Decentralized Access Control in Distributed File
Systems

STEFAN MILTCHEV and JONATHAN M. SMITH
University of Pennsylvania

and

VASSILIS PREVELAKIS

Drexel University

and

ANGELOS KEROMYTIS

Columbia University

and

SOTIRIS IOANNIDIS

Institute of Computer Science (ICS), Foundation for Research and Technology,
Hellas (FORTH)

The Internet enables global sharing of data across organizational boundaries. Distributed file
systems facilitate data sharing in the form of remote file access. However, traditional access
control mechanisms used in distributed file systems are intended for machines under common
administrative control, and rely on maintaining a centralized database of user identities. They
fail to scale to a large user base distributed across multiple organizations. We provide a survey
of decentralized access control mechanisms in distributed file systems intended for large scale, in
both administrative domains and users. We identify essential properties of such access control
mechanisms. We analyze both popular production and experimental distributed file systems in
the context of our survey.

Categories and Subject Descriptors: D.4®grating System$: Security and Protection; K.6.3/anagement
of Computing and Information Systemg: Security and Protection

General Terms: Management, Security
Additional Key Words and Phrases: Authentication, authorization, certificates, credentials, de-
centralized access control, networked file systems, trust management

This work was supported by DARPA and NSF under Contracts 639®-1-0512-MOD P0001, CCR-TC-

0208972, and CISE-EIA-02-02063.

Corresponding author’s address: Stefan Miltchev, Depamtrof Computer & Information Science, University
of Pennsylvania, Levine Hall, 3330 Walnut Street, Philptil, PA, 19104-6389;

email: miltchev@dsl.cis.upenn.edu.

Permission to make digital/hard copy of all or part of thistenal without fee for personal or classroom use
provided that the copies are not made or distributed forfppoiommercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appead aotice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on seryversto redistribute to lists requires prior specific
permission and/or a fee.

© 20YY ACM 0000-0000/20Y'Y/0000-0001 $5.00

ACM Computing Surveys, Vol. V, No. N, Month 20YY, Pages 1-32.

2 . Stefan Miltchev et al.

g File Server A .
User DB A & E E File server B

Domain A Domain B

g Bob

User DB B

Fig. 1. File sharing across distinct administrative dorsaiiach administrative domain keeps track of its users
in a user account database. Alice cannot grant Bob accedsdwfi file server A because Bob is not listed in
domain A's user database.

1. INTRODUCTION

The Internet offers the possibility of global data sharimgl @ollaboration. One class of
mechanisms commonly used by organizations is shared de¢asacia file sharing, using
remote file access in distributed/networked filesystemswéwer, most existing systems
do not offer secure, scalable and dynamic cooperat@ass organizational boundaries
When users in distinct administrative domains try to shdas,feither inefficient and cum-
bersome exchange of information or compromises in secra#ylt.

For example, consider users Alice and Bob, employees of tfigreint companies, who
wish to collaborate on a project (see Figure 1). Alice and Bale at least four approaches
to sharing project files:

(1) ask their system administrators to create accounts in theiown administrative
domain for each remote user This has several problems. First, it imposes an addi-
tional administrative burden, which is not scalable witbreased users and projects.
Often the latency of opening an account for a new user is @mpable. Second, cre-
ating an account for an external user raises escalation\ilfege issues. Ideally the
user should only be able to use the account for the intendgabpe;.e., working on
the project files. However, an account could enable an extteiser to snoop, search
for local system vulnerabilities, use up CPU cycles, diskcgpetc. Because of these
problems, company policy typically limits or prohibits tieeeation of accounts for
external users.

(2) share account passwords This approach has serious security implications as it
causes lack of accountability and enables escalation afqmes.

(3) avoid employing an access control mechanism and put the filemn the web or
anonymous ftp. This is an unacceptable solution if the content of the fiteatiall
confidential or sensitive.

(4) exchange files via e-mail or another out of band mechanisnThis is an inefficient
way of working as it does not take advantage of any of the saifiety and conveniences
that a file system has to offer. In the event that the e-madisant in the clear, there
are obvious security concerns. While still not as converasra file system, sites like
www.filesdirect.com act as a broker between users in diftexdministrative domains

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems : 3

File 1 File 2
User X | read | read, write
UserY read

Fig. 2. An Access Control Matrix

and offer better security than unencrypted e-mail. Howestech solutions require
trust to be placed in a third party.

While more approaches can be imagined, the four listedii#ites the challenges of file
sharing across organizational boundaries. This survayees how access-control mech-
anisms of different distributed file systems handle file stypacross distinct administrative
domains. This survey is restricted to the topi@otess contrah distributed file systems,
and largely ignores other design features and tradeoftemxvhere they impact access
control. It is clear that well engineered systems must pntibn tomanydiverse goals,
and the system designer must decide how to weigh differezd aKk interest during the
design phase. As a result, a system that evaluates well regr@ppear weaker when ex-
amined along other important axes. The survey should bepirted for what it is: an
attempt to understand how the choices made by differenésydesigners affect the abil-
ity of end users to share information, and control the slganiithat information, using a
distributed file system.

The rest of this survey is organized as follows. We estalblishmework for comparison
in Section 2. Section 3 presents a survey of distributed yiesns in our framework. We
discuss the results in Section 4 and conclude with Section 5.

2. COMPARISON FRAMEWORK

We survey selected distributed file systems to determinie saéability for file sharing
across organizational boundaries. To classify the su/eystems we use the following
necessary features as axes of a comparison framework.

(1) Authentication. Authentication determines and verifies the identity of & us¢éhe
systemj.e., providing an answer to the question: “Who is the user?” Traal authenti-
cation mechanisms rely on maintaining a centralized databéuser identities, making it
difficult to authenticate users in a different administratilomain as depicted in Figure 1.
Systems aiming to provide decentralized access controlatarly on local identification
and must employ a decentralized authentication mechamisnely on indirect authenti-
cation.

(2) Authorization. Authorization determines the access rights of a userit provides
an answer to the question: “Is user X allowed to access resd®?” The common way of
performing authorization is to look up a user’s rights in aness control matrix [Lampson
1971],e.9.,such as the one depicted in Figure 2. The access controbmstuisually
implemented either in the form of access control lists (A3scapabilities.

ACLs correspond to columns of the access control matrix. AL As associated with
every resourcd,e., every object in the file system, and lists all users authdrizeaccess
the object along with their access rights. The identity ocd@rumust be known before access
rights can be looked up in the ACL. Thus, authorization dejgesn prior authentication,

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

4 . Stefan Miltchev et al.

Directory /home/you
Inode 123
Foo 123
T Owner/group ID Block
Bar 456 OCKS...
Permissions
Data
File/directory/etc
Data block #s Data
Data

Fig. 3. Simplified structure of the UNIX file system (from [lraer and Venema 2004)).

Entire disk

label partition partition partition

UNIX file system

zone zone zone zone zone

File system zone

Super block | Inode bitmap | Data bitmap | Inode blocks | Data blocks

Fig. 4. On-disk layout of a typical UNIX file system (from [fFaer and Venema 2004]).

i.e., systems that rely on ACLs for authorization must use a dealzgd authentication
mechanism to work across administrative boundaries.

Capabilities [Dennis and Van Horn 1966; Levy 1984] correspto rows of the access
control matrix. A capability is an unforgeable token thatritifies one or more resources
and the access rights granted to the holder of the capalitsser that possesses a capa-
bility can access the resources listed in the capabilith tie specified rights. In contrast
to ACLs, capabilities do not require explicit authentioati Capabilities can be transferred
among users, which makes them suitable for authorizatiomsamrganizational bound-
aries. Because capabilities explicitly list privilege®oa resource granted to the holder,
they naturally support the property lefast privilege an intuitively desirable goal in a sys-
tem design. However, because possession of a capabiliggsaccess rights, capabilities
must be carefully protected from theft, which in a distrémlisystem requires that they be
transferred over secure and authenticated channels [hanenet al. 1986]. In addition,
capabilities may make it more difficult to perform later airdj or forensic analysis. Es-
pecially for large-scale decentralized systems whereatye themselves or the meaning of
the information contained in the capabilities is spreadsgiseveral system components,
collecting all the necessary information involves consadiée effort.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems : 5

= Q@ =

| |
Admin I Alice I Bob
| |
1 1
Admin -> Alice Admin > Alice
Grant: RWX Grant: RWX
1* Certificate Alice -> Bob
Grant: R
2nd Certificate

Fig. 5. Delegation of privileges, from an administrator tiicd, and from Alice to Bob. The administrator grants
Alice full access by issuing her the first certificate. Ali@ndhen delegate read access to Bob by issuing him the
second certificate. To be granted access Bob must preseriifi@ate chain consisting of both certificates.

(3) Granularity. Granularity is the extent to which a system contains disceeim-
ponents of ever-smaller sizé=.g. UNIX file systems are organized within a single tree
structure underneath one root directory, internal nodetheftree recursively represent
sub-directories of the root, and leaves of the tree can Iperefiles or directories. At a
lower layer of abstraction, the same file system consista@dés and data blocks (Fig-
ure 3), and yet another layer lower one can find zones, |adedspartitions (Figure 4).

A distributed file system must strike a balance between mehe coarse-grained and ex-
tremely fine-grained authorization. Some systems work aeaser granularity of higher-
level container object®.g.,directories or volumes. While coarser granularity deaeas
the amount of access control meta-data and the number ofsacoatrol decisions re-
quired, it can make sharing of individual files cumbersomrai&ers. In turn, systems that
employ only fine-granularity access control can becomecdiffio managee.qg. specify-
ing block-level access control when only file-level conimtlesired. Ideally, the system
should allow a flexible level of access control granularity.

(4) Autonomous delegationWe evaluate the suitability of file systems for file sharing
across organizational boundaries with minimal admintistesoverhead. A user should be
able to delegate access rights to another user, subjecnimiatrative policy. Figure 5
illustrates delegation using authorization certificatéée identify the following require-
ments for delegation:

—Autonomy. To facilitate ease of file sharing and lower administrativerbead, the
delegation mechanism should be user-to-userno administrator involvement should
be required. If delegation is not allowed by default, the adsirator will need to be
involved in each permission change, becoming a significatttdmeck in large-scale
systems. Of course, this need not be a binary condition:¥amg@le, unlimited delega-
tion may be allowed between users of the same organizatinexplicit administrator
approval may be required to delegate to external entities.

—Accountability. It should always be possible to determiwvbo delegated access to a
particular user, at least as part of an auditing (forengics}ess.

—Organizational independence.A user should be able to delegate his access rights to

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

6 . Stefan Miltchev et al.

a user in a different administrative domain, if this is alemhby organizational policy.
Furthermore, this should be done while preserving accailitya

—Low Latency. A user should be able to access a resource as soon after atitelegs
possible.

—Transitivity. Delegation chaining should be possibdeg.,if Alice delegates access to
Bob, Bob should be able to further delegate to Charlie (orgat chain from Alice to
Charlie). A mechanism to restrict the right to further delesgand thus limit the length
of the delegation chain is also desirable. This allows tletesy to scale arbitrarily, by
pushing administrative responsibility to end users.

