
Software Self-Healing Using Collaborative Application
Communities

Michael E. Locasto, Stelios Sidiroglou, and Angelos D. Keromytis
Network Security Lab, Department of Computer Science, Columbia University

{locasto, stelios, angelos}@cs.columbia.edu

Abstract

Software monocultures are usually considered danger-
ous because their size and uniformity represent the poten-
tial for costly and widespread damage. The emerging con-
cept of collaborative security provides the opportunity to
re-examine the utility of software monoculture by exploit-
ing the homogeneity and scale that typically define large
software monocultures. Monoculture can be leveraged to
improve an application’s overall security and reliability.
We introduce and explore the concept of Application Com-
munities: collections of large numbers of independent in-
stances of the same application. Members of an applica-
tion community share the burden of monitoring for flaws
and attacks, and notify the rest of the community when such
are detected. Appropriate mitigation mechanisms are then
deployed against the newly discovered fault. We explore the
concept of an application community and determine its fea-
sibility through analytical modeling and a prototype imple-
mentation focusing on software faults and vulnerabilities.

Specifically, we identify a set of parameters that define
application communities and explore the tradeoffs between
the minimal size of an application community, the marginal
overhead imposed on each member, and the speed with
which new faults are detected and isolated. We demon-
strate the feasibility of the scheme using Selective Trans-
actional EMulation (STEM) as both the monitoring and
remediation mechanism for low-level software faults, and
provide some preliminary experimental results using the
Apache web server as the protected application. Our ex-
periments show that ACs are practical and feasible for cur-
rent applications: an AC of 15,000 members can collabo-
ratively monitor Apache for new faults and immunize all
members against them with only a 6% performance degra-
dation for each member.

1 Introduction

Software monocultures have been identified as a major
source of problems in today’s networked computing envi-
ronments [30, 27, 52]. Monocultures act as force amplifiers
for attackers, allowing them to exploit the same vulnerabil-
ity across thousands or millions of instances of the same

application across the network. Such attacks have the po-
tential to rapidly cause widespread disruption, as evidenced
by several incidents over the last few years [5, 3, 4, 2]. The
severity of the problem has fueled research behind intro-
ducing diversity in software systems. However, creating a
large number of different systems manually [11] not only
presents certain practical challenges [31] but can result in
systems that are not diverse enough [36, 16].

As a result, recent research has focused on creating ar-
tificial diversity, by introducing “controlled uncertainty” in
one of the system parameters that the attacker must know
(and control) in order to carry out a successful attack. Such
parameters include, but are not limited to, the instruction
set [33, 12, 15], the high-level implementation [48], the
memory layout [13], the operating system interface [23]
and others, with varying levels of success [50, 44]. How-
ever, running different systems in a network creates its own
set of problems involving configuration, management, and
certification of each new platform [56, 10]. In certain cases,
running such multi-platform environments can decrease the
overall security of the network [47].

Given the difficulties associated with artificial diversity
and the pervasive nature of homogeneous software sys-
tems, can we identify a scenario in which a homogeneous
software base can be used to improve security and reliabil-
ity, relative to a single instance of an application? Specif-
ically, given a large number of almost identical copies of
the same application running autonomously, is it possible
to employ a collaborative distributed scheme that improves
the overall security of the group?

To answer this question, we introduce the concept of
an Application Community1 (AC), a collection of almost-
identical instances of the same application running au-
tonomously across a wide area network. Members of an
AC collaborate in identifying previously unknown (zero
day) flaws/attacks and exchange information so that such
failures are prevented from re-occurring. Individual mem-
bers may succumb to new flaws; however, over time the AC
should converge to a state of immunity against that specific

1To our knowledge, the term first appeared in the title of the DARPA
Application Communities Workshop, in October 2004. This paper ex-
pands on our short paper that introduced some of the concepts that we
explore in depth here [41].

1

fault. The system learns new faults and adapts to them, ex-
ploiting the AC size to achieve both coverage (in detecting
faults) and fairness (in distributing the monitoring task).

This definition raises several questions. First, is the ap-
proach feasible and, if so, for what types of faults? Sec-
ond, how expensive can the monitoring, coordination, and
reaction mechanisms be, and is it possible to share the bur-
den equitably across the AC members? What is the perfor-
mance impact of the additional computation on individual
AC members? How small can an AC be to achieve cov-
erage and share fairness at the same time? Finally, how
can this scheme be achieved in the presence of mutually
untrusted (or possibly subverted) participants?

We do not attempt to answer all of these questions in
this paper, although we outline possible directions for fu-
ture research. Instead, we provide a high-level analysis of
the basic parameters that govern an Application Commu-
nity. We then apply this analysis in a prototype AC that
is targeted against remotely exploitable software vulnera-
bilities and input-data-driven faults. We use the Selective
Transactional EMulator (STEM) technique from [51] both
for fault-monitoring and immunization. Members of the
AC emulate different “slices” of the application, monitor-
ing for low-level failures (such as buffer overflows or il-
legal memory accesses). When a fault is detected by an
member, the relevant information is broadcast to the rest
of the AC. Members may verify the fault and use STEM
on the identified vulnerable code slice, possibly combin-
ing this with input filtering. Our scheme also takes into
consideration input from code analysis tools that identify
specific code sections as potentially more vulnerable to at-
tacks. Because of the use of STEM, it is possible to wrap
the necessary functionality “around” existing applications,
without requiring source code modifications.

Our analysis indicates that AC’s are an achievable goal.
Specifically, we analyze the effects of risk assessment and
the impact of protection mechanisms on the overall work-
load for the AC. We determine that a reasonably-sized ap-
plication (e.g., the Apache web server) requires an AC of
about 17,000 members, assuming a normal (random) dis-
tribution of faults. Our experimental evaluation of Apache
shows that an AC can be a practical method of protection;
in the best case, an AC of size 15,000 can execute Apache
with a performance degradation of only 6% at each mem-
ber. A small AC of 15 hosts can execute Apache with a
performance degradation of approximately 73%. This pa-
per makes the following novel contributions:

• Introduce the concept of an Application Community
as a way to exploit large-scale homogeneous software
environments towards improving the security of the
AC’s members.

• Present the various parameters that define an Applica-
tion Community and analytically explore the various
tradeoffs among them.

• Illustrate the feasibility of the AC concept by imple-
menting and experimenting with a prototype geared
towards detecting and immunizing software against

previously unknown general software failures and vul-
nerabilities.

Paper Organization We elaborate on the Application
Community concept in more detail in Section 2, and ex-
plore the tradeoffs between the various parameters of such
systems in Section 3. We discuss our preliminary experi-
mental results in Section 4. Section 5 gives an overview of
related work.

