipher.

| b bits y bits | \ b bits y bits
b msb J y Isb i round
round | | round function
round function function maps b
function i to b bits
maps b [T 1 1 mm
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- The y bit
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positions
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A: Unbalanced Feistel Network B: Elastic Network XOR and swap

vary per round.

Fig. 3. Unbalanced Feistel Network Compared to Elastic Network

While the two networks may appear similar, it is not feastblese an unbalanced
Feistel network to create elastic block ciphers. Figured®wstthe structure of an unbal-
anced Feistel network compared to the elastic network. brakatced) Feistel network,
the block is split into two components of equal length; wiasrén an unbalanced Feis-
tel network the components do not have the same length andngths of the round
function’s input differs from the length of its output. Thiastic network also involves
splitting the block into two components, applying the rodadction to one compo-
nent then XORing and swapping bits between the componemfdsrtothe input to the



next round. However, the elastic network differs from analahced Feistel network in
several ways.

1. The round function of the elastic network must be invégtiwhereas, the round
function of the unbalanced Feistel network does not neec tnertible. This is
because the structures differ in what bits form the inpubh&rbund function.

2. In an unbalanced Feistel network the input to roursdXORed with the output of
round: + 1 to form the input to round + 2. In the elastic network, bits from the
outputs of rounds andi + 1 are XORed when forming the input to round- 2.

3. The round function magsbits tob bits in the elastic network and map®its toy
bits in the unbalanced Feistel network. This alone does revemt an unbalanced
Feistel network from being used with the round function oéaisting block cipher
that map$ bits tob bits becausg bits can be chosen from the output of the round
function wheny < b.

4. y < bin the elastic network. Whereas, an unbalanced Feistelanktplaces no
restriction on the length af in relation tob.

5. The most important difference is that the unbalancedélaistwork provides poor
diffusion to the extent that, for rounds and &b + y)-bit block, b — y(r — 1)
bits of input appear in the output. Therefore, when encrngptiata, part of the
plaintext appears in the ciphertext whefr — 1) < b. In contrast, the elastic
network guarantees complete diffusion in at most one maradashan the original
cipher. Even whenm is large enough to prevent input bits from appearing in the
output for ally, where0 < y < b, an unbalanced Feistel network provides no
guarantee on the rate of diffusion. Instead, the rate ofisiiéih depends on the
specific round function. This is due to the second and thah&.

It is the last item that prevents an unbalanced Feistel n&tivom being used to
convert existing block ciphers to variable-length blocghars in the same manner as
the elastic network. Obviously, such a cipher is insecurerw}tr — 1) < b. Even if
the number of rounds is set such th@t — 1) > b, an unbalanced Fiestel network is
not suitable for creating a variable-length block cipheiirigerting the round function
or cycle of an existing block cipher into the network. In arde (attempt) to use an
unbalanced Feistel network to create a variable-lengtbkbdipher, the block will be
divided intob-bit andy-bit portions wherg; < b andy bits will be selected from the
round function’s output to use in the XOR. However, this casutt in poor diffusion.
The cycles of block ciphers used in practice do not providemlete diffusion in a
single application (which is one reason for multiple cykl&¥e consider what happens
in an unbalanced Feistel network whgrc b and if all input bits to the round function
do not impact all output bits. If one of thebits, letq be the position of this bit, input
to the round function does not impact the bit positions thatiavolved in the XOR
with the y bits and the bit in positior only influences bits in the rightmogtbits of
the output, then the bit in positiapgoing into round; will have no influence in the
(i + 1)** round. In fact, the round function in an unbalanced Feistélvork must be
defined very carefully; otherwise, it is possible for certhits to have no impact on the
other bits over several rounds. We require a network stra¢hat allows "plugging in”
a cycle from any existing block cipher and viewing the cyaed thus round function
of the original cipher) as a black box while at the same tino¥igling the same level of



security as the original cipher (in that the elastic blogier is immune to any practical
attack that recovers key or round-key bits to which the adgcipher is immune).

3.4 Elastic Block Cipher Algorithm

The method for converting a fixed-length block cipher intoetastic block cipher in-
volves inserting the block cipher’s cycle into the elastetwork. Also, we add (or
expand from the original cipher) whitening steps, and we a#dy-dependent permu-
tation before the first round and after the last round. Theg@structure of the method
is shown in Figure 4. The following notation and terms willlmed in the description
and analysis of the elastic block cipher:

Notation:

— G denotes any existing block cipher with a fixed-length bldzk $hat is structured
as a sequence of rounds. By default, any block cipher thadtistnuctured as a
sequence of rounds is viewed as having a single round.

— r denotes the number of cycleséh

— b denotes the block length of the inputdbin bits.

— yis aninteger in the range, b].

— @ denotes the modifie@ with a (b + y)-bit input for any valid value of;. G’ will
be referred to as the elastic version(af

— 7’ denotes the number of roundsai.

— The round function of7” will refer to one entire cycle of7, as defined in Section
3.2

The process of converting a fixed-length block cipher inteemstic block cipher
involves inserting the cycle of the block cipher into theséilanetwork, adding initial
and final key-dependent permutations, adding or expandiigliand end of round
whitening, and determining the number of rounds requiredeia block ciphelG
with a b-bit block size, the following modifications are madeoto convert it to its
elastic version(’, that can proceds+ y bits, for0 < y < b.

1. Set the number of rounds, such that each of thie+ y bits is input to and active
in the same number of cycles i as each of thé bits is inG. r" = r + [52].

2. Apply initial and end of round whitening (XORing with expded-key bits) to all
b + y bits. If G includes these whitening steps, the steps are modified todac
all b + y bits. If G does not have these whitening step, the steps are added when
creatingG’. In either case, additional bits of expanded-key matenalraquired
beyond the amount needed 1Gr

3. Prior to the first round and after the last round, apply adegyendent mixing step
that permutes or mixes the bits in a manner that any indivioitiss not guaranteed
to be in the rightmosy bits with a probability of 1. The leftmosgt bits that are
output from the initial mixing step are the input to the firstind function. The
initial mixing step is between the initial whitening and firsund function. The
final mixing step is after the last round function and priotite final whitening.
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Fig. 4. Elastic Block Cipher Structure

4. Alternate whichy bits are left out of the round function by XORing thebits left
out of the previous round function withbits from the round function’s output, then
swap the result with thg bits left out of the previous round. This step is performed
after the end of round whitening. Specifically:

(a) LetY denote they bits that were left out of the round function.
(b) Let X denote some subset ghits from the round function’s output éfbits.
A different set ofX bits (in terms of position) is selected in each round. How
to selectX is discussed in Section 3.5.
(c) SetY — X @Y.
(d) SwapX andY to form the input to the next round.
This step will be referred to as "swapping” or the "swap stepid may be added
to the last round if it is required that all rounds be idertietowever, having the
swap step after the last round does not provide additioralrig.

The result’, is a permutation oty bits. Its inverse, the decryption function, consists
of the network applied in reverse and the round functionaegyd by its inverse.

3.5 Explanation of Algorithm

The method is designed fa@#’ to be equivalent ta~, with the possible addition of
whitening and the key-dependent mixing steps, when the idada integral number
of b-bit blocks, while accommodating a rangetofo 2b-bit blocks. The construction
allows the round function of7 (in the form of a cycle) to be reused and thus builds



upon the round function’s properties, including its diéfetial and linear bounds. The
following is an explanation of why specific steps are inclidtethe construction.

Step 1:Each bit position of the input is required to be active in tame number of
rounds inG’ as the number of cycles in which it is activeGh This requirement allows
the computational workload to increase proportionatetiéoblock size while avoiding
a reduced round attack d@f from being applied t@>’. As y increases, the number of
rounds increases gradually framt- 1 when0 < %3¢ < 1to2r whenr —1 < 5 <.

