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ABSTRACT
A key problem facing current computing systems is the in-
ability to autonomously manage security vulnerabilities as
well as more mundane errors. Since the design of computer
architectures is usually performance-driven, hardware often
lacks primitives for tasks in which raw speed is not the pri-
mary goal. There is little architectural support for monitor-
ing execution at the instruction level, and no mechanisms
for assisting an automated response.

This paper advocates modifying general-purpose proces-
sors to provide both program supervision and automatic re-
sponse via a policy-driven monitoring mechanism and in-
struction stream rewriting, respectively. These capabilities
form the basis of speculative virtual verification (SVV).

SVV is a model for the speculative execution of code
based on high-level security and safety constraints. We in-
troduce architectural enhancements to support this frame-
work, including the ability to supply an automated response
by rewriting the instruction stream. Finally, given the nov-
elty of the SVV approach to executing software, we briefly
consider some important challenges for SVV-based systems.

1. INTRODUCTION
Software faults and vulnerabilities continue to present sig-

nificant obstacles to achieving reliable and secure software.
The lack of comprehensive and low-cost protection mecha-
nisms presents a critical problem for computing systems.

Static analysis techniques or improved programming prac-
tices are unlikely to provide a complete solution to the types
of errors that threaten system stability or create exploitable
vulnerabilities. Even systems that dynamically monitor pro-
cess execution often impose a noticeable performance cost.
Furthermore, these systems may reinvent the same primi-
tives because the hardware does not supply them. However,
even if such capabilities existed, system security is often a
matter of policy ; these utilities would need some level of
flexibility to be applicable and remain useful in a wide vari-
ety of diverse and evolving environments. Finally, systems
currently lack the capability to respond intelligently to both
attacks and non-malicious faults.

The ability for computing systems to detect and correct
faults and vulnerabilities would greatly improve their stabil-
ity and security. The main contribution of this paper is the
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proposal of a set of architectural components that provide a
basis for such systems by speculatively executing the entire
instruction stream. In much the same way that a superscalar
processor speculatively executes past a branch instruction
and discards the mis-predicted code path, we propose that
processors operate on the instruction stream in two phases.
The first phase executes instructions, optimistically “spec-
ulating” that the results of these computations are benign.
The second phase makes the effects of the speculated in-
struction stream visible to the OS and application software
layers and potentially rewrites the instruction stream if it
has been deemed harmful.

1.1 Speculative Execution
Speculative execution is a technique used in microproces-

sors to execute the instructions in a code branch before the
evaluation of the branch conditional is finished. The need to
perform speculative execution arises in pipelined processors
because the conditional instruction that the branch depends
on has proceeded deeply into the pipeline but has not been
evaluated by the time the processor is ready to fetch addi-
tional instructions. An example of this situation is shown in
Figure 1.

While a complete discussion of the strategies for dealing
with branch predication is beyond the scope of this paper,
a basic overview of the subject and pointers to other mate-
rial are available in [11, 7]. Our proposal differs from these
techniques by introducing an additional layer of speculative
execution in which the acceptance of a particular execution
path is not based on the evaluation of a branch conditional,
but rather a higher-order constraint on a set of instructions.

1.2 Motivation and Feasibility
We are motivated by work on constructing an emulator

[29] to supervise program execution in response to exploits
and errors. Unfortunately, the use of an emulator imposes
a considerable performance overhead since the emulator ex-
ecutes every program instruction in software. The first way
to ease this burden, which was adopted in [29], is to limit the
scope of emulation to portions of the program demonstrated
to be vulnerable, thereby reducing the time that is spent in
the emulator. The second approach is to eliminate the em-
ulation penalty altogether by executing the process directly
on the CPU. Unfortunately, adopting this approach cur-
rently means relinquishing the monitoring capabilities that
the emulator provides. Therefore, we advocate adding mon-



0 ...