—Fine granularity. A user should be able to delegate a subset of his access, egint#
Alice has read and write access to a file, she should be abkdegate read only access
to Bob.

(5) Revocation. While the ability to grant access to users in different adstiative
domains is very desirable, a distributed file system shdstalzave provisions for revoking
access. Revocation in systems that base authorization s &@onceptually simpler: a
user’s access to an object can be revoked by updating thetsb}CL to remove access.
Capability based systems must rely on timeouts encodectinapabilities or centralized
revocation mechanisme,g.,revocation lists or trusted on-line agents that deternfiae i
capability is still valid. An in-depth evaluation of revdian techniques for a capability
based system is presented in [Keromytis 2001; Keromytissanith 2007]. There is also
a fundamental tension between the requirement for revmtatid caching. Once a file has
been cached by a temporarily trusted client, the client imédfbow future accesses even
after access to the file has been revoked by the server. The tession applies also to
auditing as the client might allow access to the cached cafowt informing the server.

We survey a number of distributed file systems in this congparframework in the next
section, Section 3 and summarize the results in Table | ahlk Tein Section 4.

3. DISTRIBUTED FILE SYSTEMS

It is useful to divide systems inforoductionandexperimentglwith the split centered on
the scale and persistence of deployment, use and experi@rreasonable rule of thumb
to designate a system as production would be one which hasd feigle-spread acceptance
with (at least) many thousands of users.

3.1 Production Systems

The initial analysis is an examination of how the accessrobntechanisms gbroduction
systems handle file sharing across administrative bougglarhe need to be robust in the
face of mission-critical use often forces these systemsetodmservative in their design
choices. Thus, fundamental considerations like perfoonaaportability, robustness are
likely to take precedence over the features that are thesfo€this paper. We anticipate
that readers of this survey will have used at least some dfléhgystems presented in this
section. Thus, our review of production systems is biaseditds the user experience. We
review the systems in chronological order.

3.1.1 NFS. The Network File System (NFS) [Sandberg et al. 1985] dewvasdagt Sun
Microsystems remains one of the most widely used netwadched file systems. Security
in NFS appears to have been an afterthought, and global filenghwas not part of the

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems : 7

Client Server

System calls System calls

L

f VNODE/VFS :ﬁ F VNODE/VFS

PC Filesystem 4.2 Filesystem NES Filesystem Server Routines ﬂ

L 1ir

J L
H @ RPC/XDR RPC/XDR
] N
L

"

0

‘ Network

Fig. 6. NFS architecture (from [Sandberg et al. 1985])

original design. However we choose to review NFS in our fraoré due to its familiarity
and widespread use; it makes an excellent baseline.

The NFS protocol uses the Sun Remote Procedure Call (RPON[L984] mechanism
as illustrated in Figure 6. The RPC protocol allows sevesdés of user authentication,
referred to asauthentication flavors The original NFS release used weak UNIX-style
authentication (user ID and group ID) allowing a user’s ergls to be forged (see Fig-
ure 7). Support for Diffie-Hellman and Kerberos version heaatication flavors was added
later, but UNIX style authentication (AUTI$SYS) was the only mandatory flavor, and thus
the most commonly implemented. Host authentication is wisak, because it relies on
spoofable IP addresses or DNS names.

Authorization in NFS follows UNIX semantics [Thompson 197Bhus, access to every
file is controlled by the standard UNIX mode bits associatét the file. The permission
bits can be viewed as a simple ACL, that lists three prinsipdie owner of the file, the
group associated with the file, and the group consistingl otlaér users. Thus, we refer to
UNIX mode bits as UNIX ACLs throughout the rest of the dis¢éass The rights that can
be given to each principal are Read, Write and Execute. Bafsers can access a remote
file, privileged administrators must mount the file systeneretithe remote file is located.
This is done through the mount protocol [Callaghan et al5]138rough which file system
names are mapped to directory identifiers (handles). Theteeserver’'s administrator
controls access by listing exported file systems and hdstsed to mount them. A handle
for the top-level directory of an exported file system will pmvided to hosts that are
allowed to mount that file system. Once that handle is acquime further use of the
mount protocol is needed. This is another weakness of the $¢€8rity model: since
directory handles do not change often (or at all), revocadiomount privileges cannot be
assured.

While initially it appears that the object access grantjan NFS is at the file level, the

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

8 . Stefan Miltchev et al.

! NFS Server, trusts A, B

28 &

Client A Client B Client C

Eve

Fig. 7. NFS trust model when using the AUTSI S authentication flavor (adopted from [Callaghan 2000Dhe
NFS server trusts client hosts A and B. Access control isreafbby inspecting the source IP address of RPC
requests. User Bob can legitimately access his files aftbeaticating to client A. However, a privileged user on
client B (Root) can easily assume the credential of Bob wittkmowledge of his password. Finally, user Eve on
client C can spoof the IP address of client A. Thus, RPC raqudesm C appear to come from A, and client C is
trusted, though it imotin the server’s access list!

-
e

: 00
=

Root

NEFS Client NFS Server

Fig. 8. NFS access control granularity with the (remote) niquotocol. The server exports a file systes(,
/home) to the client. An administrator on the client mouhts ¢xported file systene(g.,under /mnt). Because
the server trusts the client to enforce file-access righigct-access granularity in NFS is at the file system level.

server actually trusts the client workstation that moumt&gported file system to check
file-access rights (see Figures 7 and 8). This security pmohwas addressed with the
introduction of the ACCESS procedure in NFSv3. Because mmgthost authentication

mechanism is used, security is based merely on matchingtbeDNS name of the client

workstation. Because a file cannot be shared without a fileesybeing exported on the
server and mounted on the client, object-access granularMFS is at the file system

level. Once an exported file system has been mounted, thepasezives object access
granularity to be at the individual file level.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems : 9

Significant administrative involvement is required for &lito share a file with Bob if
he resides in a different administrative domain. The adstiaior of Alice’s server must
trust Bob’s server and export a part of the local file systent.torhe administrator of
Bob’s workstation must trust Alice’s server and mount thpaked file system. Finally,
since access control is performed using UNIX permissias) Biob must obtain an account
in Alice’s domain to have a meaningful UNIX user identifierl(t). Thus, autonomous
delegation between users in different administrative domianotsupported in NFS.

Revocation in NFS is conceptually simple. A server admiatst can edit the export
list and remove directories or hosts. Administrators cap disable user accounts or edit
group definitions in the centrally administered user datab&inally, access to individual
files or directories can be revoked by changing the UNIX biskseassociated with them.

In summary, authentication and authorization in early i@ of NFS were designed
assuming a tightly administered doma@d., a single campus LAN or extended LAN),
making it unsuitable for global file sharing. This view is eefled in some earlier litera-
ture. The creators of the Athena system [Rosenstein et &8;I9yer 1988], which relies
on NFS and Kerberos, recognize some of the barriers to acoes®l scalability, and in-
dicate the numerous ACLs in the system were difficult to adsten Further, additional
intermediate levels of access between administrators aads were desirable. The au-
thors of the Bones system [J. Schonwalder and H. Langéed993] point out similar
problems.

3.1.2 AFS. The Andrew file system (AFS) [Howard et al. 1988; Howard 198&tya-
narayanan 1989; 1990; 1992] was developed at Carnegie Melhiversity as a secure
distributed file system with centralized user authenticatiThe earliest version of AFS
was developed concurrently and independently of NFS, butdsign was strongly influ-
enced by the need to scale to many thousands of users. Thisfarescalability drove
many aspects of its design, especially those pertainingtibpnance and security. AFS
introduced several improvements in access control meshesg.g.,richer ACLs and user
editable groups. The resulting reduced administrativeteeead and improved scalability
of access control management, though limited to the localimidtrative domain, make
AFS very relevant to this survey.

Authentication in early versions of AFS was based on a vaoithe Needham-Schroeder
authentication protocol [Needham and Schroeder 1978]rdusmild only share files with
other users in the sanell (i.e., AFS administrative domain). Cross-cell authentication
required users to have an account in each foreign cell wihesewished to access files.
Later versions of AFS have adopted the Kerberos autheiaticggstem [Miller et al. 1987]
for purposes of standardization.

Kerberos version 5 [Kohl and Neuman 1993; Linn 1996] is a redized authentica-
tion system based on symmetric-key cryptography. Adnratiste domains in Kerberos
are called realms. An administrator maintains the userbdatfor each realm. A Key
Distribution Center (KDC) and Ticket Granting Service (T\&Bant users tickets that al-
low them to access services on specific hosts in a realm. Bed&erberos relies on a
trusted third party and symmetric key cryptography, adogsservices across administra-
tive boundaries is not straightforward. Administratorgénto set up trust relationships and
exchange keys for users to access services in a differdnt.rg¢hile cross-realm authen-
tication has been studied [Trostle et al. 2001; WesterlumttiZanielsson 2001], Kerberos
does not currently allow for autonomous delegation betwesenms in different administra-

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

10 . Stefan Miltchev et al.

tive domains. A more extensive evaluation of Kerberos faretiralized access control
scenarios is presented in [Keromytis and Smith 2007].

An AFS cell defined along administrative boundaries comesls to a Kerberos realm.
Cross-realm authentication allows users to share infaamaetween their respective cells,
without possessing accounts in each cell. However, crealsarauthentication requires
administrator involvement, because a local administratast configure in advance which
remote cells should be available to users in the local ceius] AFS does not support
autonomous delegation between users in different admatiist domains.

Authorizationin AFS is based on ACLs associated with doges rather than individual
files. Thus, object access granularity is at the directorglleThe authors argue that the
reduction in state and conceptual simplicity coming fronoarser granularity facilitate
scalability. AFS ACLs specify the operations that prin¢gq@asers or groups) can perform
on directories, namely:

—read any file in the directory

—write any file in the directory

—list directory contents

—insert new files in the directory

—delete files from the directory

—Ilock files in the directory

—administer the directory.e., modify the ACL

If there is no ACL entry allowing a particular operation, ass is denied. AFS ACLs can
also specifynegative rightsi.e.,explicitly state that a user isotallowed to perform one or
more of the operations listed above. When a request for acsevaluated, the entries in
the normal rights section of the ACL are examined first. Angniesion associated with
the user on the negative rights section of the ACL are thetractied. Thus, in the case
of conflicts, negative rights override positive rights. §hechanism facilitates rapid and
selective revocatiorg.g.,in cases where a user is a direct or indirect member of groups
with access to the object. Using negative rights, the usebeaexplicitly denied access to
the object while the user’s group membership informatidoeisg updated and propagated,
a process that may sometimes take significant time in a lastrgbdited system. AFS also
retains the standard UNIX mode bits on files; however, theseat used to enforce access
on the server and only have local significance on the userkstation.

Group names are used in AFS ACLs to identify lists of user$ \p#rticular access
permissions. Users can create and maintain their own pimregroups - as opposed to
UNIX where only system administrators can managfe/group Nesting of protection
groups is not allowed,e., a protection group cannot be a member of another protection
group. While user-configurable groups improve the ease @fsfilaring between users
in the same cell they do not address the problem of grantingsacto users in different
administrative domains.