Step 2:Whitening is a useful heuristic against attacks that refla¢eoutput of a
round to the input of the next round. The whitening stepssagsiletting rounds work
in isolation from each other in that the input to a round isnomkn even when given the
output of the previous round. In differential cryptanasysvhitening does not impact
the probability of a differential characteristic holdingrass the rounds of a block cipher
because the whitening cancels with itself when computiegt®R of two inputs or
outputs of a round. Linear cryptanalysis is an example oftitiawhitening helps to
prevent. In linear cryptanalysis, linear relationshipsoagst the plaintext, ciphertext
and key bits are now based on the input oftfferound being the output of thg — 1)**
round® whitening as opposed to being equal to the output ofthe 1)** round.

Step 3:A key-dependent permutation or mixing of bits prior to thetfilound when
encrypting or decrypting eliminates a one round differrttiat occurs with a proba-
bility of 1. This allows the first round to contribute to prenimg a differential attack.
The mixing step will need to take less time than a single roottterwise, an additional
round can be added instead to decrease the probability ecfispdifferential occur-
ring. A trivial mixing that prevents the attacker from knagiwith probability 1 which
y bits are excluded from the first round is a key-dependentiostaRefer to Section 5
for the exact steps in the permutation used in four constmsbf elastic block ciphers.
The key-dependent mixing steps are assumed to be desigaeskimsible manner. For
example, the inverse of the round function would not be used.

Step 4:X @ Y is performed instead of merely swappitdg andY in order to
increase the rate of diffusion. & does not have complete diffusion in one cycle, then
at the end of the first round @¥’ there is some subsgtof bits output from the round
that have not been impacted by some of the bitX ilWhile the bits inY” may impact
S in the second round af’, swappingX andY would result in the bits inX having
no impact in the second round; whereas, swappingith X @ Y will allow the bits
in X to impact the second round. Per Claim 1, complete diffusidhé elastic version
of a block cipher takes at most one more cycle than in thermalgiersion. As shown
in Section 4.3 when proving that there is a direct relatigmbletween the security of
G’ and the security of7, the relationship is independent of the bit positions imedlin
the swap step. In practice when implementing elastic blggkers, we chose to vary
the bit positions selected foY to ensure that all bit positions are involved in both the
b-bit andy-bit components, as opposed to always selecting the ggositions for use
in X. The bit positions chosen to be swapped out after each rawnal kenown part of
the algorithm and are not determined by the key, plaintegiprertext.

Key ScheduleThe options for a key schedule include modifying the key dcite

of G to produce additional bytes, increasing the original kegith and running the key
schedule multiple times, or using an existing efficientastnecipher that is considered



secure in practice (this also permits the key schedule tegeddent of the choice of
G). In all of our implementations of elastic block cipherss RC4 stream cipher with
the first 512 bytes of output discarded is used as the key atdddiaving one standard
key schedule that can output as many expanded-key bits dethexcbeneficial because
it means only one implementation of a key schedule is nepessgardless of the block
cipher and it avoids the need to analyze one key schedulelpek bipher for flaws.
A stream cipher was chosen to significantly increase thearaneéss of the expanded-
key bits over those produced by existing key schedules. dd®s incur a performance
penalty over existing key schedules, but eliminates aegtiacks which arose because
of the structure of existing key schedules. Refer to Sedidor further discussion of
key schedules.

Decryption: The inverse of the round function, if it is not its own invereaust be
used for decryption. We remind the reader that the swap stagded after a complete
cycle when the original cipher is a Feistel network, thusitherse of the "round”
function in the elastic version is merely running the cyeleéverse, as is normally
done in any block cipher which is a Feistel network.

4 Security Analysis

4.1 Overview

For any concrete block cipher used in practice, as opposagseudorandom permu-
tation (PRP) in theory, the cipher cannot be proven secuadlireoretical sense (is not
proven to be a PRP or strong PRP) but rather is proven secanmesagnown types of
attacks. Thus, we can only do the same for the elastic veddisach a cipher. In order
to provide a general understanding of the security of eldstick ciphers, we provide

a method for reducing the security of the elastic versiornirmgéey-recovery attacks to
that of the original version. Our security analysig#fexploits the fact that there is an
instance ofZ embedded i’ and is independent of the specific block cipher used for
G.

We prove that?’ is secure against any attack that attempts to recover therkbg
expanded-key bits if7 is secure against the attack. This is accomplished by slyowin
how to convert such an attack 6# to an attack orz. The result is independent of the
method by which the attacker obtains plaintexts and/orenifgixts to use in the attack,
(i.e.,in general any known plaintext/ciphertext attack that vecs key bits is covered
by our result.) This resultis important because itimplié¢sloes not have to be analyzed
against any practical attack to whick is immune. Our approach is novel because
we show how to convert an attack on the variable-length earsif a block cipher
directly into an attack on the fixed-length version of thecklgipher. Security against
key recovery attacks does not by itself imply securéyg(,the identity function which
ignores the key is insecure while key recovery is imposkittiowever, all concrete
attacks against real ciphers (linear, differential, higbeder differential, impossible
differential, related key attackstc) attempt key (or expanded-key) recovery and thus
practical block ciphers should be secure against suchkattac



4.2 G within G’

Before stating our theorem, we provide some preliminarylyaigthat assists us in
conveying the linkage between the original and elasticisassof a block cipher. We
first draw attention to the fact that the operations perfatings’ on the leftmosb-bit
positions inr consecutive rounds is an application@®f This is depicted intuitively in
Figure 5. We note that we are concerned only wittbnsecutive rounds @’ and do
not include either the initial or final key dependent mixitggspresent in the definition
of elastic block ciphers. This relationship can be used toved an attack which finds
the round keys fo6:’ to an attack which finds the round keys f@r Let G, denoteG?
using round keysk. Specifically, ifG,'(p || z) = ¢ || z, a set of round keys;k, for

G such thatG,;(p) = ¢ can be formed from the round keys and the round outputs in
G’ by collapsing the end-of-round whitening and swappingste’ into a whitening
step. The leftmosh bits of the round key for the initial whitening are unchangad
the rightmosty bits are dropped. The resulting whitening key bits will vamyup to

y positions across the (plaintext, ciphertext) pairs duehtoprevious round’s output
impacting the end-of-round whitening step. However, itdasgible to use these keys to
solve for the round keys af.

Round of G’ Cycle of G
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Fig. 5. G within G’

The following claim shows that for any set of (plaintext,logstext) pairs encrypted
under sets of round keys & where the rightmosy bits used for whitening in each
round may vary amongst the sets and all other key bits ardid@déamongst the sets,
there exists a corresponding set of (plaintext, cipherteairs for G where the round
keys used inG’ for the round function and the leftmotbits of each whitening step
are the same as those used:inthe plaintexts used it are the leftmosb bits of the
plaintexts used i, and the ciphertexts fak are the leftmosb bits of output of the
r*" round of G’ prior to the swap step.



Claim 2:Let G be ab-bit block cipher and+’ be its elastic version. Lgt(pi, ci) } denote

a set ofn (plaintext, ciphertext) pairs such thai| = |ci| = b. Letb + y be the variable
block size forG’ where0 < y < b. Letw be ay-bit constant. Let: be ay bit string
that may vary pet, fori = 1 ton. Under the following assumptions regarding the key
schedules:

— The rightmosty bits of each whitening step i6’ can take on any value and are
independent of any other expanded-key bits within the ramdlin other rounds.

— There are no message-dependent expanded keys. Any explegdeits utilized in
G depend only on the key and do not vary across plaintext oectpkt inputs.

— Any expanded-key bits used in the round function ofitltensecutive rounds @’
can take on the same values as the expanded-key bits usesinoutid functions
of G.