1 fdivl %R1, %R2, %R3

2 fadd %R5, %R6, %R7

3 fcmp %R1, %R2

4 je LABEL1

5 jmp LABEL2

6 LABEL1:

7 movl $0, %R1

8 movl $0, %R2

9 movl %R1, -8(%R30)

10 movl %R2, -4(%R30)

11 jmp LABEL3

12 LABEL2:

13 ...

Figure 1: Speculative Execution of a Branch. In this
made-up assembly language, rather than stall the
pipeline because of the unresolved result of the float-
ing point divide operation, the processor can choose
to issue the floating point add operation on line 2
(out of order execution). If the dependency on R1

and R2 between the divide and the compare oper-
ations is satisfied, then the compare can execute.
Because the result of the compare on line 3 may
not be available for the branch instruction in line 4,
the processor may speculatively execute (based on
branch prediction) the code at LABEL1 or fall through
to the direct jump on line 5. If the branch prediction
is incorrect, the speculated instructions are flushed
and execution continues from the correct target.

itoring mechanisms to processors so that a certain level of
safety is relatively inexpensive. In order to address more
complex attacks, we also propose that execution can be del-
egated to the software emulator as needed.

Our goal is to push common-mode security monitoring
functionality further down the system stack. Arguing for
the widespread adoption of fundamental changes to hard-
ware is a controversial proposition. We believe the hardware
necessary to support our system is easily implementable. In-
deed, large parts of the system are already present in modern
processors to support thread level speculation (TLS). The
design parameters of general-purpose microprocessors have
traditionally been driven by raw performance. We advocate
design parameters aimed at more high-level feature support.

2. SYSTEM DESIGN
As illustrated in Figure 2 the core features of SVV form

a two level monitoring environment. The first level includes
hardware mechanisms for monitoring instruction execution
(bounds checking, taint-tracking [32], SRAS [16], transfer
control validation [14], etc.). The second level of monitor-
ing is provided by the Policy Constraint Unit (PCU) and
the Virtual Emulator Registration Unit (VERU). Instruc-
tions are filtered by the PCU according to some policy con-
structed by the programmer, compiler, or runtime profiling.
The policy could range from filtering on a particular class of
instructions (integer vs. load/store) to more complex con-
straints that require keeping state. The design of a con-
straint language to express these policies is future work, but
we envision the PCU to be a FSM much like the instruc-

tion decoding unit that is able to filter instructions based
on properties like target and source registers and memory
locations, instruction type, and processor status flags, other
processor state (as supplied by other components such as a
SRAS or an array length tracker), and data dependencies.

The VERU stores an address for code that should be ex-
ecuted if the PCU identifies a sequence of instructions that
require more resources than the hardware can easily pro-
vide. Finally, the Verification Buffer (VB) and the Instruc-
tion Rewrite Unit (IRWU) provide some basic support for
an automatic response capability.

2.1 SVV Execution Model
The execution model for SVV (see Figure 2) is similar

to current superscalar execution models. Instructions are
fetched, decoded, issued to functional units (possibly out of
order), executed, and gathered in a re-order buffer (ROB) to
be committed in program order. However, at each stage, in-
structions are filtered by the PCU and monitored by hardware-
level security mechanisms. Additionally, the VB accumu-
lates completed instructions as they leave the ROB and com-
mits them only if they pass the monitoring tests.

Instruction flow for SVV can be categorized by the follow-
ing three scenarios. First, the instruction may be harmless.
In this case, it proceeds normally to the ROB, graduates
when appropriate, moves to the VB, and is committed. Sec-
ond, an instruction may be harmful as determined by the
monitoring mechanisms (e.g., it is actually tainted input
data, or will write input data to the code area of the pro-
cess address space) or the PCU. In this case, the IRWU
flushes the scope of the harmful instruction and constructs
a ’safe’ version of the flushed code. The processor then ex-
ecutes this alternate instruction stream, including a return
to the normal path of execution. The third scenario en-
ables an emulator to be loaded on the CPU and supervise
code execution. If the PCU decides that a particular se-
quence of instructions requires more complex supervision, it
can invoke execution of this emulator. Note that there is no
requirement for the software invoked by the VERU to be an
emulator. The VERU simply holds an address and trans-
fers control to the code at this address. Such an approach
enables a more general response mechanism than software
emulation. For example, the VERU may transfer control to
an OS routine that kills the process, or suspends the process
and transfers it to an isolated host for analysis, auditing, in-
trusion detection, or debugging.