2 Application Communities

An Application Community (AC) is a collection of
congruent instances of the same application running au-
tonomously across a wide area network, whose members
cooperate in identifying previously unknown flaws or vul-
nerabilities. By exchanging information, the AC members
can prevent the failure from manifesting in the future. Al-
though individual members may be susceptible to new fail-
ures, the AC should eventually converge on a state of im-
munity against a particular fault, adding a dimension of
learning and adaptation to the system. The size of the AC
impacts both coverage (in detecting faults) and fairness (in
distributing the monitoring task). An AC is composed of
three main mechanisms, for monitoring, communication,
and defense, respectively.

The purpose of the monitoring mechanism is the detec-
tion of previously unknown (zero day) software failures.
There exists a plethora of work in this area, namely, using
the compiler to insert run-time safety checks [25], ”sand-
boxing” [29], anomaly detection [8] and content-based fil-
tering [1]. While shortcomings may be attributed to each
of the approaches [18, 57, 53], when they are considered
within the scope of an AC a different set of considerations
need to be examined. Specifically, the significance of the
security versus performance tradeoff is not as important as
the the ability to employ the mechanism in a distributed
fashion. The advantage of utilizing an AC is that the use of
a fairly invasive mechanism (in terms of performance) may
be acceptable, since the associated cost can be distributed
to the participating members. By employing a more inva-
sive instrumentation technique, the likelihood of detecting
subversion and identifying the source of the vulnerability
is increased. The monitoring mechanism in our prototype
is an instruction-level emulator that can be selectively in-
voked for arbitrary segments of code, allowing us to mix
emulated and non-emulated execution inside the same ex-
ecution context [51].

Once a failure is detected by a member’s monitoring
component, the relevant information is distributed to the
AC. Specifically, the purpose of the communication com-
ponent is the dissemination of information pertaining to
the discovery of new failures and the distribution of the
work load within the AC. The choice of the communi-
cation model to be employed by an AC is subject to the
characteristics of the collaborating community such as size
and flexibility. The immediate trade-off associated with the
communication model is the overhead in messages versus

2

the latency of the information in the AC. In the simplest
case, a centralized approach is arguably the most efficient
communication mechanism, however, there are a number
of issues associated with this approach. If there is a fixed
number of collaborating nodes, a secure structured overlay
network [34, 21] can be employed with exemption from the
problems associated with voluminous joins and leaves. If
nodes enter and leave the AC at will, a decentralized ap-
proach may be more appropriate. Efficient dissemination
of messages is outside the scope of this paper, but has been
the topic of research, e.g., [6].

The final component of our architecture is responsible
for immunizing the AC against a specific failure. Ideally,
upon receiving notification of an experienced failure, indi-
vidual members independently confirm the validity of the
reported weakness and create their own fix in a decentral-
ized manner thus reducing issues regarding trust. At that
point, each member in the AC decides autonomously which
fix to apply in order to inoculate itself. As independent ver-
ification of an attack report may be impossible in some sit-
uations, a member’s action may depend on predefined trust
metrics. Depending on the level of trust among users, al-
ternative mechanisms may be employed for the adoption of
universal fixes and verification of attack reports. In the case
of systems where there is minimal trust among members a
voting system can be employed at the cost of an increased
communication overhead. Finally, given that a fix could be
universally adopted by the AC, special care must be placed
in minimizing the performance implications of the immu-
nization.

The inoculating approach that can be employed by the
AC is contingent on the nature of the detection mechanism
and the subsequent information provided on the specific
failure. The type of protection can range from statistical
blocking, behavioral or structural transformation. For ex-
ample, IP address and content filtering [1], code random-
ization [33] and emulation [51] may be used for the pro-
tection of the AC. For the defense component in our ex-
perimental prototype, we use the STEM instruction-level
emulator.

2.1 Selective Transactional EMulation

STEM is an x86 instruction-level emulator that can be
selectively invoked in the spatial or temporal domain dur-
ing a program’s execution. In other words, we can decide
which routines to emulate during program execution (with
the rest of the code running natively on the system CPU),
and whether to emulate or run natively any specific routine
each time it is invoked. Although STEM allows us to op-
erate at the granularity of individual instructions, we con-
fine ourselves to emulating (or not) whole routines because
these represent convenient abstractions that aid in program
recovery, as we shall see soon.

When a piece of code is being emulated, STEM checks
the validity of every instruction’s operands prior to emu-
lating that instruction. For example, STEM can verify that
the destination address of a memory-write operation is in

a properly OS-mapped page, or that a memory-write to
control information on the stack (e.g., the return address)
is using input-supplied data (which may indicate a buffer
overrun), similar to TaintCheck [43] and Minos [26]. In
the latter case, interesting future work includes identify-
ing non-control hijacking overflow attacks [22], which is a
non-trivial problem. In addition, STEM maintains a log of
all memory changes done during emulation of the code.

Once a fault is detected, and it has not been seen before,
the emulator enters an “error virtualization” phase. The
goal is to determine how to modify program execution so
that this fault (which the program is not designed to handle)
is translated into an error that the existing program code can
recover from. The intuition is that by simulating an error-
return of the function within which the fault occurred, its
caller may be able to handle the error appropriately (i.e.,
through existing error-checking code that the programmer
wrote).

STEM simulates an error-return by first taking a snap-
shot of the program state (memory and registers) at the time
of the fault, putting an appropriate error code in the return
value field on the stack, undoing all memory changes made
during emulation using the log, and returning execution to
the caller. Currently, STEM uses certain heuristics to de-
termine the correct value to use as an error code, which re-
quire knowledge of the return type of each function. STEM
uses both −1 and 0 as return codes (testing these sepa-
rately) for functions returning an integer or a long, and uses
NULL as an error code for functions returning a pointer of
any type. Of course, these are not guaranteed to be correct
conventions, although their impact can be verified through
testing. Static program analysis or programmer-supplied
annotations (either in the code or out-of-band) may be used
to achieve better accuracy, but this remains a topic for fu-
ture work. In practice, these heuristics work in over 80%
of all cases examined (see Section 4).

If forcing an error-return of the top-most function on
the stack does not work (i.e., the program exhibits another
fault shortly after simulating this error-return), STEM sim-
ulates error-return from the second top-most function on
the stack. This process is repeated until the application
does not terminate abnormally after STEM forces an error-
return of a function call sequence. In the extreme case, the
whole application could end up being emulated, at a sig-
nificant performance cost. We give some indications on
the effectiveness and performance impact of this approach
in Section 4. For more details, see [51].

If the program does not crash after the forced return,
STEM has found a “vaccine” for the fault, which it can
use as a remediation technique if a fault is detected in the
future. If the fault is not triggered during an emulated exe-
cution, emulation halts at the end of the code segment, and
program execution reverts to the native CPU.

The overhead of emulation is incurred at all times
(whether the fault is triggered or not). To minimize this
cost, STEM must identify the smallest piece of code that
it needs to emulate in order to catch and recover from the

3

fault. Using an application community to divide the emula-
tion task across large numbers of application instances can
minimize the performance cost on any specific instance.
Once a fault is identified by one application, the relevant
information (faulty function, recovery strategy) is propa-
gated across the community. All AC members then begin
emulating the problematic code and thus become immune
to the specific failure.