— If G contains initial and end of cycle whitening, any expandeyg4its used for the
leftmostb bits of each whitening step inconsecutive rounds @’ can take on the
same values as the whitening bits(in

if Gi(pi) = ci then there exista sets of round keys for the firstrounds ofG’ that are
consistent with inputgi || w producingei || vi as the output of the*” round prior to
the swap at the end of thé” round, fori = 1 to n, such that the leftmostbits used
for whitening in each round are identical across thgets and any expanded-key bits
used internal to the round function are identical across:ithets.

Proof. Letrk = {rko, rk1,...rk,} be the set of round keys corresponding to kegr
G. rky denotes the key bits used for initial whitening. For eggh ci), form a set of
the firstr round keys forGG’ as follows: Pick a constant string,, of y bits, such as a
string of 0’s. Let pi || w be the input toG’. Let rki’ = {rki(, rki},...rki.} denote
the round keys foz’ through ther!” round for the pair(pi, ci). Set any bits ik’
used internal to the round function to be the same as thesponeling bits in'k;. Set
the leftmost) bits used for whitening imk:’; to theb bits used for whitening ink; .
Set the rightmosy bits used for whitening imki’; to be the same as thebits left out
of the round function in roung of G’. This is illustrated in Figure 6. Notice that the
leftmostb bits used for whitening in each round are identical across tbets of round
keys formed, and any bits used internal to the round fundienidentical across the
n sets; specifically, they correspondstb in each case, and the rightmagsbits used
in each whitening step differ based o, ci) across the: sets. The case in whiall
does not contain whitening steps corresponds to using Othédeftmosb bits of each
whitening step inG’.

The operations ofi’ on the leftmosb bits of rounds 1 through round prior to the
last swap, are identical to the operationgdp(pi) because the swap stepai results
in XORing y bits of a round function’s output with 0’s. Thus, the leftmoskt bits in
the output of the-*” round prior to the swap step i$. Therefore, fori = 1 to n there
exists a set of round keyski’ for G/, such thatz’(pi) produces:i as the leftmosb
bits in ther” round prior to the swap step, thus proving the claim.
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4.3 Reduction Between the Original and Elastic Versions of &ipher

We use the fact that an instance(®fs embedded id’ to create a reduction frod’ to

G. As aresult of this reduction, an attack agaiisthat allows an attacker to determine
some of the round keys implies an attack agaifsthat is polynomially related in
resources to the attack @. Assuming that itself is resistant to such attacks, we
conclude that?’ is also resistant to such attacks. We note that if an attadk fime key
as opposed to the expanded-key bits (the round keys) thattdwer can apply the key
schedule to the key to obtain the round keys. Therefore, franalysis, we view any
key recovery attack as providing the round keys to the attadkhe reduction requires
a set of (plaintext, ciphertext) pairs. This is not considiea limiting factor because
in most types of attacks, whether they are known plaintdxisen plaintext, adaptive
chosen plaintext, chosen ciphertext.,the attacker acquires a set of such pairs.

In our analysis, we conside€r’ without the initial and final key-dependent mix-
ing steps. This allows us to focus on the core componentseoélidistic block cipher
algorithm. If present, the mixing steps only serve to inseethe security ofs’ since
they prevent an attacker from knowing with probability orf@et bits are omitted from
the first application of the round function when encryptimglecrypting. Furthermore,
since the mixing steps are added steps (as opposed to mbdifcto components of
(7) using key material that is independent of the round andeslmig key bits, they do
not impact our analysis.

Theorem 1. Given a fixed-length block cipheg, that works onb-bit blocks and its
elastic version(’, that works on(b + y)-bit blocks, wher® < y < b, if there exists an
attack, A, onG’ that allows the round keys to be determinedifaonsecutive rounds



of G’ using polynomial (ib and r) time and memory, then there exists an attack on
G with r cycles that finds the expanded key ¢oand that uses polynomial (ihand

r) many resources ad(,, assuming there are no message-dependent expanded key,
meaning any expanded-key bits utilizeddrdepend only on the key and do not vary
across plaintext or ciphertext inputs.

Before beginning the proof, we have a few comments on thad¢neand assump-
tions. We first note that for an attack @# to be computationally feasible, it must
involve < 2% (plaintext, ciphertext) pairs because otherwise an exivausearch on
G would be possible, implying- is insecure against practical attacks. The assump-
tion that the expanded key bits do not depend on the inputg@ifther (the plaintext
or ciphertext) is true of block ciphers used in practice ahelastic block ciphers.
With no further assumptions about the key schedules, aokatttat finds an expanded
key for G’ implies an attack that finds an expanded keydbthat produces a set of
(plaintext, ciphertext) pairs consistent withy, but which may or may not adhere
to the key schedule off. If the expanded key is inconsistent with the key sched-
ule of G, this itself indicates a weakness (# because it means there is some ex-
panded key that is not produced by the key schedul& d@iut which produces a set
of (plaintext, ciphertext) pairs consistent with whicliy would produce when using
some key generated ly's key schedulei(e. the attack finds an equivalent key for the
set of (plaintext, ciphertext) pairs used in the attack). If the following three assump-
tions are placed on the expanded key bits36f then the attack od: will find a key
consistent with the key schedule Gf

— The rightmosty bits of each whitening step i6” can take on any value and are
independent of any other expanded-key bits.

— Any expanded-key bits used in the round function of the firsbnsecutive rounds
of G’ can take on the same values as the expanded-key bits ued in

— If G contains initial and end of cycle whitening, any expandeygits used for the
leftmostbd bits of each whitening step in the firstconsecutive rounds @’ can
take on the same values as the corresponding whiteninglais i

These assumptions are easily satisfied in practice by usénkgly schedule a¥ to gen-
erate a subset of the round key bits and a separate algootigemerate the expanded-
key bits required ir’ for the additionat’ — r rounds and any whitening presentiti
that is not present i’. Another option is if the key schedule 6f generates pseudo-
random expanded-key bits such that it is possible the exquhidy bits for the round
function and leftmosk bits of whitening inr consecutive rounds can take on the same
values generated by the key schedulezbfin practice, given an expanded-key, it is
feasible to check if the expanded-key adheres to a spediivkzipher’s key schedule.
A subset of the expanded-key bits being tested can be idsettethe key schedule to
generate additional key bits which can be checked agaiadbith in the value being
tested.

The theorem holds by default for the case whea 0, sinceG’ is justG (with the
possible addition of whitening which can be set to 0’s wheplypg the attack ifG
does not contain whitening). We vieWas having whitening steps in the proof to Theo-
rem 1. This is not an issue for the following reason. If tha@ktonG’ involves solving



for the round key bits directly and allows the bits used inwHétening steps to be set
to 0 for bit positions not swapped and@mr 1, as necessary, for bit positions swapped,
then the whitening on the leftmostits is equivalent to XORing witl, which is the
same as having no whiteningd Setting a subset of bits in each whitening stefrin

to 0’s is equivalent to using a weaker version@f. Any attack that works o’ will
work on the weaker version. This is merely the case wheretthekeer knows certain
bits of each whitening step afés.

We note that Theorem 1 only states that an attackzbran be converted to an
attack onGG and not the reverse. This is because, in general, the clatathattack
on G can be converted into an attack 6fi does not hold. Consider the case wh&n
contains the initial and end of round whitening steps. Whea 0, G’ is G with the
initial and final key-dependent permutations added andéfyeskhedule replaced (such
as by a stream cipher). If the attack @ris due to the original key schedule, the attack
does not necessarily hold if the key schedule is changedterge pseudorandom bits
when creatindg=’. For any attack not due to the key schedule, in order to claahdn
attack onG implies an attack o, it is necessary that the attack 6rbe such that the
addition of the initial and final key-dependent permuatjdhe addition or expansion
of the whitening steps and the addition of the swap steps doesaolt in the attack
becoming inapplicable or computationally infeasible. émgral, the conversion of an
attack fromG’ to G works because there is a decrease in the complexity of thuk blo
cipher being attacked when going fr@fi to G; whereas, the reverse is not true because
there is an increase in the complexity of the block ciphermdt@nvertings to G'.