More recent versions of AFS allow users external to the cdircell to appear on an
ACL, e.g.,an ACL on a server that is in the “cs.cmu.edu” cell can haveraryaiving
“bob@cs.ucla.edu” rights on a directory. However, configgithe respective cells to sup-
port cross-realm authentication requires administrataslivement.

Revocation in AFS is conceptually simple. Because userwuadsaare centrally man-
aged, any account can easily be disabled. Any user’'s acoesglirectory can be re-

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems : 11

voked by editing the corresponding ACL. Using groups sifiggirevocation considerably
- whenever there is a change of membership of a group, thegehseds only to be made
in the definition of the group and not on each ACL concernecddition, negative rights

allow for rapid revocation if resolving and updating the isgroup membership is ex-

pected to take significant time.

The Coda file system [Satyanarayanan et al. 1990; KistlerSatganarayanan 1991;
Satyanarayanan 2002] is a descendant of AFS developed hgtigdal of being more
resilient to failures. Coda provides high availabilitydhgh the use of two distinct but
complementary mechanisnsgrver replicatioranddisconnected operatiotdowever, be-
cause the access control model of Coda is based largely oniX&&es similar limitations
in regard to supporting collaboration between users irecgffit administrative domains.

3.1.3 CIFS. The Common Internet File System (CIFS) [Leach and Perry 1986A
CIFS Technical Work Group 2002; Hertel 2003] is the distrdtalifile system native to
the Microsoft Windows family of operating systems, and, doeéts ubiquitous nature,
of particular interest to this survey. CIFS is not limitedth@® Windows platform as the
Samba project [Samba project] offers open source implesiens of a server and client
for UNIX based platforms. CIFS is based on the Server MesBégek (SMB) protocol
[Microsoft Corporation 1996] originally developed at IBM the mid-1980s [IBM Corp.
1984]. In CIFS every server offers a set of resources (dirgd¢tee, named pipe, printer)
to clients over the network. Whenever a resource is madésai(shared) via SMB it is
given a share name. Before a user on a client can access alshamust authenticate to
the server holding the corresponding resource.

CIFS permits a number of different authentication methddiee SMB protocol defines
two security levels: share-level and user-level.

Share-level mode is a form of SMB authentication from thesdafyearly corporate
LANs when security was not considered a top priority and P€rafing systemse(g.,
DOS) did not support user-based authentication. Thuswmads, if used at all, are as-
signed to shares, not users, and are transmitted in plaiotex the network. Users that
know the name of a server and a share, along with the potgaisalword, can gain access
to that share. A single share may have multiple passworitgeesk each granting different
access rights.g.,one password may grant read-only and another read/writsacc

Share-level mode, while still used, is considered depeecand has been replaced with
user-level mode. A server employing user-level securitkesaise of username/password
pairs instead of sharename/password pairs. With userdecearity, a user must first au-
thenticate and get a valid user identifier (UID), and thersené the UID to gain access
to any shares. User-level security can be implemented aspigthora of authentication
protocols. It is possible to use anonymous or guest logiaintéxt passwords, several
challenge-response variations (LanManager (LM), NTLMLIMN2), and, in more recent
versions, Microsoft's implementation of Kerberos [Swiftaé 2002] or other mechanisms
based on the Generic Security Services APl (GSS-API) [Lia87] and the Simple and
Protected GSS-API Negotiation Mechanism (SPNEGO) [Baim Rinkas 1998]. The
GSS-API enables source-level portability of applicatitmdifferent environments by pro-
viding callers with a common interface to security servicea generic fashion. Thus,
security services can be supported with a range of differaderlying mechanisms and
technologies.

Authorizationin CIFS depends on the authentication lemdltae underlying file system

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

12 . Stefan Miltchev et al.

access control mechanism. In share-level mode authanizigtcombined with authentica-
tion: knowledge of a password grants access to a share. thavet mode the server could
in the best case use ACLs to control file accesses. Howevdrs Atay not be available
on all systems. Because CIFS was designed to work with DO&,@8d Windows sys-
tems, the underlying file system on the server could be FAT32AHPFS or NTFS. While
FAT has no concept of file ownership and only supports 6 atteilbits €.9.,the archive,
hidden, read-only, and system bits), NTFS offers supparAfoLs. Thus, depending on
version and the mechanisms supported by the underlying/gtems, authorization in CIFS
can exhibit varying degrees of sophistication: none (whemngmous access is allowed),
rudimentary (read-only or read-write access), or more fiéngd access control (when
ACLs are supported).

Object access granularity in CIFS is at the share level. lle &¥istem context a share is
a directory.

Like NFS, CIFS was designed for tightly administered domsaind thus does not sup-
port all the requirements for autonomous delegation aaasaEnizational boundaries. As
expected, anonymous and guest access or share-level pdssiyeonot provide account-
ability or fine granularity of delegation. If user-level seity with stronger authentication
is used, delegation of access control cannot take placewittdministrative intervention.
Administrators must either create accounts for users @eiisf the local domain, or deal
with establishing complex trust relationships betweefediint domains.

Revocation in CIFS can be accomplished in a number of wayari&hof a resource
can be turned off. Administrators can disable user accouhtipported, ACLs on any
files may be edited to revoke access at a finer level of gratwular

3.1.4 NFSv4.In an effort to address requirements mandated by the witkadpse
of the Internet, NFS version 4 [Shepler et al. 2003] propesasy improvements over
earlier versions. Stronger security and better suitgtititdeployment on the Internet are
the main design goals. A good overview of NFSv4 and a compasigth older versions
is presented in [Pawlowski et al. 2000]. We review the raiehanges in the context of
our framework.

NFS is based on, and relies on, the underlying security of @Q&=n Network Com-
puting) RPC [Srinivasan 1995], a remote procedure call &&ork developed by Sun Mi-
crosystems. NFSv4 mandates the use of strong RPC secuvitysfléor authentication
(older methodse.g.,AUTH_SYS can optionally still be supported). This is achieved by
adding a new security flavor based on GSS-API [Linn 1993a;W\293] called RPC-
SECGSS [Eisler et al. 1997]. RPCSEGSS encapsulates the GSS-API messaging tokens
and acts as a transport for conforming security flavors. plesof GSS-API implemen-
tations include:

—Kerberos version 5

—The Low Infrastructure Public Key (LIPKEY) system [Eis2000]. LIPKEY provides
an authentication model resembling the Secure Sockets (8§), that makes it more
suitable for use on the Internet. Authentication with LIPKE similar to using an
HTTPS server witthtaccessi.e., the server is authenticated with a public key certifi-
cate, while the clients authenticate using usernames assiyoads. Communication is
encrypted with a session key. This scheme relies on passvib@idg centrally man-
aged at the server.ge., a user cannot delegate access to another user not listed in th

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems : 13

centralized password database without administratohienoent. Thus, LIPKEY is not
suitable for autonomous delegation between users in diffadministrative domains.

—The Simple Public-Key GSS-API Mechanism (SPKM) [Adams @]99n contrast to
Kerberos, SPKM is based on an asymmetric-key infrastract®PKM allows both uni-
lateral and mutual authentication to be accomplished withioe use of secure times-
tamps. Thus, out of the existing GSS-API mechanisms, SPK¥ tath client and
server authentication using public keys is most suitabitegfobal file sharing across
administrative boundaries. However, the GSS-API decauplghentication and au-
thorization, thus limiting the support for autonomous dekon across administrative
domains (see discussion in Subsection 3.2.9).

The implementation of user and group identifiers also inftesrthe suitability of an
authentication mechanism for deployment across the latefBarlier NFS versions rep-
resented users and groups via 32 bit integers. This is wideifor global file sharing,
because user and group identifier assignments in diffedamirastrative domains are un-
likely to agree. NFSv4 uses character strings instead efjers to represent user and
group identifiers. Uniqueness can be guaranteed by usingraafwf user@domairor
group@domairand leveraging the global domain name registry.

Authorization in NFSv4 is enhanced over the UNIX mode bitsduby earlier versions
with the introduction of support for ACL attributes. NFSv4€RA support is similar to the
Windows NT model [Microsoft Corporation 2005; Swift et aD@®]. The NFSv4 ACL
attribute is an array of access control entries. Accesgabantries can be one of four
types: ALLOW, DENY, AUDIT or ALARM. The ability to explicity grant access to users
who are not the owner or in the group of a file improves flexipitiver standard UNIX
ACLs. The ability to explicitly deny access facilitates ihpevocation.

NFSv4 eliminates the mount protocol by using initialized fiandles like the public file
handle in WebNFS [Callaghan 1996a; 1996b] (A WebNFS clisasuhe special reserved
public filehandle as an initial filehandle rather than ushgymount protocol). File-access
rights as specified in ACLs are checked on the server, nofigrg.cThus, while the server
administrator still exports file systems rather than indiinl files, object access granularity
is at the file level.

While NFSv4 introduces changes that facilitate global filarsng (elimination of the
mount protocol, introduction of public file handles, a glbliser identifier name space), au-
tonomous delegation between users in different adminigtrdomains is still not possible
with the currently supported authentication mechanisnesb&ros requires administrator
involvement for establishing trust relationships betwesaims, while LIPKEY requires
administrator involvement in account creation for the hacal user.

Revocation mechanisms in NFSv4 remain mostly unchangethaolye editing ACLs.
Support for more feature-rich ACLs and negative rights inLAG@re the major changes
over previous versions.

3.2 Experimental Systems

Our review suggests that widely adopted production sysemm®volving from support-
ing file sharing within a single administrative domain to gaging file sharing between
different organizations with a pre-established admiatste relationship, often referred to
asfederation However, production systems fail to address the probleril@&haring

between distinct domains with no pre-existing administeatrust relationship. In the fol-

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

14 . Stefan Miltchev et al.

lowing section we examine a number of experimental systamdseaaluate their support
for autonomous ad-hoc sharing between users in differentrastrative domains. Exper-
imental systems are not as widely adopted as productioersgsand their maturity can
range from simple proof of conceptimplementations to pxates tested by a limited user
base within a university’s computer science departmentsTour review of the following
systems is based on what authors claim can be done, ratmeusiea experience, which
can put production systems at a disadvantage. We reviewxiherimental systems in
chronological order.

3.2.1 Truffles. Truffles [Reiher et al. 1993] was one of the early systemsc¢ogrize
and address the need for file sharing between users in diffatkninistrative domains.
Truffles was built on the replication services provided by Bicus file system [Guy et al.
1990] and added a mechanism for setting up secure file shaithgut administrator in-
tervention. Sharing was at the granularity of a voluime, a subset of a local file system.

Truffles used Privacy Enhanced Mail (TIS/PEM) [Linn 1993kenK 1993; Balenson
1993; Kaliski 1993] to authenticate users and provide argetansport channel. Users
were identified by public keys bound to X.500 distinguishadnes in X.509 certificates
[CCITT 1989]. Truffles authentication thus relied on a hiehgy of certification authorities
(CAs). This limited autonomous delegation, because users €ifferent administrative
domains still had to have a common root CA.