3 Analysis

Here, we present an analysis of the properties that gov-
ern the AC. Subsection 3.1 explains the calculations that
affect the size of the AC based on the parameters we list in
Table 1. We consider the problem of distributing work to
the AC members in Subsection 3.2 and present some sim-
ple approaches to addressing it. Subsection 3.2 also defines
the general form of the work distribution problem, which
we term the AC-CALLGRAPH-KNAPSACK problem. In ad-
dition, we outline a strategy for solving this problem that
optionally takes into consideration member-local policy.
Subsection 3.3 briefly discusses the probability of catch-
ing new faults by duplicating monitoring responsibilities.
Subsection 3.4 presents the results of our analysis and sim-
ulations.

To make our analysis concrete, we consider an AC
aimed at low-level software attacks and faults (e.g., buffer
overflows, illegal memory dereferences, exceptions aris-
ing from illegal instruction operands, and other faults that
cause process termination). ACs protecting against differ-
ent types of failures are possible; we do not consider them
further in this paper, except to the extent that our analysis
apply to such systems.
Work Overview We formalize the notion of total work in
the AC, W , as a function of both the cost of the monitoring
mechanisms and the perceived vulnerability of each func-
tion. The actual work done can be calculated by two run-
time metrics: (a) the number of machine instructions exe-
cuted by the function during a request, and (b) the amount
of real time that a function takes to execute a request. Each
metric has advantages and drawbacks. For example, while
instruction count is an intuitive unit and is straightforward
to measure, there is a clear difference in computation be-
tween 100 logical “AND” operations and 100 floating point
“MUL” operations (everything else, like data dependencies
and structural hazards, being equal). On the other hand, us-
ing only timing information can obscure the effects of non-
determinism or interaction with other systems even though
it may provide a more realistic sense of system response or
throughput.

Our main focus is on calculating the amount of work in
the system and determining the level of resources needed
to achieve both a fair coverage and a full coverage. That is,
we wish to determine an assignment of monitoring tasks
that dictates an equal amount of work for each member
of the AC while simultaneously guaranteeing that all func-
tions in an application are being monitored. If the size of

the AC is already fixed, then W dictates how much work
each member should do. If it is not yet fixed, then W serves
as a lower bound on the size of the “optimally fair” AC. If
the value of “fairness” is predetermined, falling below the
minimum set of AC members means that we must either
reduce coverage to maintain fairness or reduce fairness to
maintain coverage. If fairness means that each node does
an equal amount of work, the system can degrade grace-
fully.

3.1 Work Calculation

The cost, ci, of executing each fi is a function of the
amount of computation present in fi (we denote this com-
putation as xi) and the amount of risk present in fi (we
denote this risk as vi). All the information (an annotated
call graph of a profiling run) needed to perform the analy-
sis is present at each member of the AC. The calculations
can be kept in a form similar to Table 2.

The calculation of xi can be driven by at least two dif-
ferent metrics: oi, the raw number of machine instructions
executed as part of fi, or ti, the amount of time spent ex-
ecuting fi. Since the cost of certain functions (as noted
above) may not be easy to extrapolate from total instruc-
tions executed, the experimental evaluation in Section 4
uses the running time of a function as a measure of xi,
but this analysis will assume either metric may be used.
Both oi and ti can vary as a function of time or application
workload according to the application’s internal logic2. For
example, an application may perform logging or cleanup
duties after it passes a threshold number of requests. Code
that normally lies dormant would then be executed. Future
work will explore functions that approximate xi’s value at
a given time for either metric (oi or ti), as either parame-
ter may change during the lifetime of an AC (e.g., due to
hardware or software upgrades).

The risk factor is somewhat harder to characterize, as
it is more likely to vary during runtime and it is not clear
how to classify risk in terms of execution time or number of
machine operations. We approximate the risk by a simple
scaling factor α based on a statistical measure of vulnera-
bility introduced by the CoSAK project3. Other measures
(e.g., static analysis tools) may be used; exploring the range
of risk metrics is interesting future work.

Let vi represent a vulnerability (or risk) score for fi.
This vi may be the result of a complex function that calcu-
lates risk or may be a simple scalar factor α. Its purpose
is to weight a function such that more members monitor it.
Let T =

∑n

i=1
xi. If we express the relative cost of execut-

ing each fi as some cost function ci = C(fi, xi, vi), then
the total amount of work in the system can be represented
by the equation: W =

∑n

i=1
C(fi, xi, vi).

2In order to gain confidence in the value of xi, we determine xi over
a range of requests to see if the application somehow varies the amount of
instructions it executes based on the number of requests it has handled so
far.

3http://serg.cs.drexel.edu/projects/cosak/

4

Variable Description Variable Description
N total AC members needed F set of application functions
n the size of F E set of edges for F

G directed call graph of (F, E) W the total amount of work
Z the base unit of work C a cost function
M the set of AC members mi the ith member of M

fi the ith member of F ci the total cost of executing fi

xi the performance cost of fi vi the risk cost of executing fi

Table 1. Various parameters and data sets for an Application Community. The risk score and performance score for each
function combine to define the amount of work in the system. To be fair to each member, an equivalent amount of resources
must be allocated to the monitoring of some subset of functions.

We provide a cost function in two phases. The first
phase calculates the cost due to the amount of computa-
tion for each fi. The second phase normalizes this cost
and applies the risk factor vi to determine the final cost of
each fi and the total amount of work in the system. If we
let C(fi, xi) = xi

T
∗ 100, then we can normalize each cost

by grouping a subset of F to represent one unit of work.
Membership in this subset can be arbitrary, but is meant to
provide a flexible means of defining what a work unit trans-
lates to in terms of computational effort. A good heuristic
is to group the k lowest cost functions together and declare
the sum of their work as the base work unit, Z. Every other
function’s cost is normalized to this work unit, and ri repre-
sents the relative weight of each fi with respect to Z. As a
result, we know that W = Nbase =

∑n

i=1
ri represents the

total number of AC members needed to obtain full cover-
age of an application when we only consider performance.

However, we still have to account for the measure of
a function’s vulnerability (or alternatively, the risk level
of executing the function). We can treat the vulnerability
score of a function as a discrete variable with a value of
α (where α can take on a range of values according to the
amount of risk). Thus,

vi =

{

α if fi is vulnerable, α > 1;
1 if fi is not vulnerable.

(1)

Given the scaling factor vi for each function, we can deter-
mine the total amount of work in the system and the total
number of members needed to monitor every function is
W = Nvuln =

∑n

i=1
vi ∗ ri

fi xi ri vi T C(fi, xi) ri ∗ vi

a() 100 1 α1 600 16 α1

b() 200 2 α2 600 33 2α2

c() 300 3 α3 600 50 3α3

Table 2. An example of AC work calculation. Each
member of the AC can calculate this table indepen-
dently. Here, the AC is executing an application with
three functions. The choice of α is somewhat arbitrary
and can vary based on the context of a particular func-
tion.