To prove Theorem 1, we must show for any valuegypfvhere0 < y < b, that if
an attack exists ot it can be converted into an attack 6husing polynomial time
and memory. We define the steps for converting a round-keyesy attack orG’ to
an attack orG. We describe two ways of performing the conversion. The ffirsthod
works for any value ofy where0 < y < b. The second method is is applicable for
values ofy satisfyingr(y — 2) < b, wherer is the number of rounds in the original
cipher. We include the second method because it requiresr feavnputations than the
first method and thus is useful for small valuegjoffhe methods treat whitening key
bits as if they are pseudorandom in that the whitening keydzih take on any value. In
G, if there is a relationship amongst the whitening key bitd/anbetween whitening
key bits and key material used within the cycle due to the kégdule ofG, such keys
will be a subset of all the possible sets of round keys foundguthe attack orGy’.
Then the set of round keys that satisfies the key schedule cdn be determined by
checking which of the potential keys corresponds to the lfyedule. If the number
of potential sets of round keys found by the attack(@nis large enough such that it
is computationally infeasible to determine which ones adhe the key schedule of
G, then the attack o’ is not computationally feasible. This is because the number
of potential sets of round keys the attack finds for a set d@ilpéxt, ciphertext) pairs
will also be large enough such that it is computationalleasible for an attacker to
determine which set to use to decrypt additional ciphestext

When we refer to converting the round keys@finto cycle keys forG, we mean
the following: In round; of G’, letb;; denote thd*" bit of the b bits output from the
round function prior to the end of round whitening. lieb;; denote the end of round



whitening key bit applied td;;. If b;; is involved in the swap step at the end of round
J, lety;, denote the bit from the rightmostbits with whichb;; is swapped and let
kw;;, denote the whitening key bit applied 4g,. Set thel*" whitening bit in round;

of G to kw;; @ kwj, ® y;, whenj > 2. Whenj = 1, thel*" whitening bit is set to
kwy; @ kwyp @ y1n @ kwoy, because the initial whitening is included in the conversion
Set all other key bits used i@ (both whitening and any internal to the cycle) to be
identical to the key bits used if’. We refer to the initial whitening as round 0 6f
and cycle 0 of7. The initial whitening forG’ is converted to initial whitening fof by
using the leftmosb expanded-key bits of the initial whitening as the initialitening

in G.

Proof of Theorem I: First Method We describe here a method for converting the
attack onG’ to an attack orz. Without loss of generality, we use the firstounds of

G’ as ther consecutive rounds for which the round keys are found. Theersion is
presented in terms of solving for the round keys from theahwhitening to round-,

but may also be performed by working from rountack to the initial whitening or by
using any consecutiverounds with whitening applied before the first round as losig a
the plaintext forG is the leftmosb bits of input to ther rounds and the corresponding
ciphertext fromG is the leftmosb bits of the output of the rounds.

This attack runs in quadratic time in the number of cycle§'oThe attack A¢,,, on
G’ is used to solve for round keys 0 and 1 f@y then repeatedly solves for one cycle
key of G at a time, using the output of one cycle@fas partial input to a reduced round
version ofG’, running the attack o’ and converting thé** round key ofG’ to the
cycle key for the next cycle af. By the second condition in Theorem 1, an if an attack
on G’ with ' rounds exists, then a reduced round attack:6exists for any number of
rounds< r’.

Let P be a set of plaintexts an@ be a set of ciphertexts. We use the notation
{(P,C)} to indicate a set of (plaintext,ciphertext) pairs of thenidpi, ci) with pi € P
andci € C. Givena se{ (P*,C*)} = {(pi*, c¢i*)} of n (plaintext, ciphertext) pairs for
G, create asef(P,C)} = {(pi* || 0, ci* | vi,)} of n (plaintext, ciphertext) pairs for
anr-round version of’. Note: we only require that the bits appended to eagh*
when forming{(P, C')} be a constant; we choose to use 0. Thevalues appended to
theci’s are arbitrary and do not need to be identical. Flsaibscript invi,- denotes the
number of rounds. Our method runs reduced round attacks and thevi,.'s can vary
each time. Solv&’ for round keys 0 and 1. Sets of round keys exist that correspon
to {(P,C)} and which are identical in at least the initial whitening dirdt round.
The initial whitening on the leftmodtbits and any expanded key bits used by the first
application of the round function i’ can be set to the same values as they would
in G, and the intial whitening on the rightmogtbits of the plaintext can be set to be
equal to they plaintext bits, which are constant across all plaintextemvperforming
the attack. We note that the round keys across althirs may be identical in additional
rounds, but we are only concerned with the initial whiterangl first round at this point
in the process:k(, andrk; will refer to the expanded key bits used for initial whitegiin
and in the first round of+’, respectively. Use the leftmostbits of k|, asrko, for G.
Since the rightmogj bits are identical across all inputs@, whenrk} is converted to



a cycle key forG, the result will be the same acrossaklements of (P, C)}. Use the
converted round key as cycle keyr’k, , for G. For eactpi*, apply the initial whitening
and first cycle ofGG using the two converted round keys. Ldti denote the output of
the first cycle ofG for i = 1 to n. Using a reduced round version 6f with r — 1
rounds and the initial whitening removed, $éP, C)} = {(p1i || 0, ci* || vi,—1)} and
solve for the first round key of¥’. As before, convert the resulting round key for the
first round to a cycle key fofz. Use the converted round key as the second cycle key
for G. Repeat the process for the remaining cycle& péach time using the outputs of
the last cycle of5 for which the cycle key has been determined as the inputs tnd
reducing the number of rounds @& by 1, to sequentially find the expanded-key bits
for G one cycle at a time.

This attack involves applying each cycle Gfto n inputs for a total ofrn cycles
of G. M rounds of G’ are computed in the worst caseAf., requires knowing
the output of each round of the reduced round versiofi’db find the first round key.
r applications of4;,, are needed on the reduced round version§’ofLet t 4 denote
the time to runA¢,,. Let ks; be the time to check that an expanded-key foundipy
adheres to the key schedule®@f The time to attacks is O(nr? + rta + ks).

In summary, the attack ofd can be written as:
Input{(P*,C*)} = {(pi*, ci*) fori = 1 ton}.
Create{(P,C)} = {(pi* || 0, ci* || vi,) fori = 1 ton} for ar-round version of+’,
where thevi’s are arbitrary.
Using A, solve ar-round version of’ for rkj andrk;.
Convertrk{ to rko andrk} tork;.
Setpli = first cycle’s output of 7 usingrky andrky, fori = 1 ton.
Forj=1tor—1{
{(P,C)} ={(pji| 0,ci* || vi,—;) fori =1ton}.
Solve ar — j reduced round version @¥’ for the first round keyyk;.
Convertrk} to formrk;q.
p(j + 1)i = output of cyclej + 1 of G onpji usingrk;, fori = 1ton.

Proof of Theorem I: Second Method Our second method for proving Theorem 1 re-
quires fewer computations than the first method, but prewdands keys for a smaller
set of (plaintext, ciphertext) pairs. The attack works di¥es: Assume there exists a
known (plaintext, ciphertext) pair attack @ which produces the round keys either
by finding the original key and then expanding it, or by findihg round keys directly.
Using round keys for rounds 0 toof G’, convert the round keys into cycle keys for
G one cycle at a time. For each round, extract the largest dgtafhtext, ciphertext)
pairs used in the attack a&' that have the same converted cycle key. If therergre
(plaintext, ciphertext) pairs involved at roupdhere will be at Ieas% pairs remaining
for which the round keys are consistent after rogndhe end result is the expanded-
key bits forG that are consistent with a set gf—; b-bit (plaintext, ciphertext) pairs
for G. We then describe how to take a set of (plaintext, cipherfmits forG, convert
them into a set of (plaintext, ciphertext) pairs t&f in order to run the attack o@’ to
find the expanded-key bits fa¥.