Authorization in Truffles relied on standard UNIX and Ficas@ss control mechanisms,
where each file has a standard UNIX ACL associated with it.

Truffles did not address revocation.

3.2.2 Bayou.Bayou [Terry et al. 1995; Petersen et al. 1996] was a replitateakly
consistent storage system designed for the mobile congpatimironment. To maximize
availability, users could read and write any availableiogpl The Bayou system used a
primary commitscheme to resolve conflicisg.,one server designated as the primary took
responsibility for commiting updates. Bayou is relevanthis survey because it was one
of the early systems trying to address the problem of englaiitionomous delegation by
using an authorization mechanism based on access conttifitates instead of ACLs.

Authentication in Bayou was based on public-key cryptobyafEvery user possessed
a public/private key pair and was authenticated by the sersimg a challenge/response
protocol.

Authorization in Bayou was based on digitally signed acoesgrol certificates. Three
types of certificates were supported:

—access granting certificategranted a user access (one of read, write, or server) to a data
collection, the unit of replication. In the context of a filgstem the unit of replication
was a directory. The “server”privilege enabled a user tawadn a replica of the data on
his workstation or portable computég.,to run a server for the data collection. Access
granting certificates were signed by a single trusted sggairthority.

—delegation certificatesdelegated a user’s privileges from an access control cattfio
another user. Delegation certificates had to be signed byetegating user.

—revocation certificatesallowed the original signer of a certificate to revoke it. $hu
access-granting certificates were revoked by the signitigoaty (administrator), while
delegation certificates could be revoked by the user thaegthem.

As a side note, Bayou required separate certificates foraeddvrite access.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems : 15

Identity: K,
Transfer 1
To: K,
Attributes: A
e 1
Sign: §={K ,A}K ¢ Transfer 2

To: K,
Attributes: A,
Sign: S={KAJK Y) Transfer 3
To: Ky

Attributes: A

Sign: S={K 5, AK T

Fig. 9. Structure of a CRISIS transfer certificate (from [#ah1998]). The transfer certificate is a chain of X.509
certificates. The first certificate is an identity certificatentifying the principal wishing to make the transfer by
his public key,K . In each subsequent certificate the issuer transfers atsfthée available privileges to another
principal. E.g.,in the first transfe<y delegates privileges described Hy to K'; and signs the certificate with
his private key,K&. Certificates can be arbitrarily chaineslg.,in this exampleK; transfers privileges td<5,
who in turn transfers privileges t&s.

All access-granting certificates in Bayou were signed byaglsitrusted signing author-
ity. This approach limits autonomous delegation acrosamimgtional boundaries, because
a user in a different administrative domain might be unkntwhe signing authority. The
access control model in Bayou provided authorization afgtia@ularity of a whole data
collection.

Revocation in Bayou was accomplished using revocatiorificetes. Revocation cer-
tificates were stored by write operations and propagatddtivit data collections to which
they apply. Thus, revocations of write privileges were #&tpht the primary server, and
there was no need to ensure that every other server be natifibd revocation.

3.2.3 xFS. xFS [Anderson et al. 1995], a serverless distributed fileesgswas de-
veloped as part of the UC Berkeley Network of Workstation®©{M) project. Any node
in the system could act as both server and client to providilelsystem services in a
peer-to-peer fashion. The primary concerns of the xFS tctsiwere better performance,
scalability, and higher availability than traditional fdgstems. However, the decentralized
architecture of XxFS did not carry over to its access contetmanisms. Unfortunately we
were not able to find a detailed description of the xFS accesta@ mechanisms in the
literature.

The xFS architects describe the system as appropriate festacted environment,
where machines trust one another’s kernels to enforce ibgdie., the system was de-
signed to operate within a given admnistrative domain. x&es were split in two cat-
egories: trusted core nodes within the admnistrative dormadl less trusted client nodes.
Trusted nodes ran the standard xFS file sharing protocol eted @as NFS servers to the
less trusted client nodes. Because communication withtslieutside of the trusted adm-
nistrative domain followed NFS security semantics, xFS fumstionally equivalent to
NFS for file sharing across organizational boundaries andexguently suffered from the
same limitations.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

16 . Stefan Miltchev et al.

Location HostID (specifies public key) path on remote server

Isfs/sfs.lcs.mit.eduvefvsvbwd4hz9isc3rb2x648ish742hyubl/links/repository/sfscvs
Fig. 10. SFS self-certifying pathname (from [Mazieres efl@b9])

3.2.4 WebFS.WebFS was part of the WebOS [Vahdat 1998] project at UC Beykel
The system'’s authorization mechanism was based on a cofignired ACLs and autho-
rization certificates. Thus, it is of interest to examine thlee such a hybrid approach can
exploit the advantages of both mechanisms while minimitiegdisadvantages.

WebFS was a global file system layered on top of the HTTP pobtothis approach
allows access to files through the file system using existiR4Jas file names. The
security architecture for WebOS was called CRISIS [Belarale1998]. Authentication
in CRISIS was based on X.509 certificates [CCITT 1989; Pold.e2002; Housley et al.
2002].

Authorizationin CRISIS used a hybrid model to best expluéttradeoffs between ACLs
and capabilities. Principals that should have long-teroess to an object were listed on
the ACL for that object. In the case of WebFS, each file had andated list of users
authorized to read, write or execute. The principals ligtedan ACL could then further
delegate a subset of their rights to an object by creatamgsfer certificatesshort-lived
and revocable capabilities. Transfer certificates were@ded in X.509 format, digitally
signed and could be chained. Figure 9 shows the structur€BASIS transfer certificate.

Object access granularity in WebFS was at the file level. Aommaous delegation in
WebFS was limited since users could only delegate to usecshald a certificate from
a CA trusted by the local domain. Because WebFS relied onrargtey of certification
authorities, users in different administrative domaitisisad to have a common root CA
to share files.

CRISIS had good support for revocation. If a principal watelil on an object’s ACL
his access could be revoked simply by modifying the ACL. Waetess was granted with
certificates, revocation relied on timeouts. Each certéieas first signed by the principal
making a statement with a longer timeout. The certificate thhas counter-signed by a
principal of the signer’s choosing. The counter-signatuas issued with a shorter timeout.
The counter-signer acted as a locally trusted on-line a@@h#\). The OLA checked if
a certificate had been revoked before refreshing its cowigeature with a new short
timeout. While the CRISIS approach allows for shorter timispit also introduces the
need for trusted on-line agents.

3.2.5 Self-Certifying File System (SFSJFS [Mazieres et al. 1999; Mazieres 2000;
Fu et al. 2002] was a global decentralized file system. SF&ésant to our survey as its
major stated goal was to free SFS clients from any notion ofiaidtrative realm, making
inter-realm file sharing trivial. To accomplish this goalSsitroduced the notion afelf-
certifying pathnames file names that effectively contain the appropriate rensetger’s
public key (see Figure 10). Thus, SFS needed no separate &eggament machinery to
communicate securely with file servers. By convention, SIES &ould be accessed under
/sfs/Location/HostID/Path whereLocation is the DNS name or IP address of the server,
HostID specifies the server’s public key, afath is the path to the file on the server.
The resulting file names were difficult to remember due to tinbexided cryptographic

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems : 17

information, so symbolic links had to be used as a mnemodic ai

SFS separated user authentication from the file system bguiemkey management
from the file system. Users in SFS were authenticated usibfigkey cryptography. On
the client an agent program with access to the user’s prikgte was used to authenticate
the user to a separate authentication server on the remut.sEhe authentication server
maintained a database mapping public keys to UNIX creder(gauser ID and a list of
group IDs). If a user did not have an account on a file serverstrver defaulted to
anonymous access.

Object access granularity in SFS was at the file level. Olgjecgss control in SFS was
similar to NFS. Authorization was performed by matching thelX credentials returned
by the authentication server with standard UNIX ACLs assimad with each file.

Autonomous delegation in SFS was not supported because mseist have an account
on the authentication server trusted by the file server. Woigld not necessarily be the
case for users in different administrative domains. GSH8rther development of SFS,
tried to overcome this limitation and is covered later irsthiirvey.

Revocation of a user’s access in SFS was simple. Becausauthenéication server
hosts a centralized user database, the user’s entry in tlabadee could be easily re-
moved/disabled. A user could also be removed from groupsfi@ear on ACLs for files
he was no longer supposed to access. The authors also @eswithanisms for revok-
ing self-certifying pathnames using revocation certisashould a server’s private key be
compromised. As an alternative, a user’s agent could atpoest HostID blocking from
the client. The second approach could be useful when noaigwecation certificate is
found, but access restriction is still desiraldeay.,due to system policy.

3.2.6 OceanStore OceanStore [Kubiatowicz et al. 2000] was a proposed aidhite
for global-scale persistent storage. Pond [Rhea et al.]208@8 the OceanStore prototype
containing many of the features of a complete system. Thagryi design goals of the ar-
chitecture were high reliability and scalability to billie of users. The system relied upon
an overlay network named Tapestry [Zhao et al. 2001; Hildetral. 2002] for decen-
tralized object location and routing. This allowed the Otstare designers to defer many
access-control decisions to the overlay. While cryptogi@mechanisms were used to
deal with Byzantine failures (which would affect reliabjl some of the access control is-
sues that would be addressed by a conventional file systemagldressed by participation
or non-participation in the overlag(g.,authentication) while other issues were addressed
more conventionallyd.g.,storage and access of blocks and files by the file system)itself

Authentication of clients in OceanStore was based on plbljacryptography.

The access control model of the Bayou system inspired thigrigs of OceanStore to
adopt an asymmetric authorization model with regardetader and writer restrictions:
reads were restricted at clients via key distribution, e/itites were restricted at servers
by ignoring unauthorized updates. Files were encryptedta@@ncryption key was dis-
tributed to users with read permission. A file was locatedhangystem using itglobally
unique identifie{GUID). The GUID is computed as the secure hash of the owpets
lic key and some human-readable name. The owner could claooA€L for the object.
Write access was enforced at servers by verifying all wetpiests against the respective
object’s ACL.

The granularity of sharing in OceanStore was at the file level

The overview of the OceanStore architecture and the dewxeripf the Pond prototype

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

18 . Stefan Miltchev et al.

give no indication how delegation would be accomplishechim $ystem. As described,
delegation granularity is coarseg., limited to distinguishing between read and write ac-
cess. For read access delegation would be accomplishedchioyenicating the key used
to encrypt the file. While this provides autonomy, there afficdlties with accountability
and the need to re-key and re-distribute the key to all legité users if revocation becomes
necessary. Write access is controlled with ACLs, and dél@gén this case is subject to
the same limitations as other ACL based systems. The authiefly hint at the possibility
of using a trust-management system such as PolicyMakez¢Rital. 1996] for expressing
richer access control policies, but no details are given.