3.2 Work Distribution

After each AC member has a clear idea of the amount of
work in the system, work units (slices) must be distributed
to each member. In the simplest scenario, a central con-
troller simply assigns approximately W

N
work units to each

node. A more robust method of work distribution would
be for each AC member to autonomously determine their
work set. Each member can simply iterate through the list
of work units, flipping a coin weighted with the value vi∗ri.
If the result of the flip is “true” then the member adds that
work unit to its work set. A member stops when its total
work reaches W

N
. Such an approach offers statistical cov-

erage of the application. A more elegant method of work
distribution is possible; since a full treatment of it is be-
yond the scope of this paper, we only provide an overview
of the approach.
Distributed Bidding The problem of assigning work to
individual members in the AC can be seen as an instance of
the general KNAPSACK problem. We call this problem the
AC-CALLGRAPH-KNAPSACK problem. For the call graph
G, each node has a particular weight (vi ∗ ri from above).
The problem is then to assign some subset of the weighted
nodes in F to each member of M such that each mem-
ber does no more than W

N
work. We can relax the thresh-

old constraint to be approximately W

N
within some tunable

range ε. Thus, ε is a measure of the fairness of the system.
Once the globally fair amount of work W

N
is calculated,

each AC member should be able to adjust their workload
ε by bargaining with other AC members via a distributed
bidding process.

Two additional considerations impact the assignment
of work units to AC members. First, we would like to
preferentially allocate work units with higher weights, as
these work units likely have a heavier weight due to an in-
creased vulnerability score. Even if the weight is derived
solely from the measure of performance cost, assigning
more members to it is beneficial because these members
can round-robin the monitoring task so that any one mem-
ber does not have to assume the cost alone. Second, in
some situations, the value vi∗ri will be greater than the av-
erage amount of work W

N
. Achieving fairness then means

that the value vi ∗ ri defines the quantity of AC members
that must be assigned to it, and the sum of all these quan-

5

tities defines the minimum number of members that must
participate in an AC to achieve a fair and full coverage for
a particular application.

Our algorithm works in two rounds. First, each member
calculates a table similar to Table 2. Then, AC members
enter into a distributed bidding phase to adjust their indi-
vidual workload. The distributed algorithm uses tokens
to bid; tokens map directly to the number of time quanta
that an AC member is responsible for emulating the exe-
cution of a particular code slice. A node will accumulate
tokens by taking on extra computation. The distributed al-
gorithm makes sure that each node should not accumulate
more than the total number of tokens allowed by the choice
of ε. Since we currently assume a collaborative AC, useful
future work can analyze what can be done to protect the
bidding process in the face of various threats (e.g., insider
accumulating tokens) and constraints (e.g., anonymity for
AC members).

3.3 Overlapping Coverage

While “full coverage” means that every work unit (or
slice) of an application is being monitored for the given
time unit, it does not mean that every AC member’s in-
dividual application is being fully monitored. Consider
the following situation: member A is monitoring function
Z, and member B is monitoring function Y . If a fault is
present in function Z, B will miss it. Even though the
community may catch the fault (by virtue of A’s willing-
ness to monitor Z), there may exist individual servers that
have not yet detected the fault (e.g., B, or even A if A is ex-
ecuting another part of the application and not Z). There is
a tradeoff between the amount of individual coverage and
how quickly the AC can identify a new fault.

If AC members monitor more than their share (e.g., A

also monitors Y and B also monitors Z, then we have in-
creased coverage to 200% and made sure that the fault, if
present, is detected as quickly as possible. A similar sit-
uation is presented in Table 3. Assuming a uniform ran-
dom distribution of new faults across AC members, the
probability of a fault happening at a particular member k

is: P (fault) = 1

N
. The probability of member k detect-

ing the error is a function of k’s individual coverage level.
For Alice in Table 3, P (detection) = 1

4
. Thus, the proba-

bility of Alice detecting a new fault is the probability that
the fault happens at Alice and that Alice detects the fault:
P (fault at Alice ∧ detection) = 1

N
∗ 1

4
. Given that N = 4

for Alice’s AC, the probability that Alice will detect a new
fault is 1

16
. Similar calculations for each member shown in

Table 3 show that the application has an overall new fault
detection probability of 3

8
. If every AC member adds the

missing functions to its auxiliary set, then each member
has a 1

4
chance of detecting the new fault: this probabil-

ity is exactly 1

N
, their best possible chance (because the

fault could happen to one of the other three). At the cost of
400% coverage, the AC has reached a probability of 1 for
new fault detection. We can generalize this relationship:

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

In
di

vi
du

al
 D

et
ec

tio
n

R
at

e

AC size

Progression of New Fault Detection Probability

Figure 1. Rate of detection varies with AC size. Each
line represents a member-local coverage level in 10%
increments, with 10% being the bottom curve. Note
how detection degrades as the AC size grows: each
member is only doing a constant amount of extra cov-
erage. However, when every member performs 100%
local coverage, they regain the best chance to detect the
fault, and achieve a community probability of 1 that the
fault is detected when it first occurs; e.g., an AC of size
2 with each member doing 100% coverage gives each
member a probability of 1

2
in detecting the fault, i.e.,

the probability that the fault is seen by that member.

the probability of the AC detecting the fault is

P (AC detect) =

N
∑

i=1

1

N
∗ ki (2)

where ki is the percentage of coverage at AC member k.
Figure 1 shows how the AC’s detection rate improves as
individual member coverage tends towards 100%. As each
ki goes to 100%, Equation 2 becomes

∑

N

i=1

1

N
, or N

N
, a

probability of 1 that the fault is detected when it first oc-
curs. The worst case in terms of performance is the best
case in terms of rapid detection and requires N ∗ 100%
coverage.

3.4 Analytical Results

Our simulations explore the influence of various parame-
ters on the amount of work in the AC: (a) the size of the
application (number of functions it contains), (b) the dis-
tribution of work between functions, (c) the level of work
present in each function, and (d) the policy for determining
the α score (and thus vi) for each function.

We simulate an application with a small, medium, large,
and massive (20, 200, 2000, and 20000 functions, respec-
tively) size. Similarly, the level of work for each function is
small, medium, large, and massive (50, 500, 5000, 50000,
respectively) normalized work units. The work level is in-
terpreted differently for each distribution scheme. We ex-
amine three types of distributions of ri. The even distri-
bution defines an equal work level for every function. The

6

AC Member ID Monitored Set Auxiliary Set
Alice {A, F} {∅}
Bob {B, C} {A, F}
Carol {D, E} {G, H}
David {G, H} {∅}

Table 3. A distribution of work and overlapping monitoring. Here, Alice and David choose not to do extra monitoring.
However, Bob and Carol are each monitoring two more functions than strictly necessary for “fairness” and 100% appli-
cation community coverage. Bob and Carol have increased their individual coverage from 25% to 50%, and their overall
chances of detecting a new fault from 1

16
to 1

8
.

norm distribution is an approximately “normal” distribu-
tion that is centered on an average value of the work level.
The skew distribution sets the cost of most functions rela-
tively low, but includes a few functions that account for a
large part of the execution cost.