Let{(P,C)} = {(pi || =i, ci || z9)} (fori = 1ton)denote a set of known(b+y)-
bit (plaintext, ciphertext) pairs fa&’, where|pi| = |ci| = b and|zi| = |zi| = y.

Let Ag: be an attack o’ that finds the key(s) correspondingft@P, C')} in time
less than a exhaustive search for the key. ietlenote the number of keys found.
Without loss of generality, it is assumed the keys are abkdlm expanded form. Let
k; denote thej*" key found byAc:. In practice, only one key should be found for any
set of (plaintext, ciphertext) pairs.

Let S = {ek;} for j = 1 to m be the set of expanded-keys used for whitening for
whichek; is from the expansion of keky; andG, (pi || #i) = ci || zifori = 1ton.

Let R;,; denote any key material utilized within the round functiér® and cycle
of G. The values found for such key bits for t}i& round ofG” will be the same as the
key bits for thej*” cycle of G, for1 < j < r.

Let {(P,U)} = {(pi||zi,wi||vi)} such thatui||vi is the output of the*” round of
G’, where|ui| = b and|vi| = y.

Let S = {ekj | ek} = bits of ek; € S corresponding to roundsto r used for
whitening} be the set of expanded-key bits used for whitening in rolrtds- of G'.

For eachek; € S’ and eactpi || i, ui | vi) € {(P,U)}, convert the round keys
to cycle keys forGG. Let ek, be the converted key corresponding to tHeelement of
{(P,U)} and thej*" element ofS’. The part ofek]; corresponding to round will be
identical across all elements. When the round keys are ctajeét mosy bits change
in the leftmosth bits. Thus, the resulting round keys for roupdl < ¢ < r can be
divided for each of thg impacted bits into those that haveé) an the affected bit and
those that have & in the affected bit. Foy = 1 to r, defines;, , as the maximum-
sized set okek;;s from S,,4,_, that have identical round key(s) for roundwhere

rndy = S LE{(P,U)na, } b€ the corresponding elements{¢P, U) }. When form-
ing {(P,U)rna, }, atleasR=Y|{(P,U)na,_, }| of the elements fror{(P,U),na,_, }
are included.

To illustrate how the setS],,; and{(P,U),.q, } are created, consider the example
shown in Figure 7 wheré = 1, y = 2, and the leftmos® bits are swapped with
they bits in the swap step. The round numbegiand{(P,U),,q4,_, } contains three
(plaintext, ciphertext) pairs. Suppose the outputs of thand function in they!" of G
are100101,110011 and 111111 and the whitening bits in the*” round are011010.
The whitening bits of the converted round keys correspanttinthe three cases are
0110,1110 and1110. Sincel1110 occurs in the majority of the cases, set tli cycle
key of G to 1110. 57, contains the round keys for rounds O¢te- 1 from S|,
and0010, and{(P, U),na, } contains the second and third (plaintext, ciphertext)gair
from {(P,U)rna,_, }-

Let {(P,C)c} = {(pi,ci)|(pi || yi,ui || vi) € {(P.U)rna, }}. H(P.C)G}| >
n/2Y". {(P,C)¢} is a set of (plaintext, ciphertext) pairs for whi€h.,(pi) = ci ¥V
(pi, ci) € {(P, C)q} where the whitening round keys ot € 5., and any additional
key material utilized by the cycles is the same as that fordhads ofG’, namelyR;,,;.

To perform the attack o6 when given a set of (plaintext, ciphertext) pairs for
convert the pairs into a set of (plaintext, ciphertext) p&ir G’ and find the round keys
for G, then convert the round keys 6f to cycle keys forG as follows: Given a set
{(P*,C*)} = {(pi*,ci*)} for i = 1 ton known (plaintext, ciphertext) pairs fa¥,



1001 01 1100 11 1111 11

KB «—KY KB «— KY KB—» <« KY
1111 00 1010 10 1001 10
KB=0110
KY =01
1111 11 0010 10 0001 10
1001 1100 1111
conve'r‘[ed converted converted
key bits key bits key bits
0110 1110 1110
1111 0010 0001

Fig.7.Forming$;.,.q,

create the sef(P, C)} of (plaintext, ciphertext) pairs to use in the attack orr-apund
version of G’ by settingpi || i = pi* || 0 andci || zi = (c¢i* || zi) for i = 1 ton. For
the set of(P, C) pairs are created(P,U)} = {(pi* || 0,ci* || 27)}. Apply the attack
on G’ to solve for the round keys @’ then produce the se{§ P, U )4, } andS;q4,..
The sets of round keys ifi,..4,. will be consistent with the (plaintext, ciphertext) pairs
in {(P,U)rnd, }-

Let ¢, be the time to rum rounds ofG’, t4 be the time to rums andm be the
number of keys (sets of round keys) founddy, . In the case of obtaining at least one
set{(P,U)na, } Of size> 5=, the time required beyong, consists ofnmt, time to
obtain the outputs of the firstrounds for eacl (P, U)}, O(nmr) time to perform the
conversion of the round keys fro’ to cycle keys forG andO(nmsr) time to form
the S}, sets. Letks; be the time to check that an expanded-key adheres to the key
schedule of>. Thus, the additional time required to attagékbeyond the time required
to attackGy, ) is O(nm(r + t,.) + mks;). The only unknown value is:, the number
of keys produced by the attack @r_ . If m is large enough, to the extent that it
approaches the average number of keys to test in a brutedttaxk onG’, then this
contradicts the assumption that an efficient attack exist§’dbecause the attacker is
left with a large set of potential keys for decrypting adutil ciphertexts.

So far we have defined a method which produces a set of atJgagplaintext,
ciphertext) pairs which are consistent with the round kéyss Iower bound on the
number of plaintext, ciphertext pairs can be slightly ire®d tog— by using(b +
y)-bit plaintexts that are the same in the rightmpbits (which we did by setting these



bits to 0), and by defining the: values representing the ciphertext outputin the
r*" round of G’ to be the output of the!” round prior to the swapping step. This will
resultin|S!, , | = nand[S. , | = |S.,4 | thus in first and*" rounds the set of
(plaintext, ciphertext) pairs is not reduced. Then the naindf (plaintext, ciphertext)
pairs produced fofr that are consistent with the expanded-keydois > 5. The
number of possible plaintexts f6¥ is 2°; therefore, it is necessary fgfr — 2) < bto
use this method.

5 Elastic Block Cipher Examples

5.1 Overview

We describe elastic versions of AES, Camellia, MISTY1 andbR@e choose these
particular block ciphers because they were finalists indsteds competitions that rep-
resent different methods for how the round function prodetss AES serves as the
simplest example for creating an elastic block cipher bgseais round function pro-

cesses the entire 128-bit block in each application. Caaelhe of the recommended
128-bit block ciphers from NESSIE'’s competition for crygtaphic algorithms [23], is

a Feistel network with an additional function applied aftertain cycles. MISTY1, the

recommended 64-bit block cipher from NESSIE, is also stmett as a Feistel network.
Its elastic version provides an example of a cipher coveslaogks in the range of 64 to

128 bits. RC6, a finalist from the AES competition, breaksdht block into quarters

and the round function updates two of the quarters using éihées of the other two

quarters. We use a 128-bit version of RC6.