Revocation in OceanStore would be handled differentlyedéeling on whether it is read
or write access that needs to be revoked. To revoke read gg@amj the owner must request
that replicas be deleted or re-encrypted with a new key. Wew®Ild data from cached
copies could still be available to revoked readers. To rewskite access, the owner of an
object could modify the ACL for the object. Because all wsitaust be signed, servers
can verify requests against the ACL. While the access cbmtechanism of Tapestry is
not specified, revocation could possibly also be accomgtisly blacklisting users so that
they can no longer participate in the overlay network.

3.2.7 CapaFS.CapaFS [Regan and Jensen 2001] used self-certifying filesas
sparse capabilities to control access to files by users fardiit administrative domains.
CapaFsS dispensed with user identifiers altogether, thosredting the need to resolve the
identities of remote users locally. By relying solely on Wiedge of the capability file
name for access control, CapaFS aimed to provide autonodedegation across organi-
zational boundaries.

A capability file name consisted of two parts: a client pagdiby the client to locate
the remote server and a server part used by the server to finfllehin local storage.
The client part contained the hostname and port of the sefler server part contained
the local path name and access rights on the server and wagtattto protect it from
tampering. However, the resulting capability file namesenMeng and meaningless to
users, and necessitated the use of symbolic links to assggmimgful names to remote
files.

There was no explicit user authentication in CapaFS: kndgdeof the filename was
sufficient to obtain access to a file. Authorization was basethe access rights encoded
in the server part of the capability file name. Object acceasdarity was at the file level.

Because there was no local user identification in CapaF8&nantous delegation was
easily achieved. To share a file, a user needed only to conuatierthe file name to an-
other user. Thus, no system administrator involvement egsired. However, there were
a number of problems with the original CapaFS. Because kadyd of the file name pro-
vided access to the file, communicating file names to othesunsel to be done over a se-
cure and authenticated channel (however, no infrastredturthat was developed as part
of the system). The original CapaFS was also vulnerable t@@aimthe-middle attack
because there was no server authentication. The authogested implementing server
authentication by adding the server’s public key to the bdipa filename. Because no
client authentication was performed, there was no accobilityain the original CapaFs,
i.e., there was no way of telling which particular user accessetéa Tihis made audit-
ing impossible in CapaFS. The authors describe a way of gddient authentication by
adding a client’s public key to the server part of the cajgifile names. The proposed

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems : 19

approach allowed for delegation to specific users by indgdheir public keys as an ex-
tension of the capability file name. However, there was no feag user to delegate only
a subset of his access rights to another wser,a user possessing a read/write capability
file name could not delegate read-only access to another user

Revocation in CapaFS could be achieved by having the seeegr & capability revo-
cation list (CRL) of all capability file names that have beewxaked. This approach is
unlikely to scale well as the list grows with time. Because tiser’'s public key was not
included in the capability filename, the original CapaFSgtesdid not support revoking
access on a per-user basis. Another approach to revocatigested by the authors was
to limit the lifetime of a capability file name by including iateout in it.

3.2.8 Fileteller. FILETELLER [loannidis et al. 2002] was a credential-based distributed
file storage system with provisions for paying for file staramd getting paid when others
access files. FileTeller was developed by a subset of th@ewutt this paper. Users used
a micropayments system to pay for both the initial creatibfiles and any subsequent
accesses to network-based storage.EFELLER illustrates the use dfust management
credentialdor bothaccess control and payment resulting in an elegant andodeaechi-
tecture that works across organizational boundariest Tnasagement [Blaze et al. 1996;
Blaze et al. 1999a] eliminates the need for ACLs by incorpiegeaccess control in a new
kind of certificate, namely aauthorization certificater credential Such a credential di-
rectly authorizes an action rather than dividing the autfadion task into authentication
and access control. Unlike traditional credentials, whiahd keys to principals, trust-
management credentials bind keys to the authorizationrfone certain tasks.

Authentication in FLETELLER was based on public keys. There were three participants
in the systemNetwork UsergNUs), Network Storage ProvidefdNSPs), andCheck Guar-
antors(CGs). All participants were identified by their public keysnetwork user had to
to authenticate with the storage provider before any fileagen could take place. The
authentication protocol provided strong authenticatiod, aptionally, let the user piggy-
back credential delivery to the NSP. Security protocolhsag IPsec [Kent and Atkinson
1998] or TLS [Dierks and Allen 1999] could be configured to trtbese requirements.

Authorization in FLETELLER was based on KeyNote [Blaze et al. 1999b] trust manage-
ment credentials. A network user held one or more crederisislied by a check guarantor
indicating the user’s credit line with the CG, as shown inuf@g11l. CGs played a role
similar to that of PKI CAs, sharing many of the deployment apérational limitations.
There were four kinds of credentials used in different pafthe system:

(1) Check Guarantor credentials, which specified a useesdrf credit.

(2) Microchecks, which authorized a payment from a netwabruo an NSP, or to an-
other NU.

(3) Server credentials, issued by the check guarantorsidéatified complying storage
providers the network users can use.

(4) File-access credentials, initially issued by NSPs wadite is created, authorizing
subsequent access to that file by the owner. File owners toeidissue further file-
access credentials, delegating access to other NUs.

Granularity of access inIEETELLER was at the file level,e.,users were able to create,
read, delete, append to, or replace whole files. Whole file® weefered to individual
blocks for two reasons: to amortize the cost of a check vatitia over the transfer of

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

20 . Stefan Miltchev et al.

N4
600
&
Y S5
> S
o3 ANQQ‘@
< S e
@ < &
% o
< (9
’%\ //Y’

Owner

Fig. 11. Network Storage Providers (NSPs) issue a KeyNetgerrttial to each Check Guarantor (CG) authorizing

them to act as introducers of users, by in turn issuing thesdesttials. A file owner needs to convince a CG to

provide them with a credit line, also expressed as a KeyNadential. The file owner needs to provide these

two credentials to the NSP, along with a microcheck comgeypiayment to the storage provider. In response, the
NSP returns to the file owner a KeyNote access credentiaitiggaher full privileges in accessing the file.

Check Guarantor NSP
b3
0,
o(} X
o3
(}&
< Access payment
<

Pay-back payment
Access and delegation
credentials

Access and delegation credentials=——m

Owner User

Fig. 12. A user wishing to access another user’s file needav® their own line of credit with a Check Guarantor
(CG), as well as a credential from the file owner granting thegess to that file. When accessing the file, the user
needs to provide the credit-backing credential from the £@ijcrocheck to the NSP, and the access credential(s)
to the file. If the owner has set a “pay-back” disposition faz file, an additional microcheck to the owner may
also be needed to gain access.

an entire file, and to avoid choosing some arbitrary block simd defining block-level
operations, which would tielIEETELLER to a particular file system philosophy rather than
make it a general file-storage service.

Autonomous delegation across organizational boundadasswpported inlEETELLER
as shown in Figure 12. A network user with access to a file cdeleigate a subset of their
access rights to another NU by issuing a file-access credefitiis delegation mechanism

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems : 21

KeyNot e- Ver si on: 2
aut hori zer: "<Administrator’s Public Key>"
licensees: "<Alice's Public Key>"

conditions: (app_domain == "Di sCFS") &&
(HANDLE == "di scfs://discfs.cis.upenn.edu/ Makefil e. stefgjxg")
-> "RWK";
signature:

"<Signature by Adm nistrator>"

Fig. 13. Credential granting uséiice (as identified by her public key, in theicenseedield) access to file
Makefile.stefgjxgon hostdiscfs.cis.upenn.eduThe 1024-bit keys and signatures in hex encoding have been
omitted in the interest of readability.

is transitive and does not require administrator involvemmésers did not have to reside
in the same administrative domain, however a user wishingctess a file served by a
given storage provider had to establish a line of credit witbG that recognized the NSP
as valid. Because users were vouched for by a CG and uniqiestyified by their public
keys, accountability was preserved. File attributes weeslun file-access credentials to
allow fine-granularity delegation. These attributes westardata associated with the file
by the owner, and could be used to implement easy file groupBgpciate security labels
with files, or for any other similar scheme. For example, a gselld associate arbitrary
textual tags with each file, similar to the way popular wedssillow the tagging of digital
photos and video clips; access control credentials coed tse such tags as part of the
access control decision.

Revocation in LETELLER was time-based and relied on credential expiration. As with
previous work on which EETELLER was based [Blaze et al. 2001], CG credentials is-
sued to users were relatively short-lived, avoiding thedrfee credential revocation lists.
Other revocation mechanisms could also be used witBTFELLER, as specified on a per-
credential basis.

3.2.9 DisCFS. The Distributed Credential File System (DisCFS) [Miltcletal. 2003]
was developed by the authors of this paper with the explazt gf allowing access to re-
mote users not known in advance to the file server. Thus, [Bsdifectly addressed the
problem focused upon by this survey. DisCFS, likeBFELLER used KeyNote trust man-
agement credentials [Blaze et al. 1999b] to ident{fy) files being stored(2) users; and
(3) conditions under which their file access is allowed. An exi@pedential is shown in
Figure 13.

Users in DisCFS were identified by their corresponding pukdiys. Authorization in
DisCFS was based on trust-management credentials. Tiarségement credentials con-
tain the identity (.e., public key) of the user authorizing an action, and the idgmi the
user authorized to perform the action (respectively,abthorizerand licenseefields in
Figure 13).

When a user wished to access a remote file, the software olighéscworkstation sent
the relevant credentials with a request to access the filebalbof the user. The file server
passed the credentials along with a query to the KeyNotesysKeyNote checked the
signatures on all credentials, evaluated whether the tiondispecified in the credentials
were met and returned an answer to the query. If the query waessful, the file server
granted the user access to the file. As part of this exchahgeserver had to verify that

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

22 . Stefan Miltchev et al.

a user was the legitimate owner of the public key presenteanitkensesdfield of the cre-
dential(s) she presentdd.,that the user had knowledge of the corresponding private key
In DisCFS, this was accomplished by establishing an IPsenextion between the client
workstation and the file server, using the Internet Key Exgeg(IKE) [Harkins and Carrel
1998] protocol. File sharing then took place over this IPsgsDCiation.

DisCFS controled access at the file level, however trustagament credentials could
also be applied at a coarser granularity if system requingsrfavored a minimization of
state over fine-grained control.

DisCFS had full support for autonomous delegation betwesemsuin different admin-
istrative domains. If Alice has been granted access to adfile,possesses a credential
specifying her access rights.(.,the one depicted in Figure 13). If she wishes to delegate
a subset of these access rights to Bob, Alice can create aneelartial identifying her as
the authorizer Bob as thdicensee and specifying Bob’s access rights in thenditions
field. Alice must then sign the new credential and send it tb Blong with her original
credential. When Bob requests access to the file, he mustrgrésecredential chain
consisting of both credentials. This mechanism providésreamy and organizational in-
dependence: no administrator involvement is necessadyBab does not have to be a
member of the same administrative domain as Alice. Becaas®e @ser could act as a CA
in DisCFS, the need for higher-level certification authiesitwas eliminated. Credentials
were signed to prevent tampering and could be sent in the aiqzosted on the web (of
course, this is not a good idea in environments where prighéile-access rights is desir-
able). DisCFS provided good delegation latency: usersidoedjin accessing files as soon
as they were issued a credential.