We determine α according to two policies: exp and flat.
The flat policy applies a static factor of 10 for every func-
tion deemed vulnerable. The exp policy exponentially in-
creases the value of α for “more vulnerable” functions. Ev-
ery function is assigned a default α value of 1. For both
policies, we determine if a function is vulnerable or not
by examining the distance of the function (in the appli-
cation call graph) from a read() system call, using the
heuristics proposed by the COSAK project. For our sim-
ulations, we assume that the path length from each func-
tion fi to a read() system call is normally distributed
around a mean of log(n), where n is the size of the call
graph, leaving exploration of different distributions as fu-
ture work. Thus, our simulation assigns a normally dis-
tributed distance about this mean to each function, repre-
senting the distance from a read() system call. If a pro-
gram is heavily saturated with read()’s, our simulation
underestimates the weight that should be assigned to each
function. However, this is not a problem, as this situation
can be easily detected from the application’s call graph, and
every function can be scaled accordingly. The behavior of
the flat policy is seen in Figure 2. Figure 3 shows the re-
lationship between a program’s size and the workload W

of the AC. While the values for workload are quite large,
they are based on a program where each function performs
about 50000 work units. Our simulations for smaller work-
loads show the same relationship with lower total cost. We
also consider a more realistic case (see Figure 2) for an
Apache-like application: of medium size (200 functions),
with a normal distribution of xi (cost) and a flat policy for
determining α.

4 Evaluation

In this section, we quantitatively measure the tradeoffs
presented in Section 3, namely, the size of the an applica-
tion community and the length of the work time quantum.
Measurements are conducted using the Apache web server
as the protected application and STEM as the monitoring
and remediation component.
Effectiveness of STEM For our monitoring and reme-

diation mechanism we use an instruction-level emulator,
STEM, that can be selectively invoked for arbitrary seg-
ments of code, allowing the mix of emulated and non-
emulated execution inside the same execution run. The em-
ulator allows us to (a) monitor for the specific type of fail-
ure prior to executing the instruction, (b) undo any memory
changes made by the code function inside which the fault
occurred, by having the emulator record all memory mod-
ifications made during its execution, and (c) simulate an
error-return from said function. One of the key assump-
tions behind STEM is that we can create a mapping be-
tween the set of errors and exceptions that could occur dur-
ing a program’s execution and the limited set of errors that
are explicitly handled by the program’s code. We call this
approach “error virtualization”.

In a series of experiments using a number of open-
source server applications including Apache, OpenSSH,
and Bind, we showed that our “error virtualization” map-
ping assumption holds for more than 88% of the cases
we examined. Testing with real attacks against Apache,
OpenSSH, and Bind, we showed that this technique can
be effective in quickly and automatically protecting against
zero day attacks. Although full emulation is prohibitively
expensive (30-fold slowdown), selective emulation im-
poses an overhead between 1.3 and 2, depending on the
size of the emulated code segment, assuming the fault is
localized within a small code region.

Performance In order to understand the performance im-
plications of an AC, we run a set of performance bench-
marks which we use to explore the tradeoffs presented by
our system. We employ STEM on the Apache web server
and measure the overhead of our protection mechanism in
terms of coverage and fairness.

Before we explore the costs associated with using an
AC, we examine the cost of protecting a single instance of
Apache. We demonstrate that emulating the bulk of an ap-
plication entails a significant performance impact. In par-
ticular, we emulated the main request processing loop for
Apache (contained in ap process http connection()) and
compared our results against a non-emulated Apache in-
stance. In this experiment, the emulator executed roughly
213,000 instructions. The impact on performance is clearly
seen in Figure 4, which plots the performance of the fully
emulated request-handling procedure.

To get a more complete sense of this performance im-

7

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140 160 180 200

of

 fu
nc

tio
ns

function weight

Distribution of Work Units for a Server-type Workload

unscaled weight
vulnerability weight

Figure 2. Workload scaling for a realistic parameter set.
For an application of about 200 functions in size, with each
function’s work normally distributed around a normalized
ri of 10 and a flat policy for α, the workload (W) scales from
2020 to 16897.

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

10 100 1000 10000 100000 1e+06 1e+07

W
 (

si
ze

 o
f w

or
kl

oa
d)

program size (# of functions)

Comparison of Actual and Weighted Workloads

unweighted workload (norm)
unweighted workload (even)
unweighted workload (skew)

weighted workload (norm-exp)
weighted workload (even-exp)
weighted workload (skew-exp)
weighted workload (norm-flat)
weighted workload (even-flat)
weighted workload (skew-flat)

Figure 3. A logscale comparison of workloads given a
vulnerability policy. Note that the raw values are quite
high, but are drawn from data that assumes a massive value
(50000) for normalized workload. More important is how
the relationship between the size of the program and the to-
tal workload is affected by the choice of vulnerability policy.

Slice size Requests/sec Number of servers
10.34 148 (27%) 15
5.24 333 (62%) 30
0.25 380 (70%) 635
0.14 497 (92%) 1135
0.04 471 (87%) 3973
0.01 506 (94%) 15893

Table 4. Work-time quantums and their effects on
Apache performance and AC size.

Apache trials Mean Std. Dev.
Normal 18 6314 847
STEM 18 277927 74488

Table 5. Timing of main request processing loop. Times
are in microseconds. This table shows the overhead of run-
ning the whole primary request handling mechanism in-
side the emulator. In each trial a user thread issued an
HTTP GET request.

pact, we timed the execution of the request handling proce-
dure for both the non-emulated and fully-emulated versions
of Apache by embedding calls to gettimeofday() where the
emulation functions were (or would be) invoked.

For our test machines and sample loads, Apache nor-
mally (e.g., non-emulated) spent 6.3 milliseconds to per-
form the work in the ap process http connection() func-
tion, as shown in Table 5. The fully instrumented loop run-
ning in the emulator spends an average of 278 milliseconds
per request in that particular code section.

To calculate the amount of work in the system and deter-
mine the level of resources needed to achieve fair coverage
and full coverage as explained in Section 3, we first need
to get a detailed analysis of the run-time characteristics of
the protected application. For this purpose, we ran a pro-
filed version of Apache against a set of test suites and ex-
amined the subsequent call-graph generated by these tests
with gprof and Valgrind [49]. The ensuing call trees were
analyzed in order to extract the time spent doing work for
each function. Using the corresponding costs, we evaluate
the performance of Apache in requests per second, by em-
ploying STEM as the protection mechanism on different
work time quantums to achieve full coverage.