5.2 Common Iltems

We first describe implementation details shared by the feamples. In the elastic ver-
sions of block ciphers, the bits in a block of data are nunmibfen the most significant
(leftmost) to the least significant (rightmost). Bits 1 to dcbme thé-bit portion and
bits b+1 to b+y become thg-bit portion. The initial and final key-dependent permu-
tations involve a rotation of bits followed by a swapping dsbTheb + y bit data

is broken into segments at either the byte or 32-bit wordlléMee elastic versions of
AES and Camellia used byte-sized segments, and the elastions of MISTY1 and
RC6 used word-sized segments. The choice of the segmentaizéue to the nature of
the original cipher. The operations of AES and Camellia l[dramselves to byte level
processing; whereas, the operations of MISTY1 and RC6 leeiah$elve to processing
at the word level. Two expanded-key bytes are utilized byhezfcthe permutations.
The two bytes are each viewed as an integer modulo the nunfifielt segments in
the block. Refer to these two integersrailsandn2. If the b 4 y bits of data is not an
integer number of segments, the rightmost bits are treatadractional segment. First,
the block is rotated to the rightl segments. The fractional byte or word, if any, is
omitted from the rotation. The fractional component is teaapped with consecutive
bits from then2t" segment of rotated component. If there is no fractional segm2

is unused. RC4 [32] was used for the key schedule. The firsb§tes of RC4’s output



are discarded [22], then RC4 is run until the required amotiexpanded key bytes are
obtained. How the bits are selected for the swap steps vsligdgly among our con-
structions. In all cases, the bits swapped out ofttiét portion at the end of the round
are y sequential bits (circling back to the leftmost bit afesaching the rightmost bit),
but the starting position of this sequence varies per cighgshown in Section 4, the
exact positions of the bits swapped does not matter in theestiat the elastic version
will be secure against any attack that works by recoveringdteround key bits if the
original cipher is secure against the attack regardleseedfit positions chosen for each
swap step.

For each cipher, we compared the performance of the elastston to the original
version with padding. We measured the rate of encryptioreémh block size that is
an integral number of bytes. This excludes the time to exghadey. In the elastic
implementations, when the block size is not an integral remob bytes, the fractional
byte is stored in a byte and the processing time is the sanfeadsill byte of data is
present; therefore, the time to encrypt b+y bits is the tionertcrypt(b + ) /8 bytes. It
is possible for the computational workload to vary at a maemglar level, such asin a
hardware implementation. The time for the fixed-length ieerso encrypt &b + y)-bit
block is the time to encrypt 2b bits in order to represent thdding required when
using ab-bit block cipher. We measured the time to encrypt one nmillib 4 y)-bit
blocks, whereé) < y < b andy is an integer multiple of 8, using the elastic version and
two million b-bit blocks using the fixed-length version. The time to pagldhta was not
included when measuring the performance of the origindleipWe implemented all
the ciphers in C. All tests were conducted on a 2.8Ghz Pendipnocessor with 1GB
RAM running Redhat Linux 2.4.22, unless otherwise noted.

We also compared the performance of the elastic versiom&tpdrformance of the
proposals by Bellare and Rogaway, and Patel, Ramzan anca&umd described in 2.
As explained in Section 2, ciphertext stealing requireghsly more work than plain
padding. Therefore, the performance of the elastic blopkegis in comparison to the
original ciphers using ciphertext stealing will be slighletter than the performance
when compared to padding alone. We do not include separatsurements as a result.
Furthermore, as mentioned in Section 2, unlike the othehatk, ciphertext stealing is
a mode of encryption as opposed to a block cipher designek dot provide diffusion
across all bits and its output can easily be distinguishechfrandom by encrypting
(b + y)-bit blocks with the first bits held constant. Therefore, a comparsion between
ciphertext stealing and variable length block ciphers isl@aiding because the later
are designed to be block ciphers, with the associated $gcequirements such as the
inability to distinguish the output from random bits, as oped to a mode of encryption.

5.3 Elastic AES

We created the elastic version of AES by adding the swap &tpaen rounds of AES
(the round function of AES is a cycle and therefore becomesrtétund function in
the elastic version), expanding AES’s whitening steps (RaoldhdKey) fromb = 128
bits to 128 + y bits, and adding the initial and final key-dependent pertiarta. The
round function consists of AES’s SubBytes, Shiftrows ank@hlumns steps, with
the MixColumns step omitted in the last round to be consistéth the fixed-length



version of AES [27]. The number of rounds ranges frobirwheny = 0 to 20 when
116 < y < 128. We implemented the swap step by selectingequential bits from
the leftmost bits, wrapping around from the right to the left as needec 3tarting
position is varied by moving one byte to the right each rounewoid using the same
bit positions in each swap, with the first swap step startiith thhe leftmost bit of the
b-bit segment. This avoids any complex selection processtioosing they bits that
would decrease performance.

We implemented two elastic versions of AES that differedawlthe round function
was implemented. In Version |, we implemented the roundtionas a straightforward
sequence of the SubBytes, Shiftrows and MixColumns stedsfased in [27]. In Ver-
sion I, we combined these steps into a table lookup. Thigli®& the round function
being a series of byte-level table look-ups and XORs. Verflisequires fewer CPU
cycles than Version |, at the cost of an increase in memorgaisehe round function
can also be implemented to process the data as 32-bit waredich case the table
entries are 32-bit words. We kept table lookups at the bytel leecause we chose to
implement the key-dependent permutations and swap stap aite level.

The elastic versions increase the number of operationsioeye 128-bit versions
due to the swap steps, the two key-dependent permutatidri@expansion of whiten-
ing to cover 128+y its. In Version I, the elastic version sapeocessing time over
padding. Obviously, as the block size approaches two foltkd, 20 rounds of AES
are incurred in the elastic version along with the addedsstehich increases the num-
ber of operations beyond the 20 rounds of AES that are redjuiteen padding the
data to two full blocks. Therefore, it is expected that thisrao performance benefit
when encrypting blocks just under 32 bytes. In Version i ¢tastic version does not
offer a performance benefit compared to padding. This isusecaf the simplistic na-
ture of the operations involved (table lookups and XORs}Hierround function. Even
though there are fewer rounds in the elastic version thalm padding, the operations
for the swap step and the two key-dependent permutatiorsico@any savings gained
from having fewer rounds. However, Version Il offers a pemfance benefit over the
variable-length block cipher construction by Bellare amdjRwvay, and its modification
by Patelet al.

Figure 8 summarizes the results from the following threeesa€ase 1: Version
| tested on a 1.3 Ghz Pentium 4 processor with 512MB RAM rugiwindows XP,
Case 2: Version | tested in the Linux environment descrilvedipusly. Case 3: Version
Il tested in the Linux environment described previouslytha first trial, the number
of (b + y)-bit blocks the elastic version can encrypt per second frgen 190% of
the number oRb-bit blocks AES can encrypt per second whes= 1 to 100% when
y = 97. Then the elastic version’s performance decreased gigdoad low of 83%
of AES'’s rate. In the second trial, the values ranged fi&6f% to 69% of AES's rate,
with the elastic version becoming slower than the fixedlbregrsion wherny = 73. In
the third trial, the elastic version was slower than the fisembd version with padding
for all block sizes.

We compared Bellare and Rogaway’s method and Patel's math@ES with
padding on the Pentium 4 processor used in cases 2 and 3reBalid Rogaway’s
method encrypted between 49 and B0+ y)-bit blocks in the same amount of time
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Fig. 8. Normalized # of Blocks Encrypted by Elastic AES in Unit TinRRegular AES = 100)

AES with padding encrypted 100 blocks, for both Version | @hdf AES. Patel's
method encrypted 9@ + y)-bit blocks in the time it took Version | of AES to encrypt
100 blocks, and encrypted 18 + y)-bit blocks in the time it took Version Il of AES
to encrypt 100 blocks. When using Version |, elastic AES isipatationally more ef-
ficient than both Bellare and Rogaway’s method and Patelthodfor all block sizes.
When using Version I, elastic AES is computationally moffeceent than Bellare and
Rogaway’s method for block sizes up to 21 bytes in length,iamdore efficient than
Patel’'s method for block sizes less than 31 bytes and is asesffias Patel's method
for block sizes between 31 and 32 bytes.