DisCFS supported multi-level delegation. That is, if Aldelegates access to Bob, he
can then further delegate to Charlie by creating a new ctedet was also possible to
limit delegation to one hop. Trust-management credentiidsv for fine granularity of
delegation: users can delegate any subset of their rights. tflist management engine
ensures that there is no rights amplificatipe., if Alice is granted read access to a file and
issues Bob a credential granting read/write access, Bdmatibe able to write to the file
using the credential.

Delegation in DisCFS preserved accountability, becausetliblic keys corresponding
to each authorizer and licensee were included in the crident

Revocation in DisCFS was not as straightforward as in ACseblasystems, because it
was not always evident who had access to a resource. In aleuétidelegation chain,
a user is only aware of the next “hopég,g.,if Alice delegates access to Bob, and Bob
delegates access to Charlie, Alice has no knowledge of i@harld thus no way to revoke
his access. Thus, DisCFS relied on timeouts in credentidimit their useful life. As a
more user-centric system, DisCFS made a tradeoff and athéeadministrative overhead
of running on-line agents for revocation checks at the egpaif having to use longer
timeouts.

3.2.10 WebDAVA.WebDAVA [Levine et al. 2003] was a web file sharing service de-
signed specifically for users in distinct administrativerdins. WebDAVA was developed
by a subset of the authors of this paper. The system provitketransferrather than
file-accessservices,i.e., files had to be transferred in their entirety between seradr a
client, rather than being manipulated in place. Thus, Waas not, strictly speaking,

a distributed file system. However, we examine it as anotkemele of a system using

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems : 23

authorization credentials to allow access across orgtoiied boundaries.

Authentication in WebDAVA was performed using a challemgsponse protocol. When
the server received a file request it responded with a clgdlenntaining a nonce and the
server's public key. The client response included the asaublic key, the file-access
credential, and a newly creatadnce credentiasigned with the user’s private key. While
the protocol details are somewhat vague, it appears onlylidrd was being authenticated.
Itis possible that the server was authenticated by othenmea.,using TLS [Dierks and
Allen 1999].

Authorization in WebDAVA was handled by KeyNote [Blaze et99b] trust-management
credentials. The credentials authorized desired actionsgponding to the HTTP GET or
PUT methods. Downloading a file from the server was done wwaHhTP GET method.
The PUT method allowed file creation or modifying a storedbifeoverwriting it. Delet-
ing a file was done by saving an empty file; the server noticasttte file is empty and
removes it. Granularity of access control in WebDAVA wagshat file level.

WebDAVA had full support for autonomous delegation betwesars in distinct ad-
ministrative domains. Users could delegate a subset af élteess to any other users by
retrieving their public keys and issuing them a creden@akdentials were protected from
tampering by a signature and thus could be sent over e-mddwnloaded from the web.
For example, when Alice wants to allow Charlie to access asfieed on the WebDAVA
server, she needs to retrieve Charlie’s public key, coosthe credential delegating ac-
cess to Charlie’s key, and then send this credential alotigvar own access credentials
to Charlie. Charlie must import these credentials and usmtto access the file. While
Alice may use any mechanism to get Charlie’s key, WebDAVAvfies a key-server that
stores the keys of the various users to simplify credenteagement. To transfer a cre-
dential to Charlie, Alice simply selects the credential antiers Charlie’s email address.
The WebDAVA client then creates an email message using thredentials and sends it to
Charlie. Charlie can use these credentials to downloadlth&dim the server. No admin-
istrator involvement is required and Charlie need not hayekind of relationship with the
WebDAVA server in order to download the files.

Revocation in WebDAVA was handled by credential expiratod certificate revocation
lists. Each file in the system had an associated file thatdtaashes of revoked credentials
and thus acted as a CRL. Credentials were passed on to theokegbimpliance checker
for evaluation only if their hash was not found in the revamafile. The original issuer of
a credential could revoke it by uploading it to the CRL using PUT method.

3.2.11 GSFS.GSFS [Kaminsky et al. 2003], a further development of SF8f [ar-
ticular interest to this survey as it was conceived with tkplieit goal of allowing file
sharing between users in different administrative doma®&+S tried to achieve this goal
with an access control mechanism based on ACLs.

Authentication in GSFS was based on public keys, similarR8.31owever, to facili-
tate global file sharing, the authentication server was freatlio contact servers in other
administrative domains and retrieve remote user and grefipitions (see Figure 14). For
the purposes of this discussion we define remote users toehg astside of the local ad-
ministrative domain. Remote authentication servers weferenced with self-certifying
hostnames, similar to file servers. A GSFS authenticatioreséad to contact the remote
authentication servers of any remote users or groups lasesiembers of local groups.
Because of network latency and failures, it is not feasibléd this at the time an authen-

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

24 . Stefan Miltchev et al.

SES Clients

ACL-enabled Remote Auth
File Server Servers

i _H

Local Auth
Server

Fig. 14. Overview of the GSFS authentication architecténar{ [Kaminsky et al. 2003])

tication request is made. Thus, the GSFS designers tradddesifiness for availability
by having the authentication server periodicabyy(,every hour) contact the remote au-
thentication servers of any remote users or groups listédcal group definitions. This
introduced a delay between when a decision to grant acceldsdea made and when the
actual access could occur.

Authorization in GSFS was done using ACLs. The ACLs were Igintd those used
in AFS, but were extended to differentiate between files anectbries. Access rights
available in GSFS ACLs included the right to modify the ACtelf. GSFS ACLs could
list four different kinds of principals: local user namescdl group names, public key
hashes, and anonymous entries. Public key hashes werelyheanof listing a remote
principal directly on a GSFS ACL. Remote groups could notisted directly on the ACL,
but could be included indirectly by making them a member afcal group.

As with SFS, object access granularity in GSFS was at theefiiel |

There are two scenarios for autonomous delegation in G3R&elfirst scenario, user
Alice may choose to share a file with user Bob in a different iadstrative domain by
listing a hash of Bob’s public key on the ACL of the file (assangithat Alice has the right
to modify the ACL of the file). However, if Bob wants to then fiuer share access to the
file with another user, Bob must also be given the right to riyottie ACL of the file.
As delegation chains grow longer, this approach will leabbtmer and harder to manage
ACLs on the fileserver. It is also impossible to allow fineigeal multi-level delegation,
e.g.,if Alice gives Bob read access to the file and wishes him to be tbdelegate that
access, she must also give him the right to modify the ACL. &l@w, in this case there is
nothing to prevent Bob from modifying the ACL and grantingiself write access. Thus,
this approach is only suitable for limited one-hop delegafrom a local user to a remote
user.

In the second scenario, Alice can create a local greup @lice.friends) and list remote
users €.g.,Bob) or groups from another administrative domaimgy(,friends@otherdomain)
as members of the local group. This assumes that there is@eemthentication server
for the domain that Bob or Alice’s other friends belong to. nRé¢e groups can in turn
contain other groups and the nesting can be arbitrarily dddmus, indirection through
authentication servers can provide delegation. In contingsublic key hashes, multi-level

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems : 25

delegation can be achieveslg.,if Alice allows access to a group owned by Bob, then Bob
can add new members (which can be other groups) to the gromwevér, this approach
still makes it difficult for a principal to delegate only a séh of his access rights. For
example, if Alice has allowed members of the group manageBdiyread/write access,
Bob cannot delegate read-only access to Charlie.

Listing a public key hash directly has several advantagesusing group or user names:

—Latency — because the user record does not have to be pulled from aeranhentica-
tion server, the user can begin accessing files immediately.

—Simplicity — users in a different administrative domain need not becietsal with an
authentication server.

—Privacy — public-key hashes offer a degree of privacy by obfuscatiegisernames on
a group membership list. Because anyone can query an algtitéort server and user-
names could correspond to e-mail addresses, group menbksthcould be harvested
for purposes of sending unsolicited bulk electronic medRAM”).

Group and usernames on the other hand offer the followingraidges over public key
hashes:

—Indirection allows for multi-level delegation. The remote authenfmatservers also
provide a single point of update if a user needs to changedyikrevoke it.

—Naming — names are easier for users to keep track of than hasheswndolld im-
prove accountability and scalability.

Beyond the mechanisms for revocation available for SFS,S53%# to handle revoca-
tion involving remote users and groups. Thus, revocatioB®FS was closely related to
freshness. If a remote user changed his key or was removadsfremote group record, it
would take an update cycle for the change to be reflected do¢heauthentication server.
On the other hand, access granted to public-key hashes i® G8Hd be instantly revoked
by editing the ACL or group record.

4. DISCUSSION

Table | classifies the file systems studied in Section 3 withérframework defined in Sec-
tion 2. Systems that were not designed for file sharing aaogsnizational boundaries
(NFS, AFS, xFS, CIFS, SFS) require substantial admingtriatvolvement for merging
realms or account creation. The inability to list non-logsérs using ACLs in NFS, AFS,
XFS, CIFS and SFS makes it impossible for these systems pmdLgutonomous delega-
tion across organizational boundaries.

The remaining systems reviewed in Section 3 exhibit varylegrees of support for
autonomous delegation. We present a more detailed coropani§able II.

OBSERVATION 1. Systems that support autonomous delegation across ogjamal
boundaries use public-key cryptography for authentigatio

It is hardly surprising that public-key cryptography is ds&s a building block for the

authentication mechanism employed by systems that neethte beyond the local ad-
ministrative domain. Public-key cryptography eliminaties need for synchronous com-
munication with a trusted third party. The public keys ofMeost and user can be freely
distributed. Knowledge of the respective public keys aidwo principals to establish a

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

26

Stefan Miltchev et al.

Table I. File system classification
Statud | Authentication| Authorization| Granularity Autonomous| Revocation
Delegation
NFS P AUTH_SYS, ACL (UNIX) | File system No ACL
Kerberos
NFSv4 P Kerberos, ACL (NT) File No ACL
LIPKEY,
SPKM
AFS& Coda P Kerberos ACL (AFS) Directory No ACL
CIFS P Plaintext ACL Directory No ACL
password,
Challenge-
Response,
Kerberos
xFS E AUTH_SYS, ACL (UNIX) | File system No ACL
Kerberos
Truffles E Public Key | ACL (UNIX) | Volume Limited No
(X.509)
Bayou E Public Key AC Certifi- | Data Collection | Limited Revocation certificate
cate
WebFS E Public Key | Hybrid File Limited ACL, CRL, OLA?,
(X.509) Certificate Expiration
CapaFS E No Capability File Limited CRL, Timeout
SFS E Public Key ACL (UNIX) | File No ACL, CRL
GSFS E Public Key ACL (SFS) File Limited ACL, CRL
DisCFS E Public Key Trust Mgmt. | File Yes Credential Expiration
Credential
WebDAVA E Challenge- Trust Mgmt. | File Yes CRL, Credential Ex-
Response Credential piration
Fileteller E Public Key Trust Mgmt. | File Yes Credential Expiration
Credential

IProduction (P) or experimental (E) file system
2locally trusted on-line agent

secure communication channel without external admirig&anvolvement. Of the sys-
tems supporting autonomous delegation, CapaFsS is the aowtleat does not employ

public key cryptography (in the original design).