We start with the examination of the performance of an
unmodified Apache server using ApacheBench. We then

proceed with the emulation of different functions repre-
senting varying work-time quantums and measure the per-
formance overhead in terms of requests per second. Specif-
ically, all functions invoked at least once per transaction are
examined for their relative cost (time spent in function).
Given the per function cost, we sample 6 functions that
represent a characteristic distribution of work done per re-
quest. At that point, we wrap each function with STEM and
measure the performance overhead imposed by the emula-
tion.

The machine we chose to host Apache was a single Pen-
tium IV at 3GHz with 1GB of memory running RedHat
Linux with kernel 2.4.24. The client machine was a Pen-
tium IV at 2 GHz with 1GB of memory running Debian
Linux with kernel 2.6.8-1. For the performance evaluation
of Apache, we use ApacheBench, a complete benchmark-
ing and regression testing suite. Examination of application
response is preferable to explicit measurements in the case
of complex systems, as we seek to understand the effect on
overall system performance. Specifically, we look at the re-
quests per second served by Apache for 10000 requests at a
concurrency of 5. We use the average of 100 runs omitting
statistical outliers.

As illustrated in Figure 5 and Table 4, we examine the
use of a variety of work-time quantums on raw Apache

8

Figure 4. Performance of the system under various levels of emulation. While full emulation is fairly expensive, selective
emulation of input handling routines appears quite sustainable.

performance and coverage. As expected, emulating large
“slices” using STEM translates into lower performance for
each participating member but requires the smallest com-
munity size for 100% coverage. Concretely, using the
largest work-time quantum translates into a performance
degradation of 73% per member and an AC size of 15
members. As the “slice” size is reduced (using a less ex-
pensive function as the base), the performance overhead
per member is decreased at the cost of a larger community.
For the smallest work-time quantum, a performance over-
head of 6% is experienced per member whilst the size of
the AC grows to 15893. These results are very encourag-
ing and closely follow the intuition provided in Section 3

Figure 6 illustrates the effect of varying the vulnerabil-
ity index on the size of the community for 100% cover-
age. In this example, we double the number of servers re-
quired to cover an α region. We start with the case where
25% of the code is considered potentially vulnerable and
increment the α value until the entire code base is covered.
As expected, when a higher percentage of the code base
is deemed vulnerable, the community needs to be larger to
realize fair coverage. Note that the effect on Apache per-
formance is linear despite an aggressive protection policy.
Our experiments demonstrate that the use of an AC can al-
leviate the problems associated with using an invasive pro-
tection mechanism by fairly distributing work to participat-
ing members. Furthermore, we show that the flexibility of
our protection mechanism can facilitate the adjustment of

parameters associated with the requirements of an AC.

5 Related Work

The synthesis of our system draws on work from many
other areas. Most notably, the major themes of our system
are distributed large-scale collaborative security and sur-
vivable computing. Traditional fault-tolerance techniques
are a related area of work, although they are primarily in-
tended to supply enough resources for a particular enclave
to survive an attack by outlasting the resources of an at-
tacker.

Secure survivable architectures are typically very
application- or domain-specific. Ghosh, et al. [28] pro-
pose “fault injection analysis” applied to software, while
Strunk, et al. [55] apply a low-level approach: they propose
an intrusion detection and recovery model at the storage
layer. Kreidl, et al. [37] propose a formalized feedback-
driven model for individual COTS applications. SABER
[35] is a generalized, application-neutral architecture that
encompasses a broad array of tools. The APOD project [9]
uses a combination of intrusion detection, firewalls, TCP
stack probes, virtual private networks, bandwidth reserva-
tion, and traffic shaping mechanisms, to allow applications
to detect attacks and contain the damage of successful in-
trusions by changing their behavior. They also discuss the
use of randomizing techniques, such as changing the TCP
ports applications listen to.

9

 0

 200

 400

 600

 800

 1000

 1 10 100 1000 10000
 0

 5000

 10000

 15000

 20000

re
q

s/
se

c

N
u

m
b

er
 o

f
se

rv
er

s

Slice Size

STEM: Evaluation

Reqs/sec
Number of servers

Figure 5. The effect of different work-time quantums on
request/sec for Apache and on the size of the AC.

 0

 200

 400

 600

 800

 1000

 1 10 100 1000 10000
 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

re
q

s/
se

c

N
u

m
b

er
 o

f
se

rv
er

s

Slice Size

STEM: Evaluation

Reqs/sec
Number of servers
with alpha at 20%

50%
75%

100%

Figure 6. The impact of the vulnerability index on the
size of an AC.

[54, 40] explore the notion of collaborative security with
specific application to coordinating IDS alerts for worms
and scanning attacks across administrative domains. In-
dra [32] is another scheme that provides a peer-to-peer ap-
proach to intrusion detection. In addition, a collaborative
approach to containing the spread of worms has been the
focus of current research [42, 46, 7]. Vigilante [24] pro-
poses the concept of Self-Certifying Alerts, which are ex-
changed between hosts as a result of a newly detected at-
tack. The recipient can verify the validity of the alert and
use an appropriate protection mechanism. In Vigilante, ev-
ery host checks for all attacks all the time, in contrast to our
more general load-sharing-capable approach. Furthermore,
we propose a software-based protection mechanism (as op-
posed to their use of filtering) that both protects against at-
tacks and also maintains application availability, thus pro-
viding an element of real “software healing.”

O’Donnell and Sethu [44] study algorithms for the as-
signment of distinct software packages (whether random-
ized or inherently different) to individual systems in a net-
work, towards increasing the intrinsic value of available
diversity. Their goal is to limit the ability of a malicious
node to compromise a large number (or any) of its neigh-
bors with a single attack. Unfortunately, their abstraction
does not translate well to the end-to-end semantics of the
Internet, where any host can contact another without (in
most cases) needing to pass through a series of other hosts.
Their work can be viewed as a situation where a commu-
nity of nodes collaboratively diversifies, where our work
seeks to collaboratively protect a homogeneous group of
nodes.

DOMINO [58] is an overlay system for cooperative in-
trusion detection. The system is organized in two layers,
with a small core of trusted nodes and a larger collection
of nodes connected to the core. The experimental analysis
demonstrates that a coordinated approach has the potential
of providing early warning for large-scale attacks while re-
ducing potential false alarms. A similar approach using a
DHT-based overlay network to automatically correlate all

relevant information is described in [19]. [59] describes
an architecture and models for an early warning system,
where the participating nodes/routers propagate alarm re-
ports towards a centralized site for analysis. The question
of how to respond to alerts is not addressed, and, similar to
DOMINO, the use of a centralized collection and analysis
facility is weak against worms attacking the early warning
infrastructure.