Another way to envision the SVV execution model is as an
operating system that schedules a process for execution on
two cooperating microprocessors, as shown in Figure 3. Such
an implementation would needlessly complicate the OS, and
we argue that individual processors can contain the compo-
nents necessary to transparently implement SVV.

2.2 Scope of SVV
The largest obstacle to overcome for SVV is a three part

problem that involves determining the scope of supervision.
First, even though SVV is meant to run continuously, some
applications (especially those working in a power-constrained
environment) may wish to avoid the overhead associated
with constant monitoring. Second, hardware is fundamen-
tally limited in the number of virtual execution contexts it
can support concurrently. Finally, it is likely that the ba-
sic monitoring mechanisms, while capable of stopping large
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Figure 2: Pipeline organization for SVV. Here, a simplified pipeline for a superscalar processor is modified to
add an extra verification stage as well as policy-driven hardware-based monitoring mechanisms. The IRWU
can optionally rewrite the instruction stream and cause the new version (stored in the VB) to be executed.
Traditional hardware components are shown as full rectangles, new components are rounded. Not shown is
the VERU, which holds the address for an emulator capable of higher-level supervision.
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Figure 3: High-level execution model for SVV. The
instruction stream for a process is scheduled for ex-
ecution on two processors. CPU1 supervises in-
struction execution while CPU2 commits instruc-
tions that are benign. CPU2 can optionally re-write
the instruction stream as a basic form of active re-
sponse. The conceptual processors CPU1 and CPU2
are actually one physical unit, CPU3.

classes of attacks, may be unable to cope with more so-
phisticated attacks (some forms of DoS, multi-step attacks,
information leaks, improperly set permissions, phishing at-
tacks, etc.) or analysis tasks that require copious amount of
state (anomaly or intrusion detection via data mining).

To address the latter two problems, we use the VERU
to register a software emulator that can perform high-level
monitoring of an instruction stream. An emulator has the
flexibility to be more intrusive and is easily customizable.
This hybrid approach to monitoring is more promising than
an approach based solely on hardware or software. To ad-
dress the first problem, SVV can be selectively invoked.
Control over this invocation can be handled by the OS (a
new system call to invoke or halt the SVV hardware) or the
compiler (new assembly instructions can delimit an SVV
monitored code region).

2.3 Micro-patching: Automated Response
Automating a response strategy is difficult, as it is of-

ten unclear what a program should do in response to an
error or attack. A response system is forced to anticipate
the intent of the programmer, even if that intent was not
well expressed or even well-formed. Ideal computing sys-
tems would recover from attacks and errors without human
intervention. However, the state of the art is far from ma-
ture, and most existing response mechanisms are external
to the system they protect. Some simply crash the process
that was attacked (and do nothing to fix the fault, thereby
ensuring that the system is still vulnerable when it is re-
booted). Other systems may restrict network connectivity
or resource consumption. SVV includes the ability to rewrite
a vulnerable sequence of instructions without recompilation.
In effect, SVV supports the ability to generate and insert
a micro-patch into the protected application’s instruction
stream.

This mechanism is general enough that a wide variety
of response techniques can be implemented, such as: data
structure repair [6], failure oblivious computing [26], and er-
ror virtualization [29]. Compilers can be augmented to pro-
vide “alternative execution paths” to some code sections.
These alternatives can be driven by explicit program code,
programmer annotation, purely compiler-generated, taken
from profiling information for the application, or gathered
by the processor itself from previous runs of the same code
block as a form of machine learning.