OBSERVATION 2. Mechanisms based on pure capabilities cannot provide autedyil-

ity.

Systems based on pure capabilities like CapaFS exhibittadegree of user autonomy.
However, our review of CapaFS revealed that if the cap#slire not tied to user identi-

ties in any way, it is impossible to meet the accountabiktguirement for delegation. In

addition, exchanging capabilities becomes problematcabse their content should not
be disclosed to third parties. The CapaFS authors recotimézproblems of using capa-
bilities with no ties to user identities, however the progmsolution does not meet the
requirement for fine-grained delegation.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems : 27

Table Il. Autonomous delegation supportiatorkedlistributed file systems

Autonomy | Organizational Low Latency | Transitivity | Fine Accountability
Independence Granularity

Truffles ° ° ° °
Bayou
WebFS ° ° ° . .
CapaFS ol
Fileteller ° ° ° ° . .
DisCFS ° . . . ° °
WebDAVA ° ° ° ° . .
GSFZ
GSF$ ot . . .

LOnly if user’s public key is included in capability filename.
2Public key hashes of remote users listed on ACL.

3Remote groups listed on ACL.

4Remote users must be associated with remote authenticaivar.

OBSERVATION 3. Mechanisms based solely on ACLs do not scale well to a user bas
distributed across organizational boundaries.

The difficulty of supporting autonomous delegation in GSEStlexemplifies this observa-
tion. GSFS tries to address the problem of global file shargsigg ACLs. However GSFS

offers only limited support for delegation. If public-kegp$hes are used to identify non-
local users, the formulated requirement of multi-levekd@ltion is not met. If groups are
used instead, multi-level delegation is possible, how#wverequirement for fine-grained
delegation is not met. This illustrates the difficulty ofnggian ACL-based authorization
mechanism when the users are distributed in different aidiréive domains.

OBSERVATION 4. Authorization certificates come closest to fulfilling aljregrements
for autonomous delegation across organizational bouretari

Bayou, WebFS, DisCFS, WebDAVA and Fileteller meet most efquirements for au-
tonomous delegation. These systems rely on some form obagdtion certificates: ac-
cess granting and delegation certificates, transfer atiifs, or trust-management creden-
tials. Transitivity of delegation is achieved by chainifg tcertificates. Successive links
in a delegation chain can only refine, and never expand, tbesaaights of the original
certificate. This ensures that the fine granularity requinetnfor delegation is met. By
supporting both transitive and fine-grained delegatios siystems based on authorization
certificates distinguish themselves from systems based3irs Ahat tend to support either
transitive or fine-grained delegation, but not both.

OBSERVATION 5. There is a tradeoff between user autonomy and ease of regsocat

Systems based on ACLs.§.,GSFS) do not provide full support for autonomous delega-
tion. However, access to an object can be revoked by simjtyngdhat object’s ACL.

Some systems based on authorization certificates or AQidauation certificate hybrid
schemesd.g., Bayou, WebFS) make provisions for delegation. These systemuire
users in different administrative domains to have a commoh€A. While this limits the

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

28 . Stefan Miltchev et al.

users’ organizational independence, it also makes relorcassier, since only a limited
number of CAs must be contacted to update CRLs.

In DisCFS and WebDAVA, a more user-centric approach is takdsers act as CAs
and sign trust-management credentials they issue theesselvhus, delegation in these
systems has the highest degree of user autonomy. Howeeaydeeaccess control is com-
pletely decentralized, revocation must rely on certifiaatpiration or online revocation
authorities.

5. CONCLUSIONS

This survey provided a new framework for analyzing the it of distributed file sys-
tem access-control mechanisms to the challenge of supgagtobal file sharing across
organizational boundaries. We identified authenticataurthorization, granularity, au-
tonomous delegation, and revocation as necessary featiaesystem aiming to address
this challenge. Thus, these features formed the axes obthparison framework we used
to survey selected systems.

While the focus of the survey has purposely been on distibiite system design, the
framework might prove useful in understanding the tradewfherent in global access to
any form of shared data. The central concerns of scalahitityease of use pervade much
of system design and evaluation. While file systems provaieing and persistence, con-
cerns of access control for a networked shared memory (witte ynamic state) would
require access control as well. Overlay solutions (of wiMéb-based file systems can be
seen as an example) exist at least in part to overcome adrativis inertia. For example,
port 80 is left open through most Internet firewalls to accardate user web browsing,
and therefore file-sharing can overcome administrativistasce simply by accessing data
using HTTP. If the issue is achieving global “user-contdflaccess in a secure manner, it
seems more effective to address this problem directly rafia@ employing a workaround.
Our analysis, summarized in Tables | and I, suggests hopribi@iem might be addressed
effectively.

Systems based on authorization certificates generallyiggdvetter support for au-
tonomous delegation of access rights between users irrefiff@administrative domains,
compared to systems based on ACLs or pure capabilities. eldrerthey are attractive
from the perspective of scalability, but there are some atpmral and ease-of-use con-
cerns, in addition to the problem indicated by Table I: alt@fse systems are experimental
and do not enjoy widespread use.

The major operational concern is revocation. Authorizatertificates resemble ca-
pabilities, in that revocation is a challenge. Many systeitempt to achieve revocation
semantics with artificial means such as “keep-alives” oetimts, which are inelegant and
introduce a window of risk: a certificate might have unwateaimccess until a certain ex-
piration time is reached. Future research on revocationtbfcaization certificates should
seek to minimize the existing tradeoff between user autgreomd ease of revocation.

The major ease-of-use concern is the management of thecRfilnfrastructure (PKI)
and certificates required for users to access data. Wides$pP&l deployment would
greatly ease the deployment of systems that use trust mangsxjeechniques, and a fo-
cus on ease-of-use would ensure that users have tools (enat#d management systems)
that make the use of certificates for remote access to bepaears and seamless, relative
to local access of data. However, we must acknowledge théisant logistical difficulties

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems : 29

in building, deploying, and operating a real-world PKI.
Both the revocation and ease-of-use concerns would be rffestieely addressed by
moving at least one file system from experimental to producitatus.

REFERENCES

ADAMS, C. 1996. The Simple Public-Key GSS-API Mechanism (SPKMJCRProposed Standard) 2025,
Bell-Northern Research. October.

ANDERSON T. E., DAHLIN, M. D., NEEFE, J. M., RTTERSON, D. A., ROSELLI, D. S.,AND WANG, R. Y.
1995. Serverless network file systemsPioc. 15-th Symposium on Operating Systems Principles

BAIZE, E.AND PINKAS, D. 1998. The Simple and Protected GSS-API Negotiation Meisim. RFC (Proposed
Standard) 2478, Bull. December.

BALENSON, D. 1993. Privacy Enhancement for Internet Electronic Maart Ill: Algorithms, Modes, and
Identifiers. RFC (Proposed Standard) 1423, IAB IRTF PSRGFIBEEM WG. February.

BELANI, E., VAHDAT, A., ANDERSON T., AND DAHLIN, M. 1998. The CRISIS Wide Area Security Archi-
tecture. InProceedings of the USENIX Security Symposila-30.

BLAZE, M., FEIGENBAUM, J., [ODANNIDIS, J.,AND KEROMYTIS, A. 1999a. The Role of Trust Management
in Distributed Systems Security. Becure Internet Programmingecture Notes in Computer Science, vol.
1603. Springer-Verlag Inc., New York, NY, USA, 185-210.

BLAZE, M., FEIGENBAUM, J., IOANNIDIS, J.,AND KEROMYTIS, A. D. 1999b. The KeyNote Trust Manage-
ment System Version 2. RFC (Proposed Standard) 2074, AT&E L&esearch. September.

BLAZE, M., FEIGENBAUM, J.,AND LACY, J. 1996. Decentralized Trust Management.Ptoceedings of the
17th IEEE Symposium on Security and Priva®gkland, CA, 164-173.

BLAZE, M., |OANNIDIS, J.,AND KEROMYTIS, A. D. 2001. Offline Micropayments without Trusted Hardware
In Proceedings of the Fifth International Conference on FiciahCryptography

CALLAGHAN, B. 1996a. WebNFS Client Specification. RFC (Proposed ataf)®054, Sun Microsystems,
Inc. October.

CALLAGHAN , B. 1996b. WebNFS Server Specification. RFC (Proposed Stdh@055, Sun Microsystems,
Inc. October.

CALLAGHAN , B. 2000.NFS lllustrated Addison-Wesley.

CALLAGHAN, B., PawLOWSKI, B., AND STAUBACH, P. 1995. NFS Version 3 Protocol Specification. RFC
(Proposed Standard) 1813, Sun Microsystems, Inc. June.

CCITT. 1989.X.509: The Directory Authentication Frameworlkiternational Telecommunications Union.

DENNIS, J. B.AND VAN HORN, E. C. 1966. Programming semantics for multiprogrammedpegations.
Communications of the ACM 9,(March), 143-155.

DIERKS, T. AND ALLEN, C. 1999. The TLS PRotocol Version 1.0. RFC (Proposed Stdp@246, Internet
Engineering Task Force. January.

DYER, S. P. 1988. The Hesiod Name Server. Rroceedings of the USENIX Winter Technical Conference
183-190.

EISLER, M. 2000. LIPKEY — A Low Infrastructure Public Key Mechanisdosing SPKM. RFC (Proposed
Standard) 2847, Zambeel. June.

EISLER, M., CHIU, A., AND LING, L. 1997. RPCSEGSSS Protocol Specification. RFC (Proposed Standard)
2203. September.

FARMER, D. AND VENEMA, W. 2004.Forensic DiscoveryAddison Wesley Professional.

Fu, K., KAASHOEK, M. F., AND MAZIERES, D. 2002. Fast and secure distributed read-only file system.
Computer Systems 20, 1-24.

Guy, R. G., HEIDEMANN, J. S., MaK, W., PAGE, JR., T. W., POPEK, G. J.,AND ROTHMEIR, D. 1990.
Implementation of the Ficus Replicated File SystenPioceedings of the Summer 1990 USENIX Conference
63-71.

HARKINS, D. AND CARREL, D. 1998. The Internet Key Exchange (IKE). RFC (Proposeadited) 2409,
Internet Engineering Task Force. November.

HERTEL, C. R. 2003.Implementing CIFS: The Common Internet File SystBnentice Hall PTR.

HILDRUM, K., KuBlATOWICZ, J., RAO, S.,AND ZHAO, B. 2002. Distributed object location in a dynamic
network. InProceedings of ACM SPAA1-52.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

30 . Stefan Miltchev et al.

HousLEY, R., PoLK, W., FORD, W.,AND SoL0O, D. 2002. Internet X.509 Public Key Infrastructure: Cectifie
and Certificate Revocation List (CRL) Profile. RFC (PropoS&ghdard) 3280. April.

HOWARD, J., KAZAR, M., MENEES S., NCHOLS, D., SATYANARAYANAN , M., SIDEBOTHAM, R., AND
WEST, M. 1988. Scale and Performance in a Distributed File Syst&@M Transactions on Computer
Systems 6l (February), 51-81.