5.4 Elastic Camellia

Camellia processeBs28-bit blocks and is a Feistel network with additional steps. A
function, referred to as the FL function, is applied aftezmgthree cycles in the Feistel
network, except after the last three cycles. FL is applieth¢deft half and its inverse
is applied to right half of thé = 128 bits. Camellia contains initial and final whiten-
ing steps, but not end-of-round whitening. Creating thstedaversion involved using
a cycle from the Feistel network as the round function, egpanthe two existing
whitening steps to cover 128+y bits and adding end-of-rounitening steps to all the
other rounds, and adding the same initial and final key-dégetpermutations that we
used in elastic AES. We apply the FL function after everyemaunds, except for the
last round. A round of the elastic version is shown in Figur&@i®e data is processed
as bytes. The swap step was implemented by altering thengt@asition between the
left and right halves of thé-bit portion then rotating it one byte to the right within the
half, with the first swap step starting with the leftmost Hittee left half. Camellia has
9 cycles. The number of rounds in the elastic version rangaes ® wheny = 0 to 18
whenl14 < y < 128.

The elastic version offered no performance gain over thelflgagth version with
padding. We also measured the performance of the elassiowerithout the initial and
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Fig. 9. Round Function for Elastic Camellia

final permutations. Removing these two steps results in ldtie version offering a
performance benefit when encrypting blocks that are onaéethytes over the normal
16-byte block size. Results for the following two cases &@as in Figure 10: Case
1: elastic Camellia with all steps, Case 2: elastic Camulithout the initial and final
key-dependent permutations. By using a lower bound of tifieevork of padding for
Bellare and Rogaway’s method, elastic Camellia with the kegendent permutations
provides a performance benefit for block sizes up to 22 byidsilze version without
the key-dependent permutations provides a performancefibéor block sizes in the
range of 9 to 25 bytes compared to Bellare and Rogaway'’s rdefhatel's method
encrypted 61 (b+y)-bit block$) < y < b, in the time it took Camellia with padding
to encrypt 100 blocks. Elastic Camellia is more efficienntRatel’s method for block
sizes up to 21 bytes and 23 bytes, respectively, for the twexa
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Fig. 10.Normalized # of Blocks Encrypted by Elastic Camellia in Uiine (Regular Camellia
=100)



5.5 Elastic MISTY

MISTY1 is a 64-bit block cipher structured as a Feistel nekweith an additional
function, called the FL function (not to be confused with Eiefunction from Camel-
lia), applied once per cycle. While the number of cycles isfi@d, four cycles are
recommended [23] and is the number upon which we base theenwfibounds in the
elastic version. MISTY1 does not contain whitening stepsyale from MISTY1 is
used as the round function in the elastic version, showngareéi 11. Creating the elas-
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Fig. 11.Round Function for Elastic MISTY1

tic version involved adding the whitening steps, the théahand final key-dependent
permutations and the swapping of bits after each cycle. Blteeid processed as 32-bit
words. We alternate the starting position for the swap betwike left and right halves
of the round function’s output, with the first swap step starivith the leftmost bit of
the left half.

200

150 -

100

50 +

# of blocks encrypted in
unit time t

0

9 10 11 12 13 14 15 16
block size in bytes

— Fixed Length -+-Case 1 —=—Case 2 ‘

Fig. 12. Normalized # of Blocks Encrypted by Elastic MISTY1 in Unitiié (Regular MISTY1
=100)



We implemented elastic versions, with and without the kepethdent permutations,
and the regular version of MISTY1. The performance resuttsshown in Figure 12.
Case 1 refers to the version with the key-dependent perionsaaind Case 2 refers to
the version without the key-dependent permutations. Tastielversions increased the
number of operations beyond the 64-bit version of MISTY1 tluthe whitening, the
swap steps and, in one version, the key-dependent perongaiihe elastic version of
MISTY1 provides a performance benefit compared to paddinglfucks that are one
to four bytes over the 8-byte block size that MISTY1 proces3ée benefit increases
significantly in Case 2 compared to Case 1 for block sizesdtwatip to one additional
byte over MISTY1's 8-byte block size. The performance berfedim removing the
initial and final key permutations decreases as the bloak isizareases because they
represent an increasingly smaller portion of the operatasimore rounds are added.
In both cases, the elastic version provides a performaneefidevhen compared to
Bellare and Rogaway’s method based on a lower bound of twieevbrk of padding
for their method. Patel's method encrypted ®1+ y)-bit blocks,0 < y < b, in the
time it took MISTY1 with padding to encrypt 100 blocks usingdaling. Both cases of
the elastic version of MISTY1 encrypt at a faster rate thaielRamethod for all block
sizes between 8 and 16 bytes.

5.6 Elastic RC6

RC6 is an example of a block cipher other than a Feistel né&twbbse round function
processes only a segment of the data block. RC6 divides dit 8&ta block into four
32-bit words, which we will refer to as ABCD. A and C are upahlg the round func-
tion based on the values of B and D. At the end of the round, AGihdve expanded-
key bits added to them then all the words are rotated to thetefword. B and D have
expanded-key bits added to them before the first round, andi&Cahave expanded-key
bits added to them after the last round. The addition of edpdrkey bits to a word is
a type of whitening. Since this "whitening” does not coveg #ntire data block and
is not the same as performing whitening by XORing data withaexied-key bits, we
view this addition as a step in the round function and not ataning that should be ex-
panded to all b+y bits when forming the elastic version. Ausgge of four applications
of the round function of RC6 is a cycle and serves as the roundtion in the elastic
version as shown in Figure 13. Initial and end-of-round eiihg, and the initial and
final key-dependent permutations are also added to creatddhtic version. The num-
ber of cycles in RC6 for 128-bit blocks is 5 (20 applicatioh&Rk€6’s round function).
The number of rounds in the elastic version ranges from 5 whérto 10 when y=103
(20 to 40 applications of RC6's round function). The swa stas implemented with
the starting position rotating to the right one word eachwvith the first swap step
starting with the leftmost bit of th&-bit portion.

The elastic version provides a performance benefit comganeddding for blocks
of under 21 bytes in length. The results shown in Figure 14ndJa lower bound of
twice the work of padding for Bellare and Rogaway’s methbd dlastic version of RC6
provides a performance benefit for blocks under 30 bytesnigttewhen compared to
Bellare and Rogaway’s method. Patel’s method encrypteddsk®(b + y)-bit blocks,
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0 < y < b, in the time it took RC6 with padding to encrypt 100 blocksagtic RC6 is
more efficient than Patel's method for block sizes up to 2@ayt
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5.7 Randonmess Test Results

We applied statistical tests used by NIST on the AES canel&tatboth the original and
elastic versions of the four ciphers. While these tests d@muve a cipher is secure,
they do assist in determining if there are any obvious wesge®with the cipher. There
are sixteen tests performed on eight sets of data for eabbrciRefer to NIST's special
publication 800-22 [26] for a description of the tests and][fdr a description of the
data sets. We tested evefly+ y)-bit block size wherey is an integral o8 and0 <

y << b. We also tested two block sizes that were not an integral murabbytes.
These were 129-bit and 171-bit blocks for the elastic vesiof AES, Camellia and
RC6, and 69-bit and 75-bit blocks for the elastic version ¢6MY1. We used 128-bit
keys in all of our tests. Each data set required either aialsieét of random plaintexts



or random keys. We created these random bit strings by éixtgalsits from files of
random bits available from random.org [30]. Based on theltgseach of our four
elastic block cipher examples show no signs of any stadistieakness compared to the
original ciphers. In the AES competition, finalists passadhetest at a rate &6.33%

or higher [25]. The elastic versions of the ciphers also maeb@eeded this rate. For
the elastic versions of the ciphers, the percentage of smmgassing each test was
consistent across all block sizes and data sets. The dktaderesults are available in
[10].