The rewritten instruction stream can be propagated to the
code section of the process address space to protect future
execution. The new instruction sequence could be applied
(with OS support) to the on-disk binary as a rudimentary
patch. The question of whether or not to propagate the
micro-patch out to the process memory space or even to disk
is a high–level policy question. One difficulty with automati-
cally propagating the patch (beyond the current invocation)
is that attacks and faults are relatively rare, and executing
the micro-patch for all subsequent normal requests would
needlessly change the normal operation of the software. One
solution is to have a prologue to all micro-patches such that
they are conditionally executed based on site policy (as set



by an administrator who knows the needs of the environ-
ment). Another solution is to have the micro-patch condi-
tionally executed based on markers seen in the environment.
For example, at the moment of patching, a software-level
monitor can take a snapshot of important state (network
packets seen, important data structures), and if those con-
ditions are recreated, the monitor can set a flag so that the
micro-patch does execute.

Micro-patching via instruction stream rewriting can be
seen as a type of automatic diversity mechanism. While au-
tomated diversity is a good protection mechanism, we argue
that micro-patches should be recorded somewhere (even if
they are not automatically propagated to the process image
or binary); failing to do so can make it difficult to debug an
application, as there would be no exact record of what code
the processor generated and executed.

There are many pitfalls to automating a response. One in-
teresting possibility is for an attacker to implement a covert
channel by continuously causing SVV to flush the current set
of instructions and replace it with a micro-patch. Such an
attack would seem to be difficult, as the current execution
context (and thus, presumably the attacker’s code) would be
replaced with completely different instructions, but it not at
all outside the realm of possibility. The micro-patch itself
would have to cause an externally measurable phenomena
for the consumer of the covert channel.

3. RELATED WORK
SVV draws on ideas from computer architecture, fault-

tolerant computing, and computer security. We examined
some hardware support [30] for an x86 emulator (STEM)
that supervises the execution of vulnerable code slices [29].
The approach of SVV is akin to systems [28, 25, 23] that uti-
lize a secondary host machine as a sandbox or instrumented
honeypot: work is offloaded to this host, thus minimizing ex-
posure to the primary host. The work most closely related
to ours is Oplinger and Lam’s proposal [22] for using TLS to
improve software reliability. Their key idea is to execute an
application’s monitoring code in parallel with the primary
computation and roll back the computation “transaction”
depending on the results of the monitoring code.

Evers et al. [7] investigate the predictability of branches
and provide an overview of various branch prediction schemes
that have been proposed to ameliorate the cost of incor-
rect predictions. Wang et al. [33] explore an interesting re-
sult: about 50% of mispredicted branches do not affect cor-
rect program behavior. This result is encouraging because
it offers evidence that our previously proposed macro-level
remediation technique of error virtualization (dynamically
returning early from the current function context with an
extrapolated error code) holds at the micro-level also.

3.1 Secure Hardware
Incorporating security mechanisms in hardware has tradi-

tionally been limited to providing implementations of cryp-
tographic algorithms. McGregor and Lee [20] also inves-
tigate protecting cryptographic secrets. Of a more focused
scope is Lee et al.’s proposal [16] of a hardware–based return
stack (SRAS) to frustrate buffer overflow attacks. Suh et al.

[32] propose hardware extensions to thwart control-transfer
attacks by tracking “tainted” input data (as identified by
the OS). If the processor detects the use of this tainted data
as a jump address or an executed instruction, it raises an ex-

ception. Kuperman et al. [15] has a good overview of buffer-
overflow related attacks and discusses some hardware-based
approaches to protection, including SRAS (and related vari-
ants) and their own SmashGuard proposal.

Even contemporary approaches to this topic, such as the
TCPA/TCG, only provide tamper-resistant hardware mod-
ules to store secrets. Recent efforts such as Cerium [4]
and XOM [18, 17, 19] focused on providing a trusted com-
puting base (TCB) and tamper-resistant architecture that
can attest to the validity of a particular computation [10].
In the case of execute–only memory (XOM), the hardware
performs encrypted program execution and makes several
strong security claims.