HOWARD, J. H. 1988. An Overview of the Andrew File System Aroceedings of the USENIX Winter Technical
ConferenceDallas, TX, 213-216.

IBM CoRP 1984.1BM PC Network Technical Reference Manual, No.6322%i6t ed.

IOANNIDIS, J., IOANNIDIS, S., KEROMYTIS, A., AND PREVELAKIS, V. 2002. Fileteller: Paying and Getting
Paid for File Storage. IRroceedings of the Sixth International Conference on FamerCryptography

J. SCHONWALDER AND H. LANGENDORFER 1993. Administration of large distributed UNIX LANs with
BONES. InProceedings of the World Conference On Tools and Technifquelystem Administration, Net-
working, and Security

KALISKI, B. 1993. Privacy Enhancement for Internet Electronic Madrt I1V: Key Certification and Related
Services. RFC (Proposed Standard) 1424, RSA Laboratémadsuary.

KAMINSKY, M., SAVVIDES, G., MAZIERES, D., AND KAASHOEK, M. F. 2003. Decentralized user authenti-
cation in a global file system. IRroceedings of the 19th ACM Symposium on Operating SystamspRes
(SOSP '03)Bolton Landing, New York, 60-73.

KENT, S. 1993. Privacy Enhancement for Internet Electronic Mralt II: Certificate-Based Key Management.
RFC (Proposed Standard) 1422, IAB IRTF PSRG, IETF PEM WGrrzel.

KENT, S.AND ATKINSON, R. 1998. Security Architecture for the Internet Protod®FC (Proposed Standard)
2401, Internet Engineering Task Force. November.

KEROMYTIS, A. D. 2001. STRONGMAN: A Scalable Solution to Trust Managernin Networks. Ph.D. thesis,
University of Pennsylvania.

KEROMYTIS, A. D. AND SMITH, J. M. 2007. Requirements for Scalable Access Control andrg Manage-
ment ArchitecturesTo appear in the ACM Transactions on Internet TechnologyT(To, 4 (November).

KISTLER, J. J.AND SATYANARAYANAN , M. 1991. Disconnected operation in the Coda file system13fh
ACM Symposium on Operating Systems Principles 25. ACM Press, 213-225.

KOHL, J. AND NEUMAN, C. 1993. The Kerberos Network Authentication Service (VRFC (Proposed
Standard) 1510. September.

KuslATOWICZ, J., BINDEL, D., CHEN, Y., EATON, P., GEELS, D., GUMMADI, R., RHEA, S., WEATHER-
SPOON H., WEIMER, W., WELLS, C.,AND ZHAO, B. 2000. Oceanstore: An architecture for global-scale
persistent storage. roceedings of ACM ASPLOACM.

LampsoN, B. 1971. Protection. IfProceedings of the 5th Princeton Conference on Informafioience and
Systems437-443.

LEACH, P.AND PERRY, D. 1996. CIFS: A common internet file systeMicrosoft Internet Developer

LEVINE, A., PREVELAKIS, V., IOANNIDIS, J., [OANNIDIS, S.,AND KEROMYTIS, A. D. 2003. Webdava:
An administrator-free approach to web file-sharing.Phaceedings of the IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborati&nterprises (WETIC), Workshop on Distributed and
Mobile Collaboration Linz, Austria, 59—64.

LEVY, H. M. 1984. Capability-Based Computer SystenBitterworth-Heinemann, Newton, MA, USA.

LINN, J. 1993a. Generic Security Service Application Prograierface. RFC (Proposed Standard) 1508, Geer
Zolot Associates. September.

LINN, J. 1993b. Privacy Enhancement for Internet Electronid:N®airt |: Message Encryption and Authentica-
tion Procedures. RFC (Proposed Standard) 1421, IAB IRTFRIRTF PEM WG. February.

LINN, J. 1996. The Kerberos Version 5 GSS-AP| Mechanism. RFCp@ed Standard) 1964, OpenVision
Technologies. June.

LINN, J. 1997. Generic Security Service Application Prograrerfate, Version 2. RFC (Proposed Standard)
2078, Internet Engineering Task Force. January.

LYON, B. 1984. Sun Remote Procedure Call Specification. Tech. $m Microsystems, Inc.

MAZzIERES, D. 2000. Self-certifying file system. Ph.D. thesis, MIT.

MAZIERES, D., KAMINSKY, M., KAASHOEK, M. F., AND WITCHEL, E. 1999. Separating key management
from file system security. I8ymposium on Operating Systems Principles (SOSH)-139.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems : 31

MICROSOFTCORPORATION 1996. Microsoft Networks SMB File Sharing Protocol (DomhVersion 6.0p).
MICROSOFT CORPORATION 2005. Microsoft access control model.
http://msdn.microsoft.com/library/default.asp?uibrary/en-us/secauthz/security/accesmtroLmodel.asp.
MILLER, S. P., NNUMAN, B. C., SCHILLER, J. |.,AND SALTZER, J. H. 1987. Kerberos Authentication and

Authorization System. Tech. rep., MIT. December.

MILTCHEV, S., RREVELAKIS, V., IOANNIDIS, S., IOANNIDIS, J., KEROMYTIS, A., AND SMITH, J. 2003.
Secure and Flexible Global File Sharing.Rroceedings of the Annual USENIX Technical Conferencerixe
Track 165-178.

NEEDHAM, R. M. AND SCHROEDER M. D. 1978. Using encryption for authentication in largewmrks of
computersCommun. ACM 2112, 993-999.

PAwLOWSKI, B., SHEPLER, S., BEAME, C., CALLAGHAN, B., EISLER, M., NOVECK, D., ROBINSON, D.,
AND THURLOW, R. 2000. The NFS version 4 protocol. Rroceedings of Second International System
Administration and Networking (SANE) Conference

PETERSEN K., SPREITZER M., TERRY, D., AND THEIMER, M. 1996. Bayou: Replicated Database Services
for World-Wide Applications. IrProceedings of the 7th ACM SIGOPS European Workshop

PoLK, W., HOUSLEY, R.,AND BASSHAM, L. 2002. Algorithms and Identifiers for the Internet X.509bc
Key Infrastructure Certificate and Certificate Revocatidst [CRL) Profile. RFC (Proposed Standard) 3279.
April.

REGAN, J.AND JENSEN, C. 2001. Capability File Names: Separating Authorizafrem User Management in
an Internet File System. IRroceedings of the USENIX Security Symposi2ii—233.

REIHER, P., RGE, T., CROCKER, S., @OK, J., AND PoOPEK, G. 1993. Truffles—a secure service for
widespread file sharing. IRroceedings of the Privacy and Security Research Group $fogkon Network
and Distributed System Security

RHEA, S., EATON, P., GEELS, D., WEATHERSPOON H., ZHAO, B., AND KuBIATOWICZ, J. 2003. Pond: the
OceanStore prototype. Proceedings of the Conference on File and Storage Techiesl¢§AST) USENIX.

ROSENSTEIN M. A., JR., D. E. G.,AND LEVINE, P. J. 1988. The Athena Service Management System. In
Proceedings of the Winter USENIX Conferer2@3-212.

SAMBA PROJECT. Samba. http://www.samba.org.

SANDBERG, R., GOLDBERG, D., KLEIMAN, S., WALSH, D.,AND LYON, B. 1985. Design and Implementation
of the Sun Network File System. Proceedings of the Summer USENIX Conference

SATYANARAYANAN , M. 1989. Integrating security in a large distributed syst&CM Trans. Comput. Syst. 3,
247-280.

SATYANARAYANAN , M. 1990. Scalable, secure, and highly available distetutle accessComputer 235,
9-18, 20-21.

SATYANARAYANAN , M. 1992. The influence of scale on distributed file systemgmesIEEE Trans. Softw.
Eng. 18,1, 1-8.

SATYANARAYANAN , M. 2002. The evolution of Cod&ACM Trans. Comput. Syst. 2B, 85-124.

SATYANARAYANAN , M., KISTLER, J. J., KUMAR, P., OKASAKI, M. E., SEGEL, E. H.,AND STEERE, D. C.
1990. Coda: A highly available file system for a distributeorkstation environmentlEEE Transactions on
Computers 3%, 447-459.

SHEPLER, S., CALLAGHAN, B., ROBINSON, D., THURLOW, R., BEAME, C., BISLER, M., AND NOVECK, D.
2003. Network File System (NFS) version 4 Protocol. RFC esed Standard) 3050. April.

SNIA CIFS TECHNICAL WORK GROUP. 2002. Common internet file system (CIFS) technical refegeSNIA
technical proposal, Storage Networking Industry AssamatMarch.

SRINIVASAN, R. 1995. RPC: Remote Procedure Call Protocol Specificaosion 2. RFC (Proposed Standard)
1831, Sun Microsystems. August.

SWIFT, M., TROSTLE, J.,AND BREZAK, J. 2002. Microsoft Windows 2000 Kerberos Change Passwumild a
Set Password Protocols. RFC (Proposed Standard) 3244endityv of Washington, Cisco Systems, and
Microsoft. February.

SWIFT, M. M., BRUNDRETT, P., DrkE, C. V., GARG, P., HOPKINS, A., CHAN, S., GOERTZEL, M., AND
JENSENWORTH G. 2002. Improving the granularity of access control fondgws 2000 ACM Transactions
on Information and System Security45{November).

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

32 . Stefan Miltchev et al.

TANENBAUM, A., MULLENDER, S.,AND VAN RENESSE R. 1986. Using sparse capabilities in a distributed
operating system. IfProceedings of the 6th International Conference on Disiigl Computing Systems
558-563.

TERRY, D., THEIMER, M., PETERSEN K., DEMERS, A., SPREITZER M., AND HAUSER, C. 1995. Managing
Update Conflicts in Bayou, a Weakly Connected Storage SydteRroceedings of the 15th ACM Symposium
on Operating Systems Principles (SOSP)

THomPsON K. L. 1978. UNIX implementationThe Bell System Technical Journal &7 Part 2 (July—August),
1931-1946.

TROSTLE, J. T., KOSINOVSKY, |., AND SWIFT, M. M. 2001. Implementation of Crossrealm Referral Hargllin
in the MIT Kerberos Client. IINDSS

VAHDAT, A. 1998. Operating system services for wide-area appicat Ph.D. thesis, UC Berkeley.

WESTERLUND, A. AND DANIELSSON, J. 2001. Heimdal and Windows 2000 Kerberos: How to Get Tteem t
Play Together. IfProceedings of the 2001 USENIX Annual Technical Conferdfreenix Track 267-272.

WRAY, J. 1993. Generic Security Service API : C-bindings. RF@Bsed Standard) 1509, Digital Equipment
Corporation. September.

ZHAO, B. Y., KuBlaTowicz, J. D.,AND JOSEPH A. D. 2001. Tapestry: An infrastructure for fault-toletan
wide-area location and routing. Tech. Rep. UCB/CSD-0131UC Berkeley. Apr.

Received Month Year; revised Month Year; accepted Montlr Yea

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