Gamma [45, 14] is an architecture for instrumenting
software such that information that can lead to future im-
provements of the code can be gathered in a central lo-
cation, without imposing excessive overhead to any given
code instance. Their technique, software tomography, is
similar to our code-slicing approach, and has been com-
bined with a dynamic software update mechanism that al-
lows code producers to fix bugs as they are detected. Our
work is different primarily in that (a) we introduce a fully
automated mechanism for software healing, (b) which does
not require merging of the monitoring information from the
different software instances.

The Cooperative Bug Isolation project [38, 39] uses a
sampling infrastructure to gather information from a pro-
gram’s execution and communicates its findings to a cen-
tral database where the data is analyzed to extract debug-
ging information automatically. In order to reduce the in-
strumentation cost they statistically spread the monitoring
across an application and a large user base.

Finally, a number of efforts have been made to protect
applications via the introduction of diversity [33, 12, 15,
48, 13, 23, 50, 44]. The ability to rollback [17] and cleanly
restart [20] is critical to our system, and we expect to inte-
grate such capabilities in our future work.

6 Conclusions

The growing concern about monocultures at all levels
of computing systems has engendered a body of research
that seeks to increase system diversity. Given the large
legacy base and the continuing need for computing systems

10

to communicate and interoperate, introducing artificial di-
versity is no easy task, and it is often hampered by extra
management complexity. While we support the notion of
artificial diversity and actively explore its use, this paper
introduces the concept of Application Communities: our
contribution is a method for exploiting the resources avail-
able in large scale monocultures to provide protection to
each member of the community. We postulate that systems
that may not tolerate the introduction of artificial diversity
or cannot easily take advantage of it may benefit from the
use of an AC.

Our experimental and analytical results show that mem-
bers of an application community can reasonably deploy
our novel monitoring framework (STEM) and collaborate
to share the overhead of its protection mechanisms. We
validate our analysis of workload and fault discovery by
experimenting with the Apache web server. Furthermore,
AC members can employ STEM to automatically recover
from attacks and preemptively notifiy other AC members
of new faults, thus inoculating the community at the cost
of a few failed members.

References

[1] Using Network-Based Application Recognition and Access
Control Lists for Blocking the ”Code Red” Worm at Net-
work Ingress Points. Technical report, Cisco Systems, Inc.

[2] CERT Advisory CA-2001-19: ‘Code Red’ Worm
Exploiting Buffer Overflow in IIS Indexing Service
DLL. http://www.cert.org/advisories/
CA-2001-19.html, July 2001.

[3] CERT Advisory CA-2001-26: Nimda Worm.
http://www.cert.org/advisories/
CA-2001-26.html, September 2001.

[4] Cert Advisory CA-2003-04: MS-SQL Server
Worm. http://www.cert.org/advisories/
CA-2003-04.html, January 2003.

[5] CERT Advisory CA-2003-21: W32/Blaster Worm.
http://www.cert.org/advisories/
CA-2003-20.html, August 2003.

[6] D. Agrawal and A. Malpani. Efficient dissemination of in-
formation in computer networks. Comput. J., 34(6):534–
541, 1991.

[7] K. Anagnostakis, M. B. Greenwald, S. Ioannidis, A. D.
Keromytis, and D. Li. A Cooperative Immunization Sys-
tem for an Untrusting Internet. In Proceedings of the 11th
IEEE International Conference on Networks (ICON), pages
403–408, October 2003.

[8] F. Apap, A. Honig, S. Hershkop, E. Eskin, and S. J. Stolfo.
Detecting Malicious Software by Monitoring Anomalous
Windows Registry Accesses. In Proceedings of the 5

th

International Symposium on Recent Advances in Intrusion
Detection (RAID), October 2002.

[9] M. Atighetchi, P. Pal, F. Webber, and C. Jones. Adaptive
Use of Network-Centric Mechanisms in Cyber-Defense. In
Proceedings of the 2nd IEEE International Symposium on
Network Computing and Applications, April 2003.

[10] D. Aucsmith. Monocultures Are Hard To Find In Prac-
tice. IEEE Security & Privacy, 1(6):15–16, Novem-
ber/December 2003.

[11] A. Avizienis. The n-version approach to fault-tolerant
software. IEEE Transactions on Software Engineering,
11(12):1491–1501, 1985.

[12] E. G. Barrantes, D. H. Ackley, S. Forrest, T. S. Palmer,
D. Stefanovic, and D. D. Zovi. Randomized Instruction
Set Emulation to Disrupt Binary Code Injection Attacks. In
Proceedings of the 10th ACM Conference on Computer and
Communications Security (CCS), pages 281–289, October
2003.

[13] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address
Obfuscation: an Efficient Approach to Combat a Broad
Range of Memory Error Exploits. In Proceedings of the
12th USENIX Security Symposium, pages 105–120, August
2003.

[14] J. Bowring, A. Orso, and M. J. Harrold. Monitoring De-
ployed Software Using Software Tomography. In Proceed-
ings of the Workshop on Program Analysis for Software
Tools and Engineering (PASTE), November 2002.

[15] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing
SQL Injection Attacks. In Proceedings of the 2

nd Applied
Cryptography and Network Security Conference (ACNS),
pages 292–302, June 2004.

[16] S. Brilliant, J. C. Knight, and N. G. Leveson. Analysis of
Faults in an N-Version Software Experiment. IEEE Trans-
actions on Software Engineering, 16(2), February 1990.

[17] A. B. Brown and D. A. Patterson. Undo for Operators:
Building an Undoable E-mail Store. In Proceedings of the
USENIX Annual Technical Conference, pages 1–14, 2003.

[18] Bulba and Kil3r. Bypassing StackGuard and StackShield.
Phrack, 5(56), May 2000.

[19] M. Cai, K. Hwang, Y.-K. Kwok, S. Song, and Y. Chen. Col-
laborative Internet Worm Containment. IEEE Security &
Privacy Magazine, 3(3):25–33, May/June 2005.

[20] G. Candea and A. Fox. Crash-only software. In Proceed-
ings of the 9th Workshop on Hot Topics in Operating Sys-
tems, May 2003.

[21] M. Castro, P. Drushel, A. Ganesh, A. Rowstron, and
D. Wallach. Secure routing for structured peer-to-peer over-
lay networks. In Proceedings of OSDI, 2002.

[22] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-
Control-Data Attacks Are Realistic Threats. In Proceedings
of the 14

th USENIX Security Symposium, pages 177–191,
August 2005.

[23] M. Chew and D. Song. Mitigating Buffer Overflows by
Operating System Randomization. Technical Report CMU-
CS-02-197, Carnegie Mellon University, December 2002.

[24] M. Costa, J. Crowcroft, M. Castro, and A. Rowstron. Can
We Contain Internet Worms? In Proceedings of the 3

rd

Workshop on Hot Topics in Networks (HotNets), November
2004.

[25] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang. Stack-
guard: Automatic adaptive detection and prevention of
buffer-overflow attacks. In Proceedings of the 7th USENIX
Security Symposium, January 1998.