5.8 Key Schedules

The key schedule for an elastic version of a block ciphertngsherate more expanded-
key bits than the key schedule of the original block cipheddifional key bits are
needed due to the expansion or addition of whitening sté@sivo key-dependent
mixing steps and the increase in the number of rounds. Irtipea@very block cipher
includes its own key schedule, which is typically designéith & focus on performance
and little concern about the lack of pseudorandomness iexpanded-key bits. This
tendency in key schedule design results in key scheduldslmating to attacks (due to
the ease in which additional key bits can be determined ofe® are found and by in-
creasing the opportunity for related key attacks [9]) andde applications supporting
multiple block ciphers to support a separate key scheduksich cipher. When creating
elastic block ciphers, we wanted to avoid these disadvastafexisting key schedules.
Furthermore, unlike the encryption algorithms of blockhaps which follow a some-
what generic structure by being a series of rounds, key stbgdary extensively in
their structures. This makes it unlikely a general methadlmdevised for modifying
the key schedules to generate additional bits as needed baghe block size. There-
fore, we required a generic key schedule that is indeperafaiie block cipher and
that generates as many pseudorandom expanded-key bitsfeita pseudorandom) as
needed while adhering to a performance bound. Existingustreiphers are potential
candidates for satisfying these requirements. We used R@Heakey schedule in the
elastic block ciphers to illustrate the concept of a genlegicschedule satisfying these
requirements. The first 512 bytes of RC4’s output are digzhdiie to a slight statisti-
cal weakness in the initial bytes output from RC4 [22]. A digantage of a generic key
schedule is that if a weakness is discovered in the key stdatiwill impact any block
cipher using the key schedule. However, having one key sdbelbcreases the likeli-
ness of overlooked design flaws and implementation errorpened to when multiple
key schedules are required.

In contrast to RC4 and any other stream cipher used in peadlie key schedules
of AES and Camellia generate expanded keys that can easilijsbeguished from
random bits. In AES, an expanded-key byte is a combinatitwobther expanded-key
bytes. When designing AES, Daemen and Rijmen noted the bef@$eudorandom
key bits, but stated that they took a "less ambitious” apphnofacused on avoiding
symmetry between rounds and attacks due to related keyasmetall other attacks are
supposed to be prevented by the rounds of the block ciptidi, page 77. In Camellia,
there is a large overlap amongst the round keys. In MISTYd sdime expanded key
bits are used in multiple locations within the block cipheiRCS, it is more difficult to



determine key bits from other expanded-key bits compar@dtd and Camellia. Each
original key byte is altered with an addition and a rotatibhe resulting byte is then
added to a previous expanded-key byte and a constant t@ ¢heahext expanded-key
byte.

We compared the performance of RC4 when generating enoygnded key bits
to encrypt ab-bit block to the performance of the four ciphers’ key scHeduWhen
encrypting b bits, the number of expanded-key bits in artielbkock cipher is 32 more
than the number in the original cipher (due to the key-depahdermutations) plus
the number of bits needed for any initial and/or end-of-gbwhitening that was not
in the original cipher. Recall that whitening steps wereeatiethen forming the elastic
versions of Camellia and RC6; whereas, AES already cordaitetening and only
required that its whitening steps be expanded to cover allits.

Cipher (Block Sizg  # of # of
in Bytes | Rounds |Expanded-Key

(or Cycles Bytes
AES 16 10 180
AES 17 11 208
AES 32 20 676
Camellig 16 9 340
Camellig 17 10 383
Camellig 32 18 980
MISTY1 8 4 196
MISTY1 9 5 246
MISTY1 16 8 444
RC6 16 20 516
RC6 17 21 562
RC6 32 40 1652

Table 1. Number of Expanded-Key Bytes Needed

When measuring the performance of the original key schegdule removed any
statements from the original ciphers’ key schedules tha¢weesent only for the sup-
port of key sizes other than 128 bits in order to avoid exegutinnecessary tests in
conditional statements. Specifically, we removed code fAde%’s key schedule that
was for the support of 192 and 256-bit keys. We also compaael elastic block ci-
pher’s key expansion rate to that of AES’s original key sechedbecause in practice
AES’s key expansion rate is presently acceptedtLdori=1,2,3,4, correspond to the
key expansion rate for the fixed-length versions of AES, Ghan@éISTY1 and RCS6,
respectively. Table 1 shows the number of expanded-keyshyeded in the elastic
block ciphers for block sizes @f b + 8 and2b bits. The key-expansion rates for the
elastic versions compared to that of the original versiorssaown in Table 2. Recall
that Bellare and Rogaway’s method requires 4 applicatiod$atel’s method requires
2 applications of the original block cipher.s key schedtle rates for the key schedule
of the elastic block ciphers in relation to the rates for Bedland Rogaway’s method



and Patel’s method can be estimated by dividing the valuesliomn 3 of Table 2 by 4
and 2, respectively.

Elastic |Block|Rate vs Origingl Rate vs l
Cipher | Size| Cipher's Rate|AES’s Rat
AES 16 5.94t, 5.94t1
Camellig 16 43.54t5 6.89t1
MISTY1| 8 119.24t3 6.09t1
RC6 | 16 6.29t4 7.84t1

Table 2. Key Expansion Rates

We note that Camellia and MISTY1 have the fastest key scleeoluthe four ci-
phers and also requires the most expanded-key bits, thuliingsin RC4 appearing
to be significantly slower. However, Camellia’'s and MISTY¥ key schedules have the
least amount of randomness of the four ciphers due to reesimgnded-key bits in mul-
tiple locations. Overall, the RC4-based key expansion uséuk elastic ciphers when
encryptingb-bit blocks is just under six to just under eight times the @t AES’s key
schedule.

6 Conclusions and Future Work

We have proven that the elastic version of a block cipherdarseagainst any practical
attack that attempts to recover key or expanded-key biteibriginal cipher is secure
against the attack. This eliminates the need to analyzeasti@lversion of a block
cipher against these types of attacks if the original cighsecure against such attacks.
Our result follows from the network structure used in cregilastic block ciphers and
the fact that the round function (cycle) of the original fidetigth block cipher is used
as a black box when forming its elastic version. We note thaitenreduction-based
proofs of security are a cornerstone of cryptographic aisl\they are typical when
complete components are used as sub-components in a biegigndWe are not aware
of use of such techniques in the case of concrete block cigdegns.

The constructions of the elastic versions of AES, CameéMiigTY1 and RC6 illus-
trate how to apply the method for creating variable-lendtitk ciphers. By applying
the statistical tests used in NIST's AES competition, wectate that there is no ob-
vious flaw in the design because the level of randomness aipiertext produced by
each of the elastic versions is consistent with the levalired in the AES competition.
The workload of the elastic version of a cipher is proporida the block size, with the
number of rounds increasing as the block size increasespditiermance benefit from
using the elastic version of a block cipher depends on thggradi cipher and the exact
implementation. The percent of overhead involved in addiregswap steps, whiten-
ing and two key-dependent permutations varies based oruthéer of operations and
exact implementation of the original cipher.

Unlike the encryption and decryption functions of blockiéps which can be viewed
as a series of rounds, there is no general structure to keylatds in practice. In order



to avoid modifying key schedules on an individual basis wbreating elastic versions
of block ciphers, we propose the use of a generic key schéldatevill output as many
expanded key bits as needed regardless of the specific bjgtoérand block size, and
to increase the randomness of the expanded key bits compmatkd expanded keys
generated by existing block ciphers’ key schedules. Wheatirg the four instantia-
tions of elastic block ciphers, we used the stream cipher RGHustrate the concept
of a generic key schedule. Future work includes the creati@ngeneric key schedule
for use in elastic block ciphers with improved performance.
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