While TCG does offer some measurement functionality
[27], the state of the art in this field tries to leverage these
stored secrets for attestation, and attestation is typically
used for the purposes of DRM. Such uses provide a mecha-
nism for a remote entity to control local execution. There
are no mechanisms for the local entity to systematically pre-
vent and control a remote entity from executing local code.
Our work on SVV is an attempt to provide a unified model
for the supervision and online patching of machine instruc-
tions.

The Copilot system [24] by Petroni et al. is one expression
of hardware security aimed at integrity protection. Much
like the Tripwire1 software, the goal of Copilot is to make
sure that important data has not been corrupted. However,
Copilot performs rootkit intrusion detection by monitoring
changes to a host’s kernel text segment and related data
structures. The current implementation is based on a PCI
card that monitors the host’s main memory via DMA (with-
out the host kernel’s knowledge) and has a secure commu-
nications link to an administrative reporting station.

3.2 Execution Supervision Environments
Virtual machine emulation of operating systems or proces-

sor architectures to provide a sandboxed environment is an
active area of research. Virtual machine monitors (VMMs)
are employed in a number of security–related contexts, from
autonomic patching of vulnerabilities [28] to intrusion de-
tection [9]. MiSFIT [31] is a tool that constructs a sand-
box by instrumenting applications at the assembly language
level. Program shepherding [14] works on uninstrumented
IA-32 binaries and validates branch instructions to prevent
transfer of control to injected code. Intel’s Vanderpool and
AMD’s Pacifica designs are forward-looking architectures
that provide support for hypervisors and VMMs. These de-
signs provide the mechanisms we wish to use for the support
and invocation of the Virtual Emulator for more high-level
monitoring.

Other protection mechanisms include compiler techniques
like Stackguard [5] and safer libraries, such as libsafe and lib-

verify [1]. Tools exist to verify and supervise code during
development or debugging; of these tools, Purify2 and Val-
grind [21] are popular choices. Valgrind has been used by
Barrantes et al. [2] to implement instruction set randomiza-
tion (ISR) to protect against code insertion attacks. Other
work on ISR includes [13], which employs the x86 emulator
Bochs3. The implementation of ISR techniques in hardware

1http://tripwire.org/
2http://www.rational.com/products/purify_unix/
index.jtmpl
3http://bochs.sourceforge.net/



would eliminate most of their performance impact.
In work inspired by the ideas fundamental to artificial sys-

tem diversity [8], Holland, Lim, and Seltzer [12] introduce
the idea of automatically generating randomized architec-
tures to support system security. Since synthesizing the
hardware for such every such generated architecture is an
untenable approach, they recommend using VMMs to pro-
vide the necessary execution environments.

3.3 Recovery and Repair
A key feature of SVV is the use of instruction stream re-

writing as a basic building block for an adaptive response
mechanism. Other recent work that examines repair mech-
anisms includes failure-oblivious computing [26] and data
structure repair [6]. Candea and Fox propose a different
approach: design software systems such that they employ
crashing as the normal halting mode and use recursive mi-
croreboots to safely restart [3]. We propose adding the ca-
pability to rewrite local code slices in the processor itself as
a general tool for reactive capabilities.

4. CONCLUSIONS
We have described the architectural components needed

to support a new execution model for secure and reliable
computing: speculative virtual verification (SVV). This model
complements previous work on trustworthy and tamper–
resistant computing architectures but is not meant as a re-
placement for the capabilities such systems provide. There
is a multitude of challenging problems to be addressed in
the construction, testing, and deployment of SVV. We in-
tend to study these issues and implement SVV in a variety of
execution environments, including x86 emulators, the Java
Virtual Machine, and simulators for the MIPS and ARM
architectures.

There is no silver bullet for system security, and SVV is
not meant to address all possible attacks. However, we be-
lieve that given the current state of the arms race between
attackers and system designers a paradigm shift is neces-
sary. We advocate modifying general-purpose processors to
(a) provide implicit supervision functionality, (b) export a
policy-driven monitoring mechanism, and (c) provide the
foundation for an automatic response capability via instruc-
tion stream rewriting.
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