[26] J. R. Cranall and F. T. Chong. Minos: Architectural Sup-
port for Software Security Through Control Data Integrity.
In Proceedings of the International Symposium on Microar-
chitecture (MICRO), December 2004.

[27] D. E. Geer. Monopoly Considered Harmful. IEEE Security
& Privacy, 1(6):14 & 17, November/December 2003.

[28] A. K. Ghosh and J. M. Voas. Innoculating Software for
Survivability. Communications of the ACM, 42(7), 1999.

11

[29] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A
Secure Environment for Untrusted Helper Applications. In
Procedings of the 1996 USENIX Annual Technical Confer-
ence, 1996.

[30] G. Goth. Addressing the Monoculture. IEEE Security &
Privacy, 1(6):8–10, November/December 2003.

[31] J. Gray and D. Siewiorek. High-availability Computer Sys-
tems. IEEE Computer, 24(9):39–48, September 1991.

[32] R. Janakiraman, M. Waldvogel, and Q. Zhang. Indra: A
peer-topeer approach to network intrusion detection and
prevention. In Proceedings of the IEEE International Work-
shops on Enabling Technologies: Infrastructure for Collab-
orative Enterprises (WETICE), Workshop on Enterprise Se-
curity, June 2003.

[33] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Counter-
ing Code-Injection Attacks With Instruction-Set Random-
ization. In Proceedings of the ACM Computer and Commu-
nications Security (CCS) Conference, pages 272–280, Oc-
tober 2003.

[34] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: Se-
cure Overlay Services. In Proceedings of ACM SIGCOMM,
pages 61–72, August 2002.

[35] A. D. Keromytis, J. Parekh, P. N. Gross, G. Kaiser,
V. Misra, J. Nieh, D. Rubenstein, and S. Stolfo. A Holis-
tic Approach to Service Survivability. In Proceedings of
the 1st ACM Workshop on Survivable and Self-Regenerative
Systems (SSRS), pages 11–22, October 2003.

[36] J. C. Knight and N. G. Leveson. An Experimental Evalu-
ation of the Assumption of Independence in Multiversion
Programming. IEEE Transactions on Software Engineer-
ing, 12(1):96–109, January 1986.

[37] O. P. Kreidl and T. M. Frazier. Feedback Control Applied to
Survivability: A Host-Based Autonomic Defense System.
IEEE Transactions on Reliability, 2002.

[38] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. In Proceedings of
the ACM SIGPLAN 2003 Conference on Programming Lan-
guage Design and Implementation, San Diego, California,
June 9–11 2003.

[39] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jor-
dan. Scalable statistical bug isolation. In Proceedings of
the ACM SIGPLAN 2005 Conference on Programming Lan-
guage Design and Implementation, Chicago, Illinois, June
12–15 2005.

[40] M. Locasto, J. Parekh, S. Stolfo, A. Keromytis, T. Malkin,
and V. Misra. Collaborative Distributed Intrusion Detec-
tion. Technical Report CUCS-012-04, Columbia University
Department of Computer Science, 2004.

[41] M. Locasto, S. Sidiroglou, and A. D. Keromytis. Applica-
tion Communities: Using Monoculture for Dependability.
In Proceedings of the 1

st Workshop on Hot Topics in Sys-
tem Dependability (HotDep), pages 288–292, June 2005.

[42] D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet
Quarantine: Requirements for Containing Self-Propagating
Code. In Proceedings of the IEEE Infocom Conference,
April 2003.

[43] J. Newsome and D. Dong. Dynamic Taint Analysis for Au-
tomatic Detection, Analysis, and Signature Generation of
Exploits on Commodity Software. In Proceedings of the
12

th Annual Symposium on Network and Distributed Sys-
tem Security (SNDSS), February 2005.

[44] A. J. O’Donnell and H. Sethu. On Achieving Software Di-
versity for Improved Network Security using Distributed
Coloring Algorithms. In Proceedings of the 11

th ACM

Conference on Computer and Communications Security
(CCS), pages 121–131, October 2004.

[45] A. Orso, D. Liang, M. J. Harrold, and R. Lipton. Gamma
System: Continuous Evolution of Software After Deploy-
ment. In Proceedings of the ACM International Symposium
on Software Testing and Analysis (ISSTA), July 2002.

[46] P. Porras, L. Briesemeister, K. Skinner, K. Levitt, J. Rowe,
and Y. A. Ting. A Hybrid Quarantine Defense. In Pro-
ceedings of the ACM CCS Workshop on Rapid Malcode
(WORM) 2004, October 2004.

[47] V. Prevelakis. A Secure Station for Network Monitoring
and Control. In Proceedings of the 8

th USENIX Security
Symposium, August 1999.

[48] J. C. Reynolds, J. Just, L. Clough, and R. Maglich. On-Line
Intrusion Detection and Attack Prevention Using Diversity,
Generate-and-Test, and Generalization. In Proceedings of
the 36th Annual Hawaii International Conference on Sys-
tem Sciences (HICSS), January 2003.

[49] J. Seward and N. Nethercote. Valgrind, an open-source
memory debugger for x86-linux. http://developer.
kde.org/˜sewardj/.

[50] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and
D. Boneh. On the Effectiveness of Address-Space Ran-
domization. In Proceedings of the 11

th ACM Conference
on Computer and Communications Security (CCS), pages
298–307, October 2004.

[51] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D.
Keromytis. Building A Reactive Immune System for Soft-
ware Services. In Proceedings of the 11

th USENIX Annual
Technical Conference, pages 149–161, April 2005.

[52] M. Stamp. Risks of Monoculture. Communications of the
ACM, 47(3):120, March 2004.

[53] A. Steven. Defeating compiler-level buffer overflow pro-
tection. USENIX ;login:, 30(3):59–71, June 2005.

[54] S. J. Stolfo. Worm and Attack Early Warning. IEEE Secu-
rity and Privacy, 2(3):73–75, May-June 2004.

[55] J. D. Strunk, G. R. Goodson, A. G. Pennington, C. Soules,
and G. Ganger. Intrusion Detection, Diagnosis, and Recov-
ery with Self-Securing Storage. Technical Report CMU-
CS-02-140, CMU Computer Science, May 2002.

[56] J. A. Whittaker. No Clear Answers on Monoculture Is-
sues. IEEE Security & Privacy, 1(6):18–19, Novem-
ber/December 2003.

[57] J. Wilander and M. Kamkar. A Comparison of Publicly
Available Tools for Dynamic Intrusion Prevention. In Pro-
ceedings of the Symposium on Network and Distributed
Systems Security (SNDSS), pages 123–130, February 2003.

[58] V. Yegneswaran, P. Barford, and S. Jha. Global Intrusion
Detection in the DOMINO Overlay System. In Proceedings
of NDSS, February 2004.

[59] C. C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring
and Early Warning for Internet Worms. In Proceedings of
the 10th ACM International Conference on Computer and
Communications Security (CCS), pages 190–199, October
2003.

